1
|
Khan R, Turner A, Berk M, Walder K, Rossell S, Guerin AA, Kim JH. Genes, Cognition, and Their Interplay in Methamphetamine Use Disorder. Biomolecules 2025; 15:306. [PMID: 40001609 PMCID: PMC11852989 DOI: 10.3390/biom15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Methamphetamine use disorder is a pressing global health issue, often accompanied by significant cognitive deficits that impair daily functioning and quality of life and complicate treatment. Emerging evidence highlights the potential role of genetic factors in methamphetamine use disorder, particularly in association with cognitive function. This review examines the key genetic and cognitive dimensions and their interplay in methamphetamine use disorder. There is converging evidence from several studies that genetic polymorphisms in BDNF, FAAH, SLC18A1, and SLC18A2 are associated with protection against or susceptibility to the disorder. In addition, people with methamphetamine use disorder consistently displayed impairments in cognitive flexibility and inhibitory control compared with people without the disorder. These cognitive domains were associated with reactivity to methamphetamine cues that were positively correlated with total years of methamphetamine use history. Emerging research also suggests that inhibitory control is negatively correlated with lower blood FAAH mRNA levels, while cognitive flexibility positively correlates with higher blood SLC18A2 mRNA levels, highlighting how genetic and cognitive dimensions interact in methamphetamine use disorder. We also include some future directions, emphasizing potential personalized therapeutic strategies that integrate genetic and cognitive insights. By drawing attention to the interplay between genes and cognition, we hope to advance our understanding of methamphetamine use disorder and inform the development of targeted interventions.
Collapse
Affiliation(s)
- Ramisha Khan
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Alyna Turner
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Michael Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Ken Walder
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Alexandre A. Guerin
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
- Orygen, Melbourne, VIC 3052, Australia
| | - Jee Hyun Kim
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| |
Collapse
|
2
|
Guerin AA, Bridson T, Plapp HM, Bedi G. A systematic review and meta-analysis of health, functional, and cognitive outcomes in young people who use methamphetamine. Neurosci Biobehav Rev 2023; 153:105380. [PMID: 37678571 DOI: 10.1016/j.neubiorev.2023.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Methamphetamine use typically starts in adolescence, and early onset is associated with worse outcomes. Yet, health, functional, and cognitive outcomes associated with methamphetamine use in young people are not well understood. The aim of this study was to comprehensively assess the evidence on health, functional, and cognitive outcomes in young people (10-25 years-old) who use methamphetamine. Sixty-six studies were included. The strongest association observed was with conduct disorder, with young people who use methamphetamine some 13 times more likely to meet conduct disorder criteria than controls. They were also more likely to have justice system involvement and to perpetrate violence against others. Educational problems were consistently associated with youth methamphetamine use. The cognitive domain most reliably implicated was inhibitory control. Key limitations in the literature were identified, including heterogenous measurement of exposure and outcomes, lack of adequate controls, and limited longitudinal evidence. Outcomes identified in the present review - suggesting complex and clinically significant behavioural issues in this population - are informative for the development of future research and targeted treatments.
Collapse
Affiliation(s)
- Alexandre A Guerin
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia; Orygen, Melbourne, Australia.
| | - Tahnee Bridson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia; Orygen, Melbourne, Australia
| | - Helena M Plapp
- Orygen, Melbourne, Australia; Royal Melbourne Hospital, Melbourne, Australia
| | - Gillinder Bedi
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia; Orygen, Melbourne, Australia
| |
Collapse
|
3
|
Joo Y, Lee S, Hwang J, Kim J, Cheon YH, Lee H, Kim S, Yurgelun-Todd DA, Renshaw PF, Yoon S, Lyoo IK. Differential alterations in brain structural network organization during addiction between adolescents and adults. Psychol Med 2023; 53:3805-3816. [PMID: 35440353 PMCID: PMC10317813 DOI: 10.1017/s0033291722000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The adolescent brain may be susceptible to the influences of illicit drug use. While compensatory network reorganization is a unique developmental characteristic that may restore several brain disorders, its association with methamphetamine (MA) use-induced damage during adolescence is unclear. METHODS Using independent component (IC) analysis on structural magnetic resonance imaging data, spatially ICs described as morphometric networks were extracted to examine the effects of MA use on gray matter (GM) volumes and network module connectivity in adolescents (51 MA users v. 60 controls) and adults (54 MA users v. 60 controls). RESULTS MA use was related to significant GM volume reductions in the default mode, cognitive control, salience, limbic, sensory and visual network modules in adolescents. GM volumes were also reduced in the limbic and visual network modules of the adult MA group as compared to the adult control group. Differential patterns of structural connectivity between the basal ganglia (BG) and network modules were found between the adolescent and adult MA groups. Specifically, adult MA users exhibited significantly reduced connectivity of the BG with the default network modules compared to control adults, while adolescent MA users, despite the greater extent of network GM volume reductions, did not show alterations in network connectivity relative to control adolescents. CONCLUSIONS Our findings suggest the potential of compensatory network reorganization in adolescent brains in response to MA use. The developmental characteristic to compensate for MA-induced brain damage can be considered as an age-specific therapeutic target for adolescent MA users.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Young-Hoon Cheon
- Department of Psychiatry, Incheon Chamsarang Hospital, Incheon, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Deborah A. Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Smucny J, Maddock RJ. Spectroscopic meta-analyses reveal novel metabolite profiles across methamphetamine and cocaine substance use disorder. Drug Alcohol Depend 2023; 248:109900. [PMID: 37148676 PMCID: PMC11187716 DOI: 10.1016/j.drugalcdep.2023.109900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although proton magnetic resonance spectroscopy (MRS) has been used to study metabolite alterations in stimulant (methamphetamine and cocaine) substance use disorders (SUDs) for over 25 years, data-driven consensus regarding the nature and magnitude of these alterations is lacking. METHOD In this meta-analysis, we examined associations between SUD and regional metabolites (N-acetyl aspartate (NAA), choline, myo-inositol, creatine, glutamate, and glutamate+glutamine (glx)) in the medial prefrontal cortex (mPFC), frontal white matter (FWM), occipital cortex, and basal ganglia as measured by 1 H-MRS. We also examined moderating effects of MRS acquisition parameters (echo time (TE), field strength), data quality (coefficient of variation (COV)), and demographic/clinical variables. RESULTS A MEDLINE search revealed 28 articles that met meta-analytic criteria. Significant effects included lower mPFC NAA, higher mPFC myo-inositol, and lower mPFC creatine in SUD relative to people without SUD. mPFC NAA effects were moderated by TE, with larger effects at longer TEs. For choline, although no group effects were observed, effect sizes in the mPFC were related to MRS technical indicators (field strength, COV). No effects of age, sex, primary drug of use (methamphetamine vs. cocaine), duration of use, or duration of abstinence were observed. Evidence for moderating effects of TE and COV may have implications for future MRS studies in SUDs. CONCLUSIONS The observed metabolite profile in methamphetamine and cocaine SUD (lower NAA and creatine with higher myo-inositol) parallels that observed in Alzheimer's disease and mild cognitive impairment, suggesting these drugs are associated with neurometabolic differences similar to those characterizing these neurodegenerative conditions.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA.
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
5
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
6
|
Jang WJ, Song SH, Son T, Bae JW, Lee S, Jeong CH. Identification of Potential Biomarkers for Diagnosis of Patients with Methamphetamine Use Disorder. Int J Mol Sci 2023; 24:ijms24108672. [PMID: 37240016 DOI: 10.3390/ijms24108672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The current method for diagnosing methamphetamine use disorder (MUD) relies on self-reports and interviews with psychiatrists, which lack scientific rigor. This highlights the need for novel biomarkers to accurately diagnose MUD. In this study, we identified transcriptome biomarkers using hair follicles and proposed a diagnostic model for monitoring the MUD treatment process. We performed RNA sequencing analysis on hair follicle cells from healthy controls and former and current MUD patients who had been detained in the past for illegal use of methamphetamine (MA). We selected candidate genes for monitoring MUD patients by performing multivariate analysis methods, such as PCA and PLS-DA, and PPI network analysis. We developed a two-stage diagnostic model using multivariate ROC analysis based on the PLS-DA method. We constructed a two-step prediction model for MUD diagnosis using multivariate ROC analysis, including 10 biomarkers. The first step model, which distinguishes non-recovered patients from others, showed very high accuracy (prediction accuracy, 98.7%). The second step model, which distinguishes almost-recovered patients from healthy controls, showed high accuracy (prediction accuracy, 81.3%). This study is the first report to use hair follicles of MUD patients and to develop a MUD prediction model based on transcriptomic biomarkers, which offers a potential solution to improve the accuracy of MUD diagnosis and may lead to the development of better pharmacological treatments for the disorder in the future.
Collapse
Affiliation(s)
- Won-Jun Jang
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Taekwon Son
- Korea Brain Bank, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jung Woo Bae
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
7
|
Su B, Zheng M. Impaired proactive control in individuals with methamphetamine use disorder: Evidence from ERPs. J Psychiatr Res 2023; 160:47-55. [PMID: 36774830 DOI: 10.1016/j.jpsychires.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/27/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Research suggests that methamphetamine use is associated with impaired cognitive control, which may contribute to impulsive drug use. Cognitive control is dynamically mediated by proactive and reactive control (reflecting various processing stages of cognitive control with different properties), and it is crucial to determine whether methamphetamine use impairs proactive and/or reactive control. To address this issue, we conducted an event-related potential (ERP) study to examine proactive and reactive control in individuals with methamphetamine use disorder (MUD). METHODS Abstinent individuals with MUD (n = 25) and healthy controls (HC, n = 27) completed a cued task-switching task while brain electrical activity was recorded. Cue- and target-locked ERP components modulated by task switching were linked to proactive and reactive control, respectively. RESULTS No behavioral differences between the groups were found. However, the HC group showed cue-locked switch-positivity (i.e., more positive amplitudes for switch than repeat trials) in both the early and late time windows, although the MUD group only showed late switch-positivity, which was smaller than the HC group. Independent of switch or congruent condition, the MUD group had smaller target-locked positivity than the HC group. CONCLUSIONS These findings suggest that individuals with MUD exhibit reduced proactive control and mobilize extra reactive control efforts to compensate. Our study contributes to a better understanding of cognitive control impairment in individuals with MUD and has implications for potential interventions.
Collapse
Affiliation(s)
- Bobo Su
- Department of Psychology, Tsinghua University, Beijing, 100084, China.
| | - Meihong Zheng
- Department of Psychology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
9
|
Zerekidze A, Li M, Javaheripour N, Huff L, Weiss T, Walter M, Wagner G. Neural Correlates of Impaired Cognitive Control in Individuals with Methamphetamine Dependence: An fMRI Study. Brain Sci 2023; 13:brainsci13020197. [PMID: 36831741 PMCID: PMC9954217 DOI: 10.3390/brainsci13020197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Impaired cognitive and behavioral control has often been observed in people who use methamphetamine (MA). However, a comprehensive understanding of the neural substrates underlying these impairments is still lacking. The goal of the present study was to study the neural correlates of impaired cognitive control in individuals with MA dependence according to DSM-IV criteria. Eighteen individuals with MA dependence and 21 healthy controls were investigated using Stroop task, fMRI, and an impulsivity questionnaire. Overall, patients were found to have significantly poorer accuracy on the Stroop task and higher self-rated impulsivity. Comparing brain activations during the task, decreased activation in the dorsolateral prefrontal cortex (DLPFC), anterior midcingulate cortex (aMCC), and dorsal striatum was observed in individuals with MA dependence, compared to healthy controls. Altered fMRI signal in DLPFC and aMCC significantly correlated with impaired behavioral task performance in individuals with MA dependence. Furthermore, significantly lower and pronounced brain activations in the MA group were additionally detected in several sensory cortical regions, i.e., in the visual, auditory, and somatosensory cortices. The results of the current study provide evidence for the negative impact of chronic crystal meth consumption on the proper functioning of the fronto-cingulate and striatal brain regions, presumably underlying the often-observed deficits in executive functions in individuals with MA use disorder. As a new finding, we also revealed abnormal activation in several sensory brain regions, suggesting the negative effect of MA use on the proper neural activity of these regions. This blunted activation could be the cause of the observed deficits in executive functions and the associated altered brain activation in higher-level brain networks.
Collapse
Affiliation(s)
- Ani Zerekidze
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Laura Huff
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Weiss
- Department of Clinical Psychology, Friedrich Schiller University, 07743 Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
10
|
Mu LL, Wang Y, Wang LJ, Xia LL, Zhao W, Song PP, Li JD, Wang WJ, Zhu L, Li HN, Wang YJ, Tang HJ, Zhang L, Song X, Shao WY, Zhang XC, Xu HS, Jiao DL. Associations of executive function and age of first use of methamphetamine with methamphetamine relapse. Front Psychiatry 2022; 13:971825. [PMID: 36311529 PMCID: PMC9608758 DOI: 10.3389/fpsyt.2022.971825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS Methamphetamine (MA) is a psychostimulant associated with a high relapse rate among patients with MA use disorder (MUD). Long-term use of MA is associated with mental disorders, executive dysfunction, aggressive behaviors, and impulsivity among patients with MUD. However, identifying which factors may be more closely associated with relapse has not been investigated. Thus, we aimed to investigate the psychological factors and the history of MA use that may influence MA relapse. METHODS This cross-sectional study included 168 male MUD patients (MUD group) and 65 healthy male residents (control group). Each patient was evaluated with self-report measures of executive dysfunction, psychopathological symptoms, impulsiveness, aggressiveness, and history of MA use. Data were analyzed with t-tests, analyses of variance, and correlation and regression analyses. RESULTS The MUD group reported greater executive dysfunction, psychopathological symptoms, impulsivity, and aggression than the control group. Lower age of first MA use was associated both with having relapsed one or more times and with having relapsed two or more times; greater executive dysfunction was associated only with having relapsed two or more times. CONCLUSION Patients with MUD reported worse executive function and mental health. Current results also suggest that lower age of first MA use may influence relapse rate in general, while executive dysfunction may influence repeated relapse in particular. The present results add to the literature concerning factors that may increase the risk of relapse in individuals with MUD.
Collapse
Affiliation(s)
- Lin-Lin Mu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Li-Jin Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Ling-Ling Xia
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Pei-Pei Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Jun-Da Li
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wen-Juan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lin Zhu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hao-Nan Li
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yu-Jing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hua-Jun Tang
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Lei Zhang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wen-Yi Shao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xiao-Chu Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua-Shan Xu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Dong-Liang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Verdejo-Garcia A, Hanegraaf L, Blanco-Gandía MC, López-Arnau R, Grau M, Miñarro J, Escubedo E, Pubill D, Rodríguez-Arias M. Impact of adolescent methamphetamine use on social cognition: A human-mice reverse translation study. Drug Alcohol Depend 2022; 230:109183. [PMID: 34847504 DOI: 10.1016/j.drugalcdep.2021.109183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Methamphetamine dependence is associated with social cognition deficits that may underpin negative social outcomes. However, there are considerable inter-individual differences in social cognition within people with methamphetamine dependence, with age of onset of methamphetamine use being a potential contributing factor. MATERIALS AND METHODS We conducted two sequential studies examining the link between age of onset of methamphetamine use (adolescence versus young adulthood) and performance in social cognition tests: (1) a human cross-sectional study in 95 participants with methamphetamine dependence varying in age of onset (38 with adolescent onset and 57 with adult onset) and 49 drug-naïve controls; (2) a mice study in which we tested the effects of methamphetamine exposure during adolescence versus young adulthood on social interaction and aggression, and their potential neurochemical substrates in the striatal dopaminergic system. RESULTS We initially showed that people with methamphetamine dependence who started use in adolescence had higher antisocial beliefs (p = 0.046, Cohen's d=0.42) and worse emotion recognition (p = 0.031, Cohen's d=0.44) than those who started use during adulthood. We reasoned that this could be due to either social cognition deficits leading to earlier onset of methamphetamine use, or methamphetamine-induced neuroadaptive effects specific to adolescence. Mice experiments showed that methamphetamine exposure during adolescence specifically decreased social investigation during social interaction and upregulated striatal tyrosine hydroxylase (p < 0.05, Bonferroni corrected). There was no evidence of adolescent-specific methamphetamine effects on aggression or other measures of dopaminergic function. CONCLUSION Together, translational findings demonstrate heightened sensitivity to methamphetamine effects on social cognition during adolescence.
Collapse
Affiliation(s)
- Antonio Verdejo-Garcia
- Turner Institute for Brain and Mental Health, Monash University, 18 Innovation Walk, Clayton, VIC 3800, Australia.
| | - Lauren Hanegraaf
- Turner Institute for Brain and Mental Health, Monash University, 18 Innovation Walk, Clayton, VIC 3800, Australia
| | - María Carmen Blanco-Gandía
- Department of Psychology and Sociology, University of Zaragoza, C/ Ciudad Escolar s/n, 44003 Teruel, Spain
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Marina Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| |
Collapse
|
12
|
Borrajo A, Spuch C, Penedo MA, Olivares JM, Agís-Balboa RC. Important role of microglia in HIV-1 associated neurocognitive disorders and the molecular pathways implicated in its pathogenesis. Ann Med 2021; 53:43-69. [PMID: 32841065 PMCID: PMC7877929 DOI: 10.1080/07853890.2020.1814962] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The development of effective combined anti-retroviral therapy (cART) led to a significant reduction in the death rate associated with human immunodeficiency virus type 1 (HIV-1) infection. However, recent studies indicate that considerably more than 50% of all HIV-1 infected patients develop HIV-1-associated neurocognitive disorder (HAND). Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS), and so, are also likely to contribute to the neurotoxicity observed in HAND. The activation of microglia induces the release of pro-inflammatory markers and altered secretion of cytokines, chemokines, secondary messengers, and reactive oxygen species (ROS) which activate signalling pathways that initiate neuroinflammation. In turn, ROS and inflammation also play critical roles in HAND. However, more efforts are required to understand the physiology of microglia and the processes involved in their activation in order to better understand the how HIV-1-infected microglia are involved in the development of HAND. In this review, we summarize the current state of knowledge about the involvement of oxidative stress mechanisms and role of HIV-induced ROS in the development of HAND. We also examine the academic literature regarding crucial HIV-1 pathogenicity factors implicated in neurotoxicity and inflammation in order to identify molecular pathways that could serve as potential therapeutic targets for treatment of this disease. KEY MESSAGES Neuroinflammation and excitotoxicity mechanisms are crucial in the pathogenesis of HAND. CNS infiltration by HIV-1 and immune cells through the blood brain barrier is a key process involved in the pathogenicity of HAND. Factors including calcium dysregulation and autophagy are the main challenges involved in HAND.
Collapse
Affiliation(s)
- A. Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Roma, Italy
| | - C. Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - M. A. Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - J. M. Olivares
- Department of Psychiatry, Área Sanitaria de Vigo, Vigo, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - R. C. Agís-Balboa
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
13
|
Gu X, Yang B, Gao S, Yan LF, Xu D, Wang W. Prefrontal fNIRS-based clinical data analysis of brain functions in individuals abusing different types of drugs. J Biomed Semantics 2021; 12:21. [PMID: 34823598 PMCID: PMC8620253 DOI: 10.1186/s13326-021-00256-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
Background The activation degree of the orbitofrontal cortex (OFC) functional area in drug abusers is directly related to the craving for drugs and the tolerance to punishment. Currently, among the clinical research on drug rehabilitation, there has been little analysis of the OFC activation in individuals abusing different types of drugs, including heroin, methamphetamine, and mixed drugs. Therefore, it becomes urgently necessary to clinically investigate the abuse of different drugs, so as to explore the effects of different types of drugs on the human brain. Methods Based on prefrontal high-density functional near-infrared spectroscopy (fNIRS), this research designs an experiment that includes resting and drug addiction induction. Hemoglobin concentrations of 30 drug users (10 on methamphetamine, 10 on heroin, and 10 on mixed drugs) were collected using fNIRS and analyzed by combining algorithm and statistics. Results Linear discriminant analysis (LDA), Support vector machine (SVM) and Machine-learning algorithm was implemented to classify different drug abusers. Oxygenated hemoglobin (HbO2) activations in the OFC of different drug abusers were statistically analyzed, and the differences were confirmed. Innovative findings: in both the Right-OFC and Left-OFC areas, methamphetamine abusers had the highest degree of OFC activation, followed by those abusing mixed drugs, and heroin abusers had the lowest. The same result was obtained when OFC activation was investigated without distinguishing the left and right hemispheres. Conclusions The findings confirmed the significant differences among different drug abusers and the patterns of OFC activations, providing a theoretical basis for personalized clinical treatment of drug rehabilitation in the future.
Collapse
Affiliation(s)
- Xuelin Gu
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Banghua Yang
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Shouwei Gao
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Lin Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, 200080, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
14
|
Mass spectrometry-based metabolomics in hair from current and former patients with methamphetamine use disorder. Arch Pharm Res 2021; 44:890-901. [PMID: 34741727 DOI: 10.1007/s12272-021-01353-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
Drug use disorder, a chronic and relapsing mental disorder, is primarily diagnosed via self-reports of drug-seeking behavioral and psychological conditions, accompanied by psychiatric assessment. Therefore, the identification of peripheral biomarkers that reflect pathological changes caused by such disorders is essential for improving treatment monitoring. Hair possesses great potential as a metabolomic sample for monitoring chronic diseases. This study aimed to investigate metabolic alterations in hair to elucidate a suitable treatment modality for methamphetamine (MA) use disorder. Consequently, both targeted and untargeted metabolomics analyses were performed via mass spectrometry on hair samples obtained from current and former patients with MA use disorder. Healthy subjects (HS), current (CP), and former (FP) patients with this disorder were selected based on psychiatric diagnosis and screening the concentrations of MA in hair. The drug abuse screening questionnaire scores did not differentiate between CP and FP. Moreover, according to both targeted and untargeted metabolomics, clustering was not observed among all three groups. Nevertheless, a model of partial least squares-discriminant analysis was established between HS and CP based on seven metabolites derived from the targeted metabolomics results. Thus, this study demonstrates the promising potential of hair metabolomes for monitoring recovery from drug use disorders in clinical practice.
Collapse
|
15
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
16
|
Altered patterns of fractional amplitude of low-frequency fluctuation and regional homogeneity in abstinent methamphetamine-dependent users. Sci Rep 2021; 11:7705. [PMID: 33833282 PMCID: PMC8032776 DOI: 10.1038/s41598-021-87185-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Methamphetamine (MA) could induce functional and structural brain alterations in dependent subjects. However, few studies have investigated resting-state activity in methamphetamine-dependent subjects (MADs). We aimed to investigate alterations of brain activity during resting-state in MADs using fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). We analyzed fALFF and ReHo between MADs (n = 70) and healthy controls (HCs) (n = 84) and performed regression analysis using MA use variables. Compared to HCs, abstinent MADs showed increased fALFF and ReHo values in the bilateral striatum, decreased fALFF in the left inferior frontal gyrus, and decreased ReHo in the bilateral anterior cingulate cortex, sensorimotor cortex, and left precuneus. We also observed the fALFF values of bilateral striatum were positively correlated with the age of first MA use, and negatively correlated with the duration of MA use. The fALFF value of right striatum was also positively correlated with the duration of abstinence. The alterations of spontaneous cerebral activity in abstinent MADs may help us probe into the neurological pathophysiology underlying MA-related dysfunction and recovery. Since MADs with higher fALFF in the right striatum had shorter MA use and longer abstinence, the increased fALFF in the right striatum might implicate early recovery during abstinence.
Collapse
|
17
|
Basedow LA, Kuitunen-Paul S, Wiedmann MF, Ehrlich S, Roessner V, Golub Y. Verbal learning impairment in adolescents with methamphetamine use disorder: a cross-sectional study. BMC Psychiatry 2021; 21:166. [PMID: 33765981 PMCID: PMC7993453 DOI: 10.1186/s12888-021-03169-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Methamphetamine (MA) use has been shown to be associated with deficits in impulsivity, verbal learning, and working memory. Additionally, methamphetamine use disorder (MUD) is related to various brain changes, especially in adolescent users who might be more vulnerable to detrimental effects on brain development. However, little is known about the relationship between adolescent MA use and cognitive impairment. This cross-sectional study aims to explore how the presence of a MUD in adolescents is related to impairments of verbal memory, inhibition, and alertness. METHODS N = 18 psychiatric outpatients with MUD were matched in terms of depressivity, age, and gender to n = 18 adolescents with other substance use disorders (SUDs), as well as n = 18 controls without SUDs. We compared these three groups on the Verbal Learning and Memory Task (VLMT), and the alertness and go/noGo subtests of the Test of Attentional Performance (TAP). Additionally, Spearman's rank order correlation coefficients were calculated to investigate whether cognitive functioning was directly associated with frequency of past year MA use. RESULTS The three groups differed significantly in their verbal learning performance (H (2) = 11.7, p = .003, ηp2 = .19), but not in short-term memory, inhibition, cued recall, or alertness. Post hoc tests revealed significant differences in verbal learning between the MA using group and the control group without a SUD (U = 56.5, p = .001, ηp2 = .31). Frequency of past year MA use correlated negatively with short-term memory (ρ = -.25, p < .01) and verbal learning (ρ = -.41, p < .01). No other cognitive variables correlated significantly with MA use frequency. Significant p-values were considered significant after Bonferroni correction. CONCLUSIONS Adolescent MUD outpatients with regular MA use show specific impairment in verbal learning performance, but not in other basal cognitive functions when compared to adolescents without a MUD. Verbal learning and short-term memory performance is negatively associated with the frequency of MA use. Future research should apply longitudinal designs to investigate long-term effects of methamphetamine and reversibility of these effects on cognitive functioning.
Collapse
Affiliation(s)
- Lukas Andreas Basedow
- TU Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Dresden, Germany.
| | - Sören Kuitunen-Paul
- TU Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | | | - Stefan Ehrlich
- TU Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Dresden, Germany
- TU Dresden, Faculty of Medicine, Division of Psychological and Social Medicine and Developmental Neurosciences, Dresden, Germany
| | - Veit Roessner
- TU Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | - Yulia Golub
- TU Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Dresden, Germany
| |
Collapse
|
18
|
Westbrook SR, Carrica LK, Banks A, Gulley JM. AMPed-up adolescents: The role of age in the abuse of amphetamines and its consequences on cognition and prefrontal cortex development. Pharmacol Biochem Behav 2020; 198:173016. [PMID: 32828971 DOI: 10.1016/j.pbb.2020.173016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023]
Abstract
Adolescent use of amphetamine and its closely related, methylated version methamphetamine, is alarmingly high in those who use drugs for nonmedical purposes. This raises serious concerns about the potential for this drug use to have a long-lasting, detrimental impact on the normal development of the brain and behavior that is ongoing during adolescence. In this review, we explore recent findings from both human and laboratory animal studies that investigate the consequences of amphetamine and methamphetamine exposure during this stage of life. We highlight studies that assess sex differences in adolescence, as well as those that are designed specifically to address the potential unique effects of adolescent exposure by including groups at other life stages (typically young adulthood). We consider epidemiological studies on age and sex as vulnerability factors for developing problems with the use of amphetamines, as well as human and animal laboratory studies that tap into age differences in use, its short-term effects on behavior, and the long-lasting consequences of this exposure on cognition. We also focus on studies of drug effects in the prefrontal cortex, which is known to be critically important for cognition and is among the later maturing brain regions. Finally, we discuss important issues that should be addressed in future studies so that the field can further our understanding of the mechanisms underlying adolescent use of amphetamines and its outcomes on the developing brain and behavior.
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Lauren K Carrica
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Asia Banks
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
19
|
Harmony ZR, Alderson EM, Garcia-Carachure I, Bituin LD, Crawford CA. Effects of nicotine exposure on oral methamphetamine self-administration, extinction, and drug-primed reinstatement in adolescent male and female rats. Drug Alcohol Depend 2020; 209:107927. [PMID: 32106019 PMCID: PMC7127953 DOI: 10.1016/j.drugalcdep.2020.107927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Adolescent nicotine exposure increases methamphetamine (MA) intake in adult male rats; however, little is known about how nicotine affects MA self-administration during the adolescent period. Therefore, we assessed whether exposing rats to nicotine during early or late adolescence affects oral MA self-administration. METHODS 146 male and female rats were treated with saline or nicotine (0.16 or 0.64 mg/kg) from postnatal day (PD) 25-PD 34 (the early exposure phase) and/or PD 35-PD 55 (the late exposure phase). Rats began an oral MA self-administration procedure on PD 35. RESULTS Only the sex variable, but not nicotine, affected sucrose and MA acquisition, as female rats had more nose pokes than males during training. On the test sessions, female rats exposed to nicotine (0.64 mg/kg) in the early exposure phase had more active nose pokes than saline-treated female rats or nicotine-treated male rats. Rats exposed to nicotine (0.16 mg/kg) in the late exposure phase had fewer active nose pokes during testing than rats exposed to saline. Nose poke responding during extinction was not altered by nicotine exposure, but administering nicotine (0.16 or 0.64 mg/kg) to male rats in the early exposure phase did decrease nose pokes during the drug-primed reinstatement session. CONCLUSIONS Our results show that adolescent female rats are more sensitive to the reinforcing effects of oral sucrose and MA than adolescent males, and that preadolescent nicotine exposure enhances oral MA self-administration in female rats. These findings suggest that preteen nicotine use may increase vulnerability to later MA abuse in teenage girls.
Collapse
Affiliation(s)
- Zachary R. Harmony
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Erin M. Alderson
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Department of Psychology, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Israel Garcia-Carachure
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Department of Psychology, University of Texas, El Paso, 500 W University, El Paso, TX 79902, USA
| | - Laurence D. Bituin
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Cynthia A. Crawford
- Department of Psychology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA,Corresponding Author: Tel.: (909) 537-7416, Fax: (909) 537-7003, (C.A. Crawford)
| |
Collapse
|
20
|
Guerin AA, Bonomo Y, Lawrence AJ, Baune BT, Nestler EJ, Rossell SL, Kim JH. Cognition and Related Neural Findings on Methamphetamine Use Disorder: Insights and Treatment Implications From Schizophrenia Research. Front Psychiatry 2019; 10:880. [PMID: 31920743 PMCID: PMC6928591 DOI: 10.3389/fpsyt.2019.00880] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of methamphetamine (meth) use disorder, research on meth is disproportionately scarce compared to research on other illicit drugs. Existing evidence highlights cognitive deficits as an impediment against daily function and treatment of chronic meth use. Similar deficits are also observed in schizophrenia, and this review therefore draws on schizophrenia research by examining similarities and differences between the two disorders on cognition and related neural findings. While meth use disorder and schizophrenia are two distinct disorders, they are highly co-morbid and share impairments in similar cognitive domains and altered brain structure/function. This narrative review specifically identifies overlapping features such as deficits in learning and memory, social cognition, working memory and inhibitory/impulse control. We report that while working memory deficits are a core feature of schizophrenia, such deficits are inconsistently observed following chronic meth use. Similar structural and functional abnormalities are also observed in cortical and limbic regions between the two disorders, except for cingulate activity where differences are observed. There is growing evidence that targeting cognitive symptoms may improve functional outcome in schizophrenia, with evidence of normalized abnormal brain activity in regions associated with cognition. Considering the overlap between meth use disorder and schizophrenia, targeting cognitive symptoms in people with meth use disorder may also improve treatment outcome and daily function.
Collapse
Affiliation(s)
- Alexandre A. Guerin
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Yvonne Bonomo
- Department of Addiction Medicine, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Women’s Alcohol and Drug Service, Royal Women’s Hospital, Melbourne, VIC, Australia
| | - Andrew John Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | | | - Eric J. Nestler
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan L. Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Cotto B, Natarajanseenivasan K, Langford D. HIV-1 infection alters energy metabolism in the brain: Contributions to HIV-associated neurocognitive disorders. Prog Neurobiol 2019; 181:101616. [PMID: 31108127 PMCID: PMC6742565 DOI: 10.1016/j.pneurobio.2019.101616] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
The brain is particularly sensitive to changes in energy supply. Defects in glucose utilization and mitochondrial dysfunction are hallmarks of nearly all neurodegenerative diseases and are also associated with the cognitive decline that occurs as the brain ages. Chronic neuroinflammation driven by glial activation is commonly implicated as a contributing factor to neurodegeneration and cognitive impairment. Human immunodeficiency virus-1 (HIV-1) disrupts normal brain homeostasis and leads to a spectrum of HIV-associated neurocognitive disorders (HAND). HIV-1 activates stress responses in the brain and triggers a state of chronic neuroinflammation. Growing evidence suggests that inflammatory processes and bioenergetics are interconnected in the propagation of neuronal dysfunction. Clinical studies of people living with HIV and basic research support the notion that HIV-1 creates an environment in the CNS that interrupts normal metabolic processes at the cellular level to collectively alter whole brain metabolism. In this review, we highlight reports of abnormal brain metabolism from clinical studies and animal models of HIV-1. We also describe diverse CNS cell-specific changes in bioenergetics associated with HIV-1. Moreover, we propose that attention should be given to adjunctive therapies that combat sources of metabolic dysfunction as a mean to improve and/or prevent neurocognitive impairments.
Collapse
Affiliation(s)
- Bianca Cotto
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Kalimuthusamy Natarajanseenivasan
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Dianne Langford
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| |
Collapse
|
22
|
Woodcock EA, Hillmer AT, Mason GF, Cosgrove KP. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review. MOLECULAR NEUROPSYCHIATRY 2019; 5:125-146. [PMID: 31312635 PMCID: PMC6597912 DOI: 10.1159/000499621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
There is tremendous interest in the role of the neuroimmune system and inflammatory processes in substance use disorders (SUDs). Imaging biomarkers of the neuroimmune system in vivo provide a vital translational bridge between preclinical and clinical research. Herein, we examine two imaging techniques that measure putative indices of the neuroimmune system and review their application among SUDs. Positron emission tomography (PET) imaging of 18 kDa translocator protein availability is a marker associated with microglia. Proton magnetic resonance spectroscopy quantification of myo-inositol levels is a putative glial marker found in astrocytes. Neuroinflammatory responses are initiated and maintained by microglia and astrocytes, and thus represent important imaging markers. The goal of this review is to summarize neuroimaging findings from the substance use literature that report data using these markers and discuss possible mechanisms of action. The extant literature indicates abused substances exert diverse and complex neuroimmune effects. Moreover, drug effects may change across addiction stages, i.e. the neuroimmune effects of acute drug administration may differ from chronic use. This burgeoning field has considerable potential to improve our understanding and treatment of SUDs. Future research is needed to determine how targeting the neuroimmune system may improve treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Kelly P. Cosgrove
- Departments of Psychiatry, and of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
CNS metabolism in high-risk drug abuse. Radiologe 2018; 58:34-39. [DOI: 10.1007/s00117-017-0255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Gray matter volume showed dynamic alterations in methamphetamine users at 6 and 12months abstinence: A longitudinal voxel-based morphometry study. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:350-355. [PMID: 28887180 DOI: 10.1016/j.pnpbp.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Previous studies have demonstrated brain gray matter reduction in methamphetamine (MA) users; however, little is known about longitudinal brain structural alternations during abstinence. METHOD Brain volumes were compared among 30 MA-dependent patients (average 6.3years of drug use) at 6months' abstinence and 27 drug-naïve controls by voxel-based morphometry. A longitudinal analysis of MA subjects was performed from 6 to 12months' abstinence, and multiple regression analyses were performed between drug use patterns and gray matter volumes (GMV) at 6months' abstinence. RESULTS Compared with drug-naïve subjects, subjects with 6months' abstinent of MA showed significantly lower GMV in the precentral gyrus, caudate head, fusiform gyrus, and cerebellum. Compared to 6months' abstinence, GMV was greater in the cerebellum and lower in the cingulate gyrus at 12months' abstinence. Accumulated years of MA use negatively correlated with GMV in the right superior frontal gyrus, the right superior temporal cortex, and the right caudate nucleus (significant at the whole brain level, p<0.001; FWE cluster-corrected p<0.05). CONCLUSION The present study suggested that heavy MA users' GMV could show dynamic alterations in different brain regions at different time lengths of abstinence.
Collapse
|
25
|
Yang W, Yang R, Luo J, He L, Liu J, Zhang J. Increased Absolute Glutamate Concentrations and Glutamate-to-Creatine Ratios in Patients With Methamphetamine Use Disorders. Front Psychiatry 2018; 9:368. [PMID: 30233420 PMCID: PMC6128240 DOI: 10.3389/fpsyt.2018.00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/24/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction: Previous studies have indicated that changes in the concentration of glutamate and related metabolites may mediate the progression of addiction in patients with methamphetamine (MA) use disorders. In the present study, we utilized magnetic resonance spectroscopy (MRS) to investigate absolute glutamate concentrations and metabolite ratios in patients with MA addiction. We further analyzed the association between glutamate concentration and various clinical indicators. Methods: The present study included 31 unmedicated patients with clinically diagnosed MA dependence (mean age: 30.5 ± 8.0 years) and 32 age-matched healthy controls (mean age: 32.9 ± 8.2 years). Patients were evaluated using the Barratt Impulsiveness Scale (BIS-11). We also collected general information regarding the duration and dosage of drug use. Point-resolved spectroscopy was used to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, and creatine), as well as the ratio of metabolites to total creatine, using LCModel software. We then compared differences in glutamate levels and psychometric scores between the two groups. Results: Glutamate-to-creatine ratios in the brainstem were significantly higher in the MA group than in the control group (t = 2.764, p = 0.008). Glutamate concentrations in the brainstem were also significantly higher in the MA group than in the control group (t = 2.390, p = 0.020). However, no significant differences in the concentrations or ratios of other metabolites were observed between the two groups (all p > 0.05). Glutamate concentration was positively correlated with the duration of drug use (r = 0.401, p = 0.035) and the total dose of regular addiction (duration of addiction × regular addiction dose; r = 0.207, p = .040), but not with BIS-11 scores. Conclusions: Our findings indicated that glutamate levels in the brainstem are significantly elevated in patients with MA use disorders, and that these levels are significantly associated with the duration and dose of drug use.Such findings suggest that glutamate concentration can be used as an objective biological marker for evaluating/monitoring disease status and treatment efficacy in patients with MA dependence.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ru Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei He
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Vocational College, Changsha, China
| |
Collapse
|
26
|
ZNS-Stoffwechsel bei Missbrauch von Hochrisikodrogen. Radiologe 2017; 57:443-449. [DOI: 10.1007/s00117-017-0254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|