1
|
Tsimpili H, Zoidis G. A New Era of Muscarinic Acetylcholine Receptor Modulators in Neurological Diseases, Cancer and Drug Abuse. Pharmaceuticals (Basel) 2025; 18:369. [PMID: 40143145 PMCID: PMC11945405 DOI: 10.3390/ph18030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
The cholinergic pathways in the central nervous system (CNS) play a pivotal role in different cognitive functions of the brain, such as memory and learning. This review takes a dive into the pharmacological side of this important part of CNS function, taking into consideration muscarinic receptors and cholinesterase enzymes. Targeting a specific subtype of five primary muscarinic receptor subtypes (M1-M5) through agonism or antagonism may benefit patients; thus, there is a great pharmaceutical research interest. Inhibition of AChE and BChE, orthosteric or allosteric, or partial agonism of M1 mAChR are correlated with Alzheimer's disease (AD) symptoms improvement. Agonism or antagonism on different muscarinic receptor subunits may lessen schizophrenia symptoms (especially positive allosteric modulation of M4 mAChR). Selective antagonism of M4 mAChR is a promising treatment for Parkinson's disease and dystonia, and the adverse effects are limited compared to inhibition of all five mAChR. Additionally, selective M5 antagonism plays a role in drug independence behavior. M3 mAChR overexpression is associated with malignancies, and M3R antagonists seem to have a therapeutic potential in cancer, while M1R and M2R inhibition leads to reduction of neoangiogenesis. Depending on the type of cancer, agonism of mAChR may promote cancer cell proliferation (as M3R agonism does) or protection against further tumor development (M1R agonism). Thus, there is an intense need to discover new potent compounds with specific action on muscarinic receptor subtypes. Chemical structures, chemical modification of function groups aiming at action enhancement, reduction of adverse effects, and optimization of Drug Metabolism and Pharmacokinetics (DMPK) will be further discussed, as well as protein-ligand docking.
Collapse
Affiliation(s)
- Helena Tsimpili
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
2
|
Burger WAC, Mobbs JI, Rana B, Wang J, Joshi K, Gentry PR, Yeasmin M, Venugopal H, Bender AM, Lindsley CW, Miao Y, Christopoulos A, Valant C, Thal DM. Cryo-EM reveals a new allosteric binding site at the M 5 mAChR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636602. [PMID: 39975287 PMCID: PMC11838558 DOI: 10.1101/2025.02.05.636602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The M5 muscarinic acetylcholine receptor (M5 mAChR) represents a promising therapeutic target for neurological disorders. However, the high conservation of its orthosteric binding site has posed significant challenges for drug development. While selective positive allosteric modulators (PAMs) offer a potential solution, a structural understanding of the M5 mAChR and its allosteric binding sites has remained limited. Here, we present a 2.8 Å cryo-electron microscopy structure of the M5 mAChR complexed with heterotrimeric Gq protein and the agonist iperoxo, completing the active-state structural characterization of the mAChR family. To identify the binding site of M5-selective PAMs, we implemented an integrated approach combining mutagenesis, pharmacological assays, structural biology, and molecular dynamics simulations. Our mutagenesis studies revealed that selective M5 PAMs bind outside previously characterized M5 mAChR allosteric sites. Subsequently, we obtained a 2.1 Å structure of M5 mAChR co-bound with acetylcholine and the selective PAM VU6007678, revealing a novel allosteric pocket at the extrahelical interface between transmembrane domains 3 and 4 that was confirmed through mutagenesis and simulations. These findings demonstrate the diverse mechanisms of allosteric regulation in mAChRs and highlight the value of integrating pharmacological and structural approaches to identify novel allosteric binding sites.
Collapse
Affiliation(s)
- Wessel A. C. Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Jesse I. Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Bhavika Rana
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Keya Joshi
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Patrick R. Gentry
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Aaron M. Bender
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M. Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Walker LC, Huckstep KL, Becker HC, Langmead CJ, Lawrence AJ. Targeting muscarinic receptors for the treatment of alcohol use disorders: Opportunities and hurdles for clinical development. Br J Pharmacol 2024; 181:4385-4398. [PMID: 37005377 DOI: 10.1111/bph.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Emerging evidence suggests muscarinic acetylcholine receptors represent novel targets to treat alcohol use disorder. In this review, we draw from literature across medicinal chemistry, molecular biology, addiction and learning/cognition fields to interrogate the proposition for muscarinic receptor ligands in treating various aspects of alcohol use disorder, including cognitive dysfunction, motivation to consume alcohol and relapse. In support of this proposition, we describe cholinergic dysfunction in the pathophysiology of alcohol use disorder at a network level, including alcohol-induced adaptations present in both human post-mortem brains and reverse-translated rodent models. Preclinical behavioural pharmacology implicates specific muscarinic receptors, in particular, M4 and M5 receptors, as potential therapeutic targets worthy of further interrogation. We detail how these receptors can be selectively targeted in vivo by the use of subtype-selective allosteric modulators, a strategy that overcomes the issue of targeting a highly conserved orthosteric site bound by acetylcholine. Finally, we highlight the intense pharma interest in allosteric modulators of muscarinic receptors for other indications that provide an opportunity for repurposing into the alcohol use disorder space and provide some currently unanswered questions as a roadmap for future investigation.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kade L Huckstep
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Tobin AB. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat Rev Drug Discov 2024; 23:743-758. [PMID: 39143241 DOI: 10.1038/s41573-024-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for 'hard to treat' neurological diseases, heralding a new era of muscarinic drug discovery.
Collapse
Affiliation(s)
- Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, The Advanced Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Nunes EJ, Addy NA, Conn PJ, Foster DJ. Targeting the Actions of Muscarinic Receptors on Dopamine Systems: New Strategies for Treating Neuropsychiatric Disorders. Annu Rev Pharmacol Toxicol 2024; 64:277-289. [PMID: 37552895 PMCID: PMC10841102 DOI: 10.1146/annurev-pharmtox-051921-023858] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cholinergic regulation of dopamine (DA) signaling has significant implications for numerous disorders, including schizophrenia, substance use disorders, and mood-related disorders. The activity of midbrain DA neurons and DA release patterns in terminal regions are tightly regulated by cholinergic neurons found in both the striatum and the hindbrain. These cholinergic neurons can modulate DA circuitry by activating numerous receptors, including muscarinic acetylcholine receptor (mAChR) subtypes. This review specifically focuses on the complex role of M2, M4, and M5 mAChR subtypes in regulating DA neuron activity and DA release and the potential clinical implications of targeting these mAChR subtypes.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, and Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel J Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA;
| |
Collapse
|
7
|
Zell V, Teuns G, Needham AS, Mukherjee S, Roscoe N, Le M, Fourgeaud L, Woodruff G, Bhattacharya A, Marella M, Bonaventure P, Drevets WC, Balana B. Characterization of Selective M 5 Acetylcholine Muscarinic Receptor Modulators on Dopamine Signaling in the Striatum. J Pharmacol Exp Ther 2023; 387:226-234. [PMID: 37679045 DOI: 10.1124/jpet.123.001737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The type-5 muscarinic acetylcholine receptor (mAChR, M5) is almost exclusively expressed in dopamine (DA) neurons of the ventral tegmental area and substantia nigra pars compacta; therefore, they are ideally located to modulate DA signaling and underlying behaviors. However, the role of M5 in shaping DA release is still poorly characterized. In this study, we first quantitatively mapped the expression of M5 in different neurons of the mouse midbrain, then used voltammetry in mouse striatum to evaluate the effect of M5-selective modulators on DA release. The M5 negative allosteric modulator ML375 significantly decreased electrically evoked DA release and blocked the effect of Oxotremorine-M (Oxo-M; nonselective mAChR agonist) on DA release in the presence of an acetylcholine nicotinic receptor blocker. Conversely, the M5 positive allosteric modulator VU 0365114 significantly increased electrically evoked DA release and the Oxo-M effect on DA release. We then assessed M5's impact on mesolimbic circuit function in vivo. Although psychostimulant-induced locomotor activity models in knockout mice have previously been used to characterize the role of M5 in DA transmission, the results of these studies conflict, leading us to select a different in vivo model, namely a cocaine self-administration paradigm. In contrast to a previous study that also used this model, in the current study, administration of ML375 did not decrease cocaine self-administration in rats (using fixed and progressive ratio). These conflicting results illustrate the complexity of M5 modulation and the need to further characterize its involvement in the regulation of dopamine signaling, central to multiple neuropsychiatric diseases. SIGNIFICANCE STATEMENT: This work describes the type-5 muscarinic receptor (M5) pattern of expression within the midbrain as well as its physiological modulation by selective compounds at the axon terminal level in the striatum, where M5 directly shapes dopamine transmission. It offers the first direct readout of mesolimbic dopamine release modulation by M5, highlighting its role in regulating neurocircuits implicated in the pathophysiology of neuropsychiatric disorders such as substance use disorders, major depressive disorder, and schizophrenia.
Collapse
Affiliation(s)
- Vivien Zell
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Greetje Teuns
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Alexandra Stormy Needham
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Sruti Mukherjee
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Nathaniel Roscoe
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Michelle Le
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Lawrence Fourgeaud
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Grace Woodruff
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Anindya Bhattacharya
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Mathieu Marella
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Pascal Bonaventure
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Wayne C Drevets
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Bartosz Balana
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| |
Collapse
|
8
|
Gheidi A, Fitzpatrick CJ, Gregory JD, Morrow JD. Nicotinic and muscarinic acetylcholine receptor antagonism dose-dependently decreases sign- but not goal-tracking behavior in male rats. Psychopharmacology (Berl) 2023; 240:871-880. [PMID: 36795109 PMCID: PMC10599605 DOI: 10.1007/s00213-023-06328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023]
Abstract
RATIONALE Acetylcholinergic antagonists have shown some promise in reducing addiction-related behaviors in both preclinical and clinical studies. However, the psychological mechanisms by which these drugs are able to affect addictive behavior remain unclear. A particular key process for the development of addiction is the attribution of incentive salience to reward-related cues, which can be specifically measured in animals using a Pavlovian conditioned approach procedure. When confronted with a lever that predicts food delivery, some rats engage with the lever directly (i.e., they sign track), indicating attribution of incentive-motivational properties to the lever itself. In contrast, others treat the lever as a predictive cue and approach the location of impending food delivery (i.e., they goal track), without treating the lever itself as a reward. OBJECTIVES We tested whether systemic antagonism of the either nicotinic or muscarinic acetylcholine receptors would selectively affect sign- or goal-tracking behavior, indicating a selective effect on incentive salience attribution. METHODS A total of 98 male Sprague Dawley rats were either given the muscarinic antagonist scopolamine (100, 50, or 10 µg/kg i.p.) or the nicotinic antagonist mecamylamine (0.3, 1.0, or 3 mg/kg i.p.) before being trained on a Pavlovian conditioned approach procedure. RESULTS Scopolamine dose-dependently decreased sign tracking behavior and increased goal-tracking behavior. Mecamylamine reduced sign-tracking but did not affect goal-tracking behavior. CONCLUSIONS Antagonism of either muscarinic or nicotinic acetylcholine receptors can reduce incentive sign-tracking behavior in male rats. This effect appears to be specifically due to a reduction in incentive salience attribution since goal-tracking either increased or was not affected by these manipulations.
Collapse
Affiliation(s)
- Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, USA
| | | | - Jordan D Gregory
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Jonathan D Morrow
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
9
|
Yousuf H, Girardi EM, Crouse RB, Picciotto MR. Muscarinic antagonists impair multiple aspects of operant discrimination learning and performance. Neurosci Lett 2023; 794:137025. [PMID: 36529388 PMCID: PMC9812939 DOI: 10.1016/j.neulet.2022.137025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Acetylcholine signaling can strengthen associations between environmental cues and reward availability. Diverse subtypes (M1-M5) of the muscarinic acetylcholine receptor (mAChR) family may have distinct roles in different learning and memory processes, such as encoding cue-reward associations and consolidating these associations in long-term memory. Using an operant discrimination learning task in which mice are trained to nose poke during a tone to receive a food reward, we found that acquisition of the task requires mAChR signaling in the central nervous system. In addition, post-session injections of a broad mAChR antagonist, scopolamine impaired consolidation of the cue-reward memory. Further, after successful learning of a cue-reward contingency across multiple training sessions, mice that received a single pre-session injection of scopolamine were unable to use the learned cue association to receive rewards. Taken together, these data demonstrate distinct roles for muscarinic signaling in acquisition, consolidation and recall of the operant discrimination learning task. Understanding mechanisms underlying natural reward-related responding may provide insight into other maladaptive forms of reward learning such as addiction.
Collapse
Affiliation(s)
- Hanna Yousuf
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Eric M Girardi
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Richard B Crouse
- Department of Psychiatry, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, New Haven, CT, United States.
| |
Collapse
|
10
|
Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Int J Mol Sci 2022; 24:ijms24010507. [PMID: 36613951 PMCID: PMC9820491 DOI: 10.3390/ijms24010507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors expressed in the central nervous system mediate various functions, including cognition, memory, or reward. Therefore, muscarinic receptors represent potential pharmacological targets for various diseases and conditions, such as Alzheimer's disease, schizophrenia, addiction, epilepsy, or depression. Muscarinic receptors are allosterically modulated by neurosteroids and steroid hormones at physiologically relevant concentrations. In this review, we focus on the modulation of muscarinic receptors by neurosteroids and steroid hormones in the context of diseases and disorders of the central nervous system. Further, we propose the potential use of neuroactive steroids in the development of pharmacotherapeutics for these diseases and conditions.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Nikolai Chetverikov
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| |
Collapse
|
11
|
Razidlo JA, Fausner SML, Ingebretson AE, Wang LC, Petersen CL, Mirza S, Swank IN, Alvarez VA, Lemos JC. Chronic Loss of Muscarinic M5 Receptor Function Manifests Disparate Impairments in Exploratory Behavior in Male and Female Mice despite Common Dopamine Regulation. J Neurosci 2022; 42:6917-6930. [PMID: 35896424 PMCID: PMC9463982 DOI: 10.1523/jneurosci.1424-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
There are five cloned muscarinic acetylcholine receptors (M1-M5). Of these, the muscarinic type 5 receptor (M5) is the only one localized to dopamine neurons in the ventral tegmental area and substantia nigra. Unlike M1-M4, the M5 receptor has relatively restricted expression in the brain, making it an attractive therapeutic target. Here, we performed an in-depth characterization of M5-dependent potentiation of dopamine transmission in the nucleus accumbens and accompanying exploratory behaviors in male and female mice. We show that M5 receptors potentiate dopamine transmission by acting directly on the terminals within the nucleus accumbens. Using the muscarinic agonist oxotremorine, we revealed a unique concentration-response curve and a sensitivity to repeated forced swim stress or restraint stress exposure. We found that constitutive deletion of M5 receptors reduced exploration of the center of an open field while at the same time impairing normal habituation only in male mice. In addition, M5 deletion reduced exploration of salient stimuli, especially under conditions of high novelty, yet had no effect on hedonia assayed using the sucrose preference test or on stress-coping strategy assayed using the forced swim test. We conclude that M5 receptors are critical for both engaging with the environment and updating behavioral output in response to environment cues, specifically in male mice. A cardinal feature of mood and anxiety disorders is withdrawal from the environment. These data indicate that boosting M5 receptor activity may be a useful therapeutic target for ameliorating these symptoms of depression and anxiety.SIGNIFICANCE STATEMENT The basic physiological and behavioral functions of the muscarinic M5 receptor remain understudied. Furthermore, its presence on dopamine neurons, relatively restricted expression in the brain, and recent crystallization make it an attractive target for therapeutic development. Yet, most preclinical studies of M5 receptor function have primarily focused on substance use disorders in male rodents. Here, we characterized the role of M5 receptors in potentiating dopamine transmission in the nucleus accumbens, finding impaired functioning after stress exposure. Furthermore, we show that M5 receptors can modulate exploratory behavior in a sex-specific manner, without affecting hedonic behavior. These findings further illustrate the therapeutic potential of the M5 receptor, warranting further research in the context of treating mood disorders.
Collapse
Affiliation(s)
- John A Razidlo
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Skylar M L Fausner
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna E Ingebretson
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Liuchang C Wang
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christopher L Petersen
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Salahudeen Mirza
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Isabella N Swank
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| | - Julia C Lemos
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
12
|
Spelta LEW, Torres YYS, de Oliveira SCWSEF, Yonamine M, Bailey A, Camarini R, Garcia RCT, Marcourakis T. Chronic escalating-dose and acute binge cocaine treatments change the hippocampal cholinergic muscarinic system on drug presence and after withdrawal. Toxicol Appl Pharmacol 2022; 447:116068. [PMID: 35597300 DOI: 10.1016/j.taap.2022.116068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a relapsing disorder with loss of control in limiting drug intake. Considering the involvement of acetylcholine in the neurobiology of the disease, our aim was to evaluate whether cocaine induces plastic changes in the hippocampal cholinergic muscarinic system. Male Swiss-Webster mice received saline or cocaine (ip) three times daily (60-min intervals) either acutely or in an escalating-dose binge paradigm for 14 days. Locomotor activity was measured in all treatment days. Dopaminergic and cholinergic muscarinic receptors (D1R, D2R, M1-M5, mAChRs), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and acetylcholinesterase (AChE) were quantified in the hippocampus by immunoblotting one hour after the last injection (on drug) or after 14 days of abstinence (withdrawal). Escalating-dose group showed cocaine-induced locomotor sensitization from day 2. M3 mAChR and ChAT significantly increased after the on-drug acute binge treatment. Escalating-dose on-drug group showed increased ChAT, M1, M5 mAChR and D2R; and decreased D1R. Acute-binge withdrawal group showed increased VAChT, M2 mAChR, D1R, and D2R; and decreased M1 mAChR. Escalating-dose withdrawal group presented increased D1R and VAChT and decreased M1 mAChR and D2R. Locomotor activity was negatively correlated with M1 mAChR and AChE in on-drug group and positively correlated with VAChT in withdrawal group. M1 mAChR was positively correlated with M2 mAChR and ChAT in on-drug group, whereas ChAT was positively correlated with M5 mAChR in withdrawal group. The results indicate that cocaine induced an increase in the hippocampal cholinergic tone in the presence of the drug, whereas withdrawal causes a resetting in the system.
Collapse
Affiliation(s)
- Lidia E W Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Yuli Y S Torres
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Sarah C W S E F de Oliveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil; Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Maurício Yonamine
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Rosana Camarini
- Department of Pharmacology, Laboratory of Neurochemical and Behavior Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Prédio 1, 05508-900 São Paulo/SP, Brazil.
| | - Raphael C T Garcia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, 1° andar, 09913-030 Diadema/SP, Brazil.
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil.
| |
Collapse
|
13
|
Nunes EJ, Kebede N, Bagdas D, Addy NA. Cholinergic and dopaminergic-mediated motivated behavior in healthy states and in substance use and mood disorders. J Exp Anal Behav 2022; 117:404-419. [PMID: 35286712 PMCID: PMC9743782 DOI: 10.1002/jeab.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Acetylcholine is an important neuromodulator of the mesolimbic dopamine (DA) system, which itself is a mediator of motivated behavior. Motivated behavior can be described by two primary components, termed directional and activational motivation, both of which can be examined and dissociated using effort-choice tasks. The directional component refers to motivated behavior directed towards reinforcing stimuli and away from aversive stimuli. Behaviors characterized by increased vigor, persistence, and work output are considered to reflect activational components of motivation. Disruption of DA signaling has been shown to decrease activational components of motivation, while leaving directional features intact. Facilitation of DA release promotes the activational aspects of motivated behavior. In this review, we discuss cholinergic and DA regulation of motivated behaviors. We place emphasis on effort-choice processes and the ability of effort-choice tasks to examine and dissociate changes of motivated behavior in the context of substance use and mood disorders. Furthermore, we consider how altered cholinergic transmission impacts motivated behavior across disease states, and the possible role of cholinergic dysregulation in the etiology of these illnesses. Finally, we suggest that treatments targeting cholinergic activity may be useful in ameliorating motivational disruptions associated with substance use and comorbid substance use and mood disorders.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine,Department of Cellular and Molecular Physiology, Yale School of Medicine,Interdepartmental Neuroscience Program, Yale University,Wu Tsai Institute, Yale University
| |
Collapse
|
14
|
Garrison AT, Orsi DL, Capstick RA, Whomble D, Li J, Carter TR, Felts AS, Vinson PN, Rodriguez AL, Han A, Hajari K, Cho HP, Teal LB, Ragland MG, Ghamari-Langroudi M, Bubser M, Chang S, Schnetz-Boutaud NC, Boutaud O, Blobaum AL, Foster DJ, Niswender CM, Conn PJ, Lindsley CW, Jones CK, Han C. Development of VU6019650: A Potent, Highly Selective, and Systemically Active Orthosteric Antagonist of the M 5 Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use Disorder. J Med Chem 2022; 65:6273-6286. [PMID: 35417155 DOI: 10.1021/acs.jmedchem.2c00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) represents a novel potential target for the treatment of multiple addictive disorders, including opioid use disorder. Through chemical optimization of several functional high-throughput screening hits, VU6019650 (27b) was identified as a novel M5 orthosteric antagonist with high potency (human M5 IC50 = 36 nM), M5 subtype selectivity (>100-fold selectivity against human M1-4) and favorable physicochemical properties for systemic dosing in preclinical addiction models. In acute brain slice electrophysiology studies, 27b blocked the nonselective muscarinic agonist oxotremorine-M-induced increases in neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area, a part of the mesolimbic dopaminergic reward circuitry. Moreover, 27b also inhibited oxycodone self-administration in male Sprague-Dawley rats within a dose range that did not impair general motor output.
Collapse
Affiliation(s)
- Aaron T Garrison
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Douglas L Orsi
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Rory A Capstick
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - David Whomble
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Jinming Li
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Trever R Carter
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Andrew S Felts
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Paige N Vinson
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Allie Han
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Krishma Hajari
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P Cho
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Laura B Teal
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Madeline G Ragland
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Masoud Ghamari-Langroudi
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael Bubser
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Nathalie C Schnetz-Boutaud
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Daniel J Foster
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States.,Vanderbilt Kennedy Center, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States.,Vanderbilt Kennedy Center, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States.,Vanderbilt Kennedy Center, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Carrie K Jones
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Changho Han
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
15
|
Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Burger WAC, Gentry PR, Berizzi AE, Vuckovic Z, van der Westhuizen ET, Thompson G, Yeasmin M, Lindsley CW, Sexton PM, Langmead CJ, Tobin AB, Christopoulos A, Valant C, Thal DM. Identification of a Novel Allosteric Site at the M 5 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci 2021; 12:3112-3123. [PMID: 34351123 PMCID: PMC7616173 DOI: 10.1021/acschemneuro.1c00383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The M5 muscarinic acetylcholine receptor (mAChR) has emerged as an exciting therapeutic target for the treatment of addiction and behavioral disorders. This has been in part due to promising preclinical studies with the M5 mAChR selective negative allosteric modulator (NAM), ML375. The binding site of ML375 remains unknown, however, making it difficult to develop improved M5 mAChR selective modulators. To determine the possible location of the ML375 binding site, we used radioligand binding and functional assays to show that ML375 does not interact with the well-characterized "common" mAChR allosteric site located in the receptor's extracellular vestibule, nor a previously proposed second allosteric site recognized by the modulator, amiodarone. Molecular docking was used to predict potential allosteric sites within the transmembrane (TM) domain of the M5 mAChR. These predicted sites were assessed using M5-M2 mAChR receptor chimeras and further targeted with site-directed mutagenesis, which enabled the identification of a putative binding site for ML375 at the interface of TMs 2-4. Collectively, these results identify a third allosteric site at the M5 mAChR and highlight the ability of allosteric modulators to selectively target highly conserved proteins.
Collapse
Affiliation(s)
- Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick R Gentry
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Alice E Berizzi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Craig W Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res 2021; 405:113201. [PMID: 33647377 PMCID: PMC8006961 DOI: 10.1016/j.bbr.2021.113201] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder characterized by a diverse range of symptoms that can have profound impacts on the lives of patients. Currently available antipsychotics target dopamine receptors, and while they are useful for ameliorating the positive symptoms of the disorder, this approach often does not significantly improve negative and cognitive symptoms. Excitingly, preclinical and clinical research suggests that targeting specific muscarinic acetylcholine receptor subtypes could provide more comprehensive symptomatic relief with the potential to ameliorate numerous symptom domains. Mechanistic studies reveal that M1, M4, and M5 receptor subtypes can modulate the specific brain circuits and physiology that are disrupted in schizophrenia and are thought to underlie positive, negative, and cognitive symptoms. Novel therapeutic strategies for targeting these receptors are now advancing in clinical and preclinical development and expand upon the promise of these new treatment strategies to potentially provide more comprehensive relief than currently available antipsychotics.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Zoey K Bryant
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States.
| |
Collapse
|
18
|
Nunes EJ, Rupprecht LE, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology 2020; 171:108089. [PMID: 32268153 PMCID: PMC7313677 DOI: 10.1016/j.neuropharm.2020.108089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/21/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Acetylcholine is implicated in mood disorders including depression and anxiety. Increased cholinergic tone in humans and rodents produces pro-depressive and anxiogenic-like effects. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate these responses in male rats, as measured by the sucrose preference test (SPT), elevated plus maze (EPM), and the forced swim test (FST). However, these effects have not been examined in females, and the VTA muscarinic receptor subtype(s) mediating the pro-depressive and anxiogenic-like behavioral effects of increased cholinergic tone are unknown. We first examined the behavioral effects of increased VTA cholinergic tone in male and female rats, and then determined whether VTA muscarinic M5 receptors were mediating these effects. VTA infusion of the acetylcholinesterase inhibitor physostigmine (0.5 μg, 1 μg and 2 μg/side) in males and females produced anhedonic-like, anxiogenic, pro-depressive-like responses on the SPT, EPM, and FST. In females, VTA administration of the muscarinic M5 selective negative allosteric modulator VU6000181 (0.68 ng, 2.3 ng, 6.8 ng/side for a 3 μM, 10 μM, 30 μM/side infusion) did not alter SPT, EPM nor FST behavior. However, in males intra-VTA infusion of VU6000181 alone reduced time spent immobile on the FST. Furthermore, co-infusion of VU6000181 with physostigmine, in male and female rats, attenuated the pro-depressive and anxiogenic-like behavioral responses induced by VTA physostigmine alone, in the SPT, EPM, and FST. Together, these data reveal a critical role of VTA M5 receptors in mediating the anhedonic, anxiogenic, and depressive-like behavioral effects of increased cholinergic tone in the VTA.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, 06511, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, 06511, CT, USA.
| |
Collapse
|
19
|
Jakubik J, El-Fakahany EE. Current Advances in Allosteric Modulation of Muscarinic Receptors. Biomolecules 2020; 10:biom10020325. [PMID: 32085536 PMCID: PMC7072599 DOI: 10.3390/biom10020325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Allosteric modulators are ligands that bind to a site on the receptor that is spatially separated from the orthosteric binding site for the endogenous neurotransmitter. Allosteric modulators modulate the binding affinity, potency, and efficacy of orthosteric ligands. Muscarinic acetylcholine receptors are prototypical allosterically-modulated G-protein-coupled receptors. They are a potential therapeutic target for the treatment of psychiatric, neurologic, and internal diseases like schizophrenia, Alzheimer’s disease, Huntington disease, type 2 diabetes, or chronic pulmonary obstruction. Here, we reviewed the progress made during the last decade in our understanding of their mechanisms of binding, allosteric modulation, and in vivo actions in order to understand the translational impact of studying this important class of pharmacological agents. We overviewed newly developed allosteric modulators of muscarinic receptors as well as new spin-off ideas like bitopic ligands combining allosteric and orthosteric moieties and photo-switchable ligands based on bitopic agents.
Collapse
Affiliation(s)
- Jan Jakubik
- Department of Neurochemistry, Institute of Physiology CAS, 142 20 Prague, Czech Republic
- Correspondence: (J.J.); (E.E.E.-F.)
| | - Esam E. El-Fakahany
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
- Correspondence: (J.J.); (E.E.E.-F.)
| |
Collapse
|
20
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Abstract
The 5 subtypes of the muscarinic acetylcholine receptors (mAChRs) are expressed throughout the central and peripheral nervous system where they play a vital role in physiology and pathologies. Recently, the M5 mAChR subtype has emerged as an exciting drug target for the treatment of drug addiction. We have determined the atomic structure of the M5 mAChR bound to the clinically used inverse agonist tiotropium. The M5 mAChR structure now allows for a full comparison of all 5 mAChR subtypes and reveals that small differences in the extracellular loop regions can mediate orthosteric and allosteric ligand selectivity. Together, these findings open the door for future structure-based design of selective drugs that target this therapeutically important class of receptors. The human M5 muscarinic acetylcholine receptor (mAChR) has recently emerged as an exciting therapeutic target for treating a range of disorders, including drug addiction. However, a lack of structural information for this receptor subtype has limited further drug development and validation. Here we report a high-resolution crystal structure of the human M5 mAChR bound to the clinically used inverse agonist, tiotropium. This structure allowed for a comparison across all 5 mAChR family members that revealed important differences in both orthosteric and allosteric sites that could inform the rational design of selective ligands. These structural studies, together with chimeric swaps between the extracellular regions of the M2 and M5 mAChRs, provided structural insight into kinetic selectivity, where ligands show differential residency times between related family members. Collectively, our study provides important insights into the nature of orthosteric and allosteric ligand interaction across the mAChR family that could be exploited for the design of selective drugs.
Collapse
|
22
|
Moran SP, Maksymetz J, Conn PJ. Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends Pharmacol Sci 2019; 40:1006-1020. [PMID: 31711626 DOI: 10.1016/j.tips.2019.10.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Muscarinic acetylcholine receptors (mAChR) play important roles in regulating complex behaviors such as cognition, movement, and reward, making them ideally situated as potential drug targets for the treatment of several brain disorders. Recent advances in the discovery of subtype-selective allosteric modulators for mAChRs has provided an unprecedented opportunity for highly specific modulation of signaling by individual mAChR subtypes in the brain. Recently, mAChR allosteric modulators have entered clinical development for Alzheimer's disease (AD) and schizophrenia, and have potential utility for other brain disorders. However, mAChR allosteric modulators can display a diverse array of pharmacological properties, and a more nuanced understanding of the mAChR will be necessary to best translate preclinical findings into successful clinical treatments.
Collapse
Affiliation(s)
- Sean P Moran
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
23
|
Gould RW, Gunter BW, Bubser M, Matthews RT, Teal LB, Ragland MG, Bridges TM, Garrison AT, Winder DG, Lindsley CW, Jones CK. Acute Negative Allosteric Modulation of M 5 Muscarinic Acetylcholine Receptors Inhibits Oxycodone Self-Administration and Cue-Induced Reactivity with No Effect on Antinociception. ACS Chem Neurosci 2019; 10:3740-3750. [PMID: 31268669 DOI: 10.1021/acschemneuro.9b00274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Opioid use disorder (OUD) is a debilitating neuropsychiatric condition characterized by compulsive opioid use, dependence, and repeated relapse after periods of abstinence. Given the high risk of developing OUD following prescription opioid use, the continued need for opioid-induced analgesia, and the limitations of current OUD treatments, it is necessary to develop novel, non-opioid-based treatments for OUD and decrease abuse potential of prescription opioids. Recent evidence suggests that negative allosteric modulation (NAM) of the M5 muscarinic acetylcholine receptor (M5 mAChR) may provide an alternative therapeutic approach for the treatment of OUD. Previous studies demonstrated localization of M5 mAChR expression within the mesocorticolimbic reward circuitry and that the selective M5 NAM ML375 attenuates both cocaine and alcohol self-administration in rats. In the present study, the effects of ML375 were evaluated in rats self-administering the μ-opioid agonists oxycodone or remifentanil on a progressive ratio (PR) schedule or on cue reactivity (a rodent model of relapse) in the absence of oxycodone following 72 h of abstinence. ML375 reduced the PR break point for oxycodone and remifentanil self-administration and attenuated cue-elicited responding. Importantly, ML375 did not affect sucrose pellet-maintained responding on a PR schedule or opioid-induced antinociception using the hot-plate and tail-flick assays. We also confirm expression of M5 mAChR mRNA in the ventral tegmental area and show that this is primarily on dopamine (tyrosine hydroxylase mRNA-positive) neurons. Taken together, these findings suggest that selective functional antagonism of the M5 mAChR may represent a novel, non-opioid-based treatment for OUD.
Collapse
|
24
|
Teal LB, Gould RW, Felts AS, Jones CK. Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:153-196. [PMID: 31378251 DOI: 10.1016/bs.apha.2019.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Robert W Gould
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Andrew S Felts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
25
|
Nunes EJ, Bitner L, Hughley SM, Small KM, Walton SN, Rupprecht LE, Addy NA. Cholinergic Receptor Blockade in the VTA Attenuates Cue-Induced Cocaine-Seeking and Reverses the Anxiogenic Effects of Forced Abstinence. Neuroscience 2019; 413:252-263. [PMID: 31271832 DOI: 10.1016/j.neuroscience.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Drug relapse after periods of abstinence is a common feature of substance abuse. Moreover, anxiety and other mood disorders are often co-morbid with substance abuse. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate drug-seeking and anxiety-related behavior in rodent models. However, it is unclear if overlapping VTA cholinergic mechanisms mediate drug relapse and anxiety-related behaviors associated with drug abstinence. We examined the effects of VTA cholinergic receptor blockade on cue-induced cocaine seeking and anxiety during cocaine abstinence. Male Sprague-Dawley rats were trained to self-administer intravenous cocaine (~0.5 mg/kg/infusion, FR1 schedule) for 10 days, followed by 14 days of forced abstinence. VTA infusion of the non-selective nicotinic acetylcholine receptor antagonist mecamylamine (0, 10, and 30 μg/side) or the non-selective muscarinic receptor antagonist scopolamine (0, 2.4 and 24 μg /side) significantly decreased cue-induced cocaine seeking. In cocaine naïve rats, VTA mecamylamine or scopolamine also led to dose-dependent increases in open arm time in the elevated plus maze (EPM). In contrast, rats that received I.V. cocaine, compared to received I.V. saline rats, displayed an anxiogenic response on day 14 of abstinence as reflected by decreased open arm time in the EPM. Furthermore, low doses of VTA mecamylamine (10 μg /side) or scopolamine (2.4 μg /side), that did not alter EPM behavior in cocaine naive rats, were sufficient to reverse the anxiogenic effects of cocaine abstinence. Together, these data point to an overlapping role of VTA cholinergic mechanisms to regulate relapse and mood disorder-related responses during cocaine abstinence.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lillian Bitner
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shannon M Hughley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Keri M Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Sofia N Walton
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
26
|
Bender AM, Garrison AT, Lindsley CW. The Muscarinic Acetylcholine Receptor M 5: Therapeutic Implications and Allosteric Modulation. ACS Chem Neurosci 2019; 10:1025-1034. [PMID: 30280567 DOI: 10.1021/acschemneuro.8b00481] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) was the most recent mAChR to be cloned and has since emerged as a potential therapeutic target for a number of indications. Early studies with knockout animals have provided clues to the receptor's role in physiological processes related to Alzheimer's disease, schizophrenia, and addiction, and until recently, useful subtype-selective tools to further probe the pharmacology of M5 have remained elusive. Small-molecule allosteric modulators have since gained traction as a means by which to selectively examine muscarinic pharmacology. This review highlights the discovery and optimization of M5 positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs).
Collapse
Affiliation(s)
- Aaron M. Bender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron T. Garrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
27
|
Bender AM, Cho HP, Nance KD, Lingenfelter KS, Luscombe VB, Gentry PR, Voigtritter K, Berizzi AE, Sexton PM, Langmead CJ, Christopoulos A, Locuson CW, Bridges TM, Chang S, O’Neill JC, Zhan X, Niswender CM, Jones CK, Conn PJ, Lindsley CW. Discovery and Optimization of Potent and CNS Penetrant M 5-Preferring Positive Allosteric Modulators Derived from a Novel, Chiral N-(Indanyl)piperidine Amide Scaffold. ACS Chem Neurosci 2018; 9:1572-1581. [PMID: 29678111 DOI: 10.1021/acschemneuro.8b00126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pharmacology of the M5 muscarinic acetylcholine receptor (mAChR) is the least understood of the five mAChR subtypes due to a historic lack of selective small molecule tools. To address this shortcoming, we have continued the optimization effort around the prototypical M5 positive allosteric modulator (PAM) ML380 and have discovered and optimized a new series of M5 PAMs based on a chiral N-(indanyl)piperidine amide core with robust SAR, human and rat M5 PAM EC50 values <100 nM and rat brain/plasma Kp values of ∼0.40. Interestingly, unlike M1 and M4 PAMs with unprecedented mAChR subtype selectivity, this series of M5 PAMs displayed varying degrees of PAM activity at the other two natively Gq-coupled mAChRs, M1 and M3, yet were inactive at M2 and M4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alice E. Berizzi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|