1
|
Mottarlini F, Miglioranza P, Rizzi B, Taddini S, Parolaro S, Caprioli D, Ciccocioppo R, Caffino L, Fumagalli F. Repeated cocaine exposure and prolonged withdrawal induce spatial memory impairment and dysregulate the glutamatergic synapse composition in the dorsal hippocampus of male rats. Neuropharmacology 2025; 273:110453. [PMID: 40187639 DOI: 10.1016/j.neuropharm.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Adolescents are particularly susceptible to various forms of gratification, among which psychostimulants. During adolescence the hippocampus, a brain area relevant to spatial memory domain, undergoes maturational processes, such as structural and molecular reorganization of the excitatory synapses. Our goal was to reveal putatively enduring spatial memory deficits and molecular correlates in male rats exposed to repeated cocaine after a period of withdrawal. Towards this goal, adolescent Sprague-Dawley male rats were exposed to chronic cocaine treatment (5 mg/kg/day, subcutaneously) for 15 days and, after 2 weeks of withdrawal, were subjected to spatial order object recognition (SOOR) test, a memory task based on the rat's ability to recognize objects displacement. Next, we investigated subcellular specific expression of markers of the glutamate synapse in the dorsal hippocampus. Our findings show that withdrawal from repeated cocaine exposure during adolescence is associated with spatial memory impairment. Such deficit was correlated to a reduced expression and retention of NMDA receptor subunits, GluN1, GluN2A and GluN2B, at both synaptic and extra-synaptic sites, an effect indicative of impaired NMDA receptor trafficking. Analysis of endocytosis markers (Rab family of monomeric GTPase) revealed that cocaine-withdrawn rats favor the degradative pathway (Rab7-Rab9) over the recycling pathway (Rab11). In contrast, saline-treated rats primarily activate the recycling pathway. Our findings, mislocalization of glutamatergic receptors together with sorting of NMDA receptor towards degradation, rather than recycling, may contribute to the understanding of the mechanisms underlying the spatial memory deficits in male rats with an adolescent history of cocaine.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Paolo Miglioranza
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy; School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sofia Taddini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Susanna Parolaro
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniele Caprioli
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy.
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Caffino L, Targa G, Mottarlini F, Thielens S, Rizzi B, Villers A, Ris L, Gainetdinov RR, Leo D, Fumagalli F. Memantine-induced functional rewiring of the glutamate synapse in the striatum of dopamine transporter knockout rats. Br J Pharmacol 2025; 182:1377-1393. [PMID: 39653030 DOI: 10.1111/bph.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Slow-acting biogenic amines, such as dopamine, are known to modulate fast neurotransmitters e.g. glutamate. In the striatum, dopamine (DA) interacts with glutamate, influencing neural excitability and promoting synaptic plasticity. The exact mechanism of such interaction is not fully understood. This study investigates, in detail, how dopamine overactivity in dopamine transporter knockout (DAT-/-) rats, alters the homeostasis of the striatal glutamate synapse from a molecular, behavioural and functional point of view. EXPERIMENTAL APPROACH The expression, localisation, retention and electrophysiological properties of N-methyl-D-aspartate (NMDA) receptors as well as dendritic spine density and morphology were investigated in the striatum of DAT-/- rats, at baseline and after treatment with the non-competitive NMDA receptor antagonist memantine (30 mg kg-1). KEY RESULTS Dopamine overactivity dramatically reorganises the striatal glutamate synapse, redistributing NMDA receptors in the synapse as typified by reduced synaptic availability and reduced expression of NMDA scaffolding proteins, as well as by increased GluN2B-containing NMDA receptors in the extra synapse. Such changes are accompanied by reduced spine density, suggesting dopamine-induced structural rearrangements. These results converge into a compromised plasticity, as shown by the impaired ability to promote long-term depression (LTD) in the striatum of DAT-/-rats. Notably, memantine counteracts hyperlocomotion, reverses spine alterations and abolishes the extrasynaptic movements of NMDA receptors in the striatum of DAT-/- rats, thus restoring functional LTD. CONCLUSION AND IMPLICATIONS A hyperdopaminergic condition seems to alter striatal homeostasis by increasing extrasynaptic NMDA receptors. These findings may be relevant to manipulate disorders characterised by elevated dopaminergic activity.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Sarah Thielens
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Agnes Villers
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Liu X, Wang F, Le Q, Ma L. Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Curr Opin Neurobiol 2023; 83:102813. [PMID: 37972536 DOI: 10.1016/j.conb.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Addiction has been conceptualized as a disease of learning and memory. Learned associations between environmental cues and unconditioned rewards induced by drug administration, which play a critical role in addiction, have been shown to be encoded in sparsely distributed populations of neurons called neuronal ensembles. This review aims to highlight how synaptic remodeling and alterations in signaling pathways that occur specifically in neuronal ensembles contribute to the pathogenesis of addiction. Furthermore, a causal link between transcriptional and epigenetic modifications in neuronal ensembles and the development of the addictive state is proposed. Translational studies of molecular and cellular changes in neuronal ensembles that contribute to drug-seeking behavior, will allow the identification of molecular and circuit targets and interventions for substance use disorders.
Collapse
Affiliation(s)
- Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
4
|
Kwak MJ, Kim WY, Jung SH, Chung YJ, Kim JH. Differential transcriptome profile underlying risky choice in a rat gambling task. J Behav Addict 2022; 11:845-857. [PMID: 36094860 PMCID: PMC9872528 DOI: 10.1556/2006.2022.00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIMS Proper measurement of expected risk is important for making rational decisions, and maladaptive decision making may underlie various psychiatric disorders. However, differentially expressed genetic profiling involved in this process is still largely unknown. A rodent version of the gambling task (rGT) has been developed to measure decision-making by adopting the same principle of Iowa Gambling Task in humans. In the present study, we examined using next-generation sequencing (NGS) technique whether there are differences in gene expression profiles in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAc) when rats make different choices toward risk in rGT. METHODS Rats were trained in a touch screen chamber to learn the relationships between 4 different light signals on the window of the screen and accompanied reward outcomes or punishments set up with different magnitudes and probabilities. Once they showed a stabilized pattern of preference upon free choice, rats were classified into risk-averse or risk-seeking groups. After performing the rGT, rats were decapitated, the mPFC and the NAc was dissected out, and NGS was performed with the total RNA extracted. RESULTS We found that 477 and 36 genes were differentially expressed (approximately 75 and 83% out of them were downregulated) in the mPFC and the NAc, respectively, in risk-seeking compared to risk-averse rats. Among those, we suggested a few top ranked genes that may contribute to promoting risky choices. DISCUSSION AND CONCLUSIONS Our findings provide insights into transcriptional components underlying risky choices in rats.
Collapse
Affiliation(s)
- Myung Ji Kwak
- Department of Medical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, Cancer Evolution Research Center, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea,Department of Biomedicine & Health Sciences, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea,Precision Medicine Research Center, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea,Corresponding authors. E-mail: , ,
| | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea,Precision Medicine Research Center, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea,Department of Microbiology, IRCGP, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea,Corresponding authors. E-mail: , ,
| | - Jeong-Hoon Kim
- Department of Medical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea,Department of Physiology, Yonsei University College of Medicine, Seoul 03722, South Korea,Corresponding authors. E-mail: , ,
| |
Collapse
|
5
|
Caffino L, Mottarlini F, Targa G, Verheij MMM, Homberg J, Fumagalli F. Long access to cocaine self-administration dysregulates the glutamate synapse in the nucleus accumbens core of serotonin transporter knockout rats. Br J Pharmacol 2022; 179:4254-4264. [PMID: 33880773 PMCID: PMC9544393 DOI: 10.1111/bph.15496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE It is well established that the nucleus accumbens and glutamate play a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin (5-HT) transporter (SERT-/- rats) show increased cocaine intake reminiscent of compulsivity. EXPERIMENTAL APPROACH By comparing SERT-/- to SERT+/+ rats, we set out to explore whether SERT deletion influences glutamate neurotransmission under control conditions as well as after short access (1 h/session) or long access (6 h/session) to cocaine self-administration. KEY RESULTS Rats were killed at 24 h after the final self-administration session for ex vivo molecular analyses of the glutamate system (vesicular and glial transporters, post-synaptic subunits of NMDA and AMPA receptors and their related scaffolding proteins). Such analyses were undertaken in the nucleus accumbens core. In cocaine-naïve animals, SERT deletion evoked widespread abnormalities in markers of glutamatergic neurotransmission that, overall, indicate a reduction of glutamate signalling. These results suggest that 5-HT is pivotal for the maintenance of accumbal glutamate homeostasis. We also found that SERT deletion altered glutamate homeostasis mainly after long access, but not short access, to cocaine. CONCLUSION AND IMPLICATIONS Our findings reveal that SERT deletion may sensitize the glutamatergic synapses of the nucleus accumbens core to the long access but not short access, intake of cocaine. LINKED ARTICLES This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
6
|
Caffino L, Mottarlini F, Targa G, Verheij MMM, Fumagalli F, Homberg JR. Responsivity of serotonin transporter knockout rats to short and long access to cocaine: modulation of the glutamate signaling in the nucleus accumbens shell. Br J Pharmacol 2022; 179:3727-3739. [PMID: 35174489 PMCID: PMC9310702 DOI: 10.1111/bph.15823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose It has been well established that glutamate in the nucleus accumbens (NAc) plays a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin transporter (SERT−/− rats) show increased cocaine intake reminiscent of compulsivity. Experimental Approach By comparing SERT−/− to SERT+/+ rats, we investigated whether SERT deletion influences glutamate homeostasis under control conditions as well as after short access (ShA: 1 h per session) or long access (LgA: 6 h per session) to cocaine self‐administration. Rats were killed at 24 h after the last self‐administration session for ex vivo molecular analyses of the main determinants of the glutamate system, including transporters (vesicular and glial), receptors (main post‐synaptic subunits of NMDA and AMPA receptors together with the metabotropic subunit mGLUR5), and scaffolding proteins (SAP102, SAP97, and GRIP) in the NAc shell (sNAc) Key Results In cocaine‐naive animals, SERT deletion was associated with changes indicative for a reduction in glutamate signalling. ShA and LgA exposure led to a further dysregulation of the glutamatergic synapse. Conclusion SERT deletion may render the glutamatergic synapses of the NAc shell more responsive to both ShA and LgA intake of cocaine.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands
| |
Collapse
|
7
|
Castillo Díaz F, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev 2021; 131:953-963. [PMID: 34655655 DOI: 10.1016/j.neubiorev.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons projecting from the Substantia Nigra to the Striatum play a critical role in motor functions while dopaminergic neurons originating in the Ventral Tegmental Area (VTA) and projecting to the Nucleus Accumbens, Hippocampus and other cortical structures regulate rewarding learning. While VTA mainly consists of dopaminergic neurons, excitatory (glutamate) and inhibitory (GABA) VTA-neurons have also been described: these neurons may also modulate and contribute to shape the final dopaminergic response, which is critical for memory formation. However, given the large amount of information that is handled daily by our brain, it is essential that irrelevant information be deleted. Recently, apart from the well-established role of dopamine (DA) in learning, it has been shown that DA plays a critical role in the intrinsic active forgetting mechanisms that control storage information, contributing to the deletion of a consolidated memory. These new insights may be instrumental to identify therapies for those disorders that involve memory alterations.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
8
|
Smaga I, Wydra K, Suder A, Sanak M, Caffino L, Fumagalli F, Filip M. Enhancement of the GluN2B subunit of glutamatergic NMDA receptors in rat brain areas after cocaine abstinence. J Psychopharmacol 2021; 35:1226-1239. [PMID: 34587833 DOI: 10.1177/02698811211048283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cocaine use disorder is associated with compulsive drug-seeking and drug-taking, whereas relapse may be induced by several factors, including stress, drug-related places, people, and cues. Recent observations strongly support the involvement of the N-methyl-D-aspartate (NMDA) receptors in cocaine use disorders and abstinence, whereas withdrawal in different environments may affect the intensification of relapse. METHODS The aim of this study was to examine the GluN2B subunit expression and its association with the postsynaptic density protein 95 (PSD95) in several brain structures in rats with a history of cocaine self-administration and housed either in an enriched environment or in an isolated condition. Furthermore, a selective antagonist of the GluN2B subunit-CP 101,606 (10 and 20 mg/kg) administered during exposure to cocaine or a drug-associated conditional stimulus (a cue) was used to evaluate seeking behavior in rats. RESULTS In rats previously self-administering cocaine, we observed an increase in the GluN2B expression in the total homogenate from the dorsal hippocampus under both enriched environment and isolation. Cocaine abstinence under isolation conditions increased the GluN2B and GluN2B/PSD95 complex levels in the PSD fraction of the prelimbic cortex in rats previously self-administering cocaine. Administration of CP 101,606 attenuated cue-induced cocaine-seeking behavior only in isolation-housed rats. CONCLUSION In summary, in this study we showed region-specific changes in both the expression of GluN2B subunit and NMDA receptor trafficking during cocaine abstinence under different housing conditions. Furthermore, we showed that the pharmacological blockade of the GluN2B subunit may be useful in attenuating cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Suder
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
9
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
10
|
Caffino L, Mottarlini F, Van Reijmersdal B, Telese F, Verheij MM, Fumagalli F, Homberg JR. The role of the serotonin transporter in prefrontal cortex glutamatergic signaling following short- and long-access cocaine self-administration. Addict Biol 2021; 26:e12896. [PMID: 32187792 PMCID: PMC7988536 DOI: 10.1111/adb.12896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/28/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
Vulnerability to drug addiction relies on substantial individual differences. We previously demonstrated that serotonin transporter knockout (SERT−/−) rats show increased cocaine intake and develop signs of compulsivity. However, the underlying neural mechanisms are not fully understood. Given the pivotal role of glutamate and prefrontal cortex in cocaine‐seeking behavior, we sought to investigate the expression of proteins implicated in glutamate neurotransmission in the prefrontal cortex of naïve and cocaine‐exposed rats lacking SERT. We focused on the infralimbic (ILc) and prelimbic (PLc) cortices, which are theorized to exert opposing effects on the control over subcortical brain areas. SERT−/− rats, which compared to wild‐type (SERT+/+) rats show increased ShA and LgA intake short‐access (ShA) and long‐access (LgA) cocaine intake, were sacrificed 24 h into withdrawal for ex vivo molecular analyses. In the ILc homogenate of SERT−/− rats, we observed a sharp increase in glial glutamate transporter 1 (GLT‐1) after ShA, but not LgA, cocaine intake. This was paralleled by ShA‐induced increases in GluN1, GluN2A, and GluN2B NMDA receptor subunits and their scaffolding protein SAP102 in the ILc homogenate, but not postsynaptic density, of these knockout animals. In the PLc, we found no major changes in the homogenate; conversely, the expression of GluN1 and GluN2A NMDA receptor subunits was increased in the postsynaptic density under ShA conditions and reduced under LgA conditions. These results point to SERT as a critical regulator of glutamate homeostasis in a way that differs between the subregions investigated, the duration of cocaine exposure as well as the cellular compartment analyzed.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Boyd Van Reijmersdal
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Francesca Telese
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Michel M.M. Verheij
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| |
Collapse
|
11
|
Yuferov V, Butelman ER, Randesi M, van den Brink W, Blanken P, van Ree JM, Kreek MJ. Association of Serotonin Transporter (SERT) Polymorphisms with Opioid Dependence and Dimensional Aspects of Cocaine Use in a Caucasian Cohort of Opioid Users. Neuropsychiatr Dis Treat 2021; 17:659-670. [PMID: 33658787 PMCID: PMC7920580 DOI: 10.2147/ndt.s286536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION A functional tandem repeat polymorphism in the promoter of the serotonin transporter (SERT) gene (SLC6A4) has been studied for association to neuropsychiatric conditions, including substance use disorders. Short (S) forms of this repeat result in reduced transcription, and presumably greater synaptic levels of serotonin, which are involved in opioid and cocaine-induced reward. Dual exposure to heroin and cocaine is a common pattern of poly-drug use and is associated with considerable morbidity. We hypothesize that SLC6A4 variants are associated with cocaine exposure in subjects with an opioid dependence diagnosis (OD), and also in non-dependent opioid users (NOD). Other single nucleotide polymorphisms (SNPs) of SLC6A4 may also be likewise associated. MATERIALS AND METHODS This study determined whether variants of the SLC6A4 promoter repeats and two intronic SNPs, rs16965628 and rs2066713, are associated with categorical diagnoses of opioid dependence (DSM-IV criteria) and with dimensional aspects of cocaine use, in a Caucasian cohort (n=591). Three groups of subjects were examined: (1) 276 subjects with opioid dependence diagnosis (OD); (2) 163 subjects who had used opioids for non-medical reasons but never had an opioid dependence diagnosis (NOD); (3) 152 healthy controls (HC). RESULTS Aside from high exposure to heroin in the OD group, relatively high exposure to cocaine was detected in both OD and NOD groups. The SERT repeat genotype (classified as "long-long" [LL] versus "short-long" plus "short-short" [SL+SS]) was not associated with categorical opioid dependence diagnoses. A nominally significant association was identified with the [SL+SS] genotype of SLC6A4 and cocaine KMSK scores ≥"cutpoint" for a cocaine dependence diagnosis (p=0.026). The [SL+SS] genotype was associated with more rapid cocaine escalation than the LL genotype. No significant associations of rs16965628 and rs2066713 SNPs were found overall. CONCLUSION The functional SERT promoter tandem repeat genotype may be associated to heavy cocaine exposure and more rapid escalation of cocaine use, in persons with and without opioid dependence diagnosis.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Wim van den Brink
- Amsterdam University Medical Centers, Location Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Blanken
- Parnassia Addiction Research Centre, The Hague, The Netherlands
| | - Jan M van Ree
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
12
|
Translational study of the whole transcriptome in rats and genetic polymorphisms in humans identifies LRP1B and VPS13A as key genes involved in tolerance to cocaine-induced motor disturbances. Transl Psychiatry 2020; 10:381. [PMID: 33159041 PMCID: PMC7648099 DOI: 10.1038/s41398-020-01050-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/04/2022] Open
Abstract
Motor disturbances strongly increase the burden of cocaine use disorder (CUDs). The objective of our translational study was to identify the genes and biological pathways underlying the tolerance to cocaine-induced motor effects. In a 5-day protocol measuring motor tolerance to cocaine in rats (N = 40), modeling the motor response to cocaine in patients, whole-genome RNA sequencing was conducted on the ventral and dorsal striatum to prioritize a genetic association study in 225 patients with severe CUD who underwent thorough phenotypic (cocaine-induced hyperlocomotion, CIH; and cocaine-induced stereotypies, CIS) and genotypic [571,000 polymorphisms (SNPs)] characterization. We provide a comprehensive description of the rat striatal transcriptomic response to cocaine in our paradigm. Repeated vs. acute cocaine binge administration elicited 27 differentially expressed genes in the ventral striatum and two in the dorsal striatum. One gene, Lrp1b, was differentially expressed in both regions. In patients, LRP1B was significantly associated with both CIS and CIH. CIH was also associated with VPS13A, a gene involved in a severe neurological disorder characterized by hyperkinetic movements. The LRP1B minor allele rs7568970 had a significant protective effect against CIS (558 SNPs, Bonferroni-corrected p = 0.02) that resisted adjustment for confounding factors, including the amount of cocaine use (adjusted beta = -0.965 and -2.35 for heterozygotes and homozygotes, respectively, p < 0.01). Using hypothesis-free prioritization of candidate genes along with thorough methodology in both the preclinical and human analysis pipelines, we provide reliable evidence that LRP1B and VPS13A are involved in the motor tolerance to cocaine in CUD patients, in line with their known pathophysiology.
Collapse
|
13
|
Caffino L, Verheij MMM, Roversi K, Targa G, Mottarlini F, Popik P, Nikiforuk A, Golebiowska J, Fumagalli F, Homberg JR. Hypersensitivity to amphetamine's psychomotor and reinforcing effects in serotonin transporter knockout rats: Glutamate in the nucleus accumbens. Br J Pharmacol 2020; 177:4532-4547. [PMID: 32721055 PMCID: PMC7484509 DOI: 10.1111/bph.15211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Amphetamine (AMPH) use disorder is a serious health concern, but, surprisingly, little is known about the vulnerability to the moderate and compulsive use of this psychostimulant and its underlying mechanisms. Previous research showed that inherited serotonin transporter (SERT) down‐regulation increases the motor response to cocaine, as well as moderate (as measured during daily 1‐h self‐administration sessions) and compulsive (as measured during daily 6‐h self‐administration sessions) intake of this psychostimulant. Here, we sought to investigate whether these findings generalize to AMPH and the underlying mechanisms in the nucleus accumbens. Experimental Approach In serotonin transporter knockout (SERT−/−) and wild‐type control (SERT+/+) rats, we assessed the locomotor response to acute AMPH and i.v. AMPH self‐administration under short access (ShA: 1‐h daily sessions) and long access (LgA: 6‐h daily sessions) conditions. Twenty‐four hours after AMPH self‐administration, we analysed the expression of glutamate system components in the nucleus accumbens shell and core. Key Results We found that SERT−/− animals displayed an increased AMPH‐induced locomotor response and increased AMPH self‐administration under LgA but not ShA conditions. Further, we observed changes in the vesicular and glial glutamate transporters, NMDA and AMPA receptor subunits, and their respective postsynaptic scaffolding proteins as function of SERT genotype and AMPH exposure (baseline, ShA, and LgA), specifically in the nucleus accumbens shell. Conclusion and Implications We demonstrate that SERT gene deletion increases the psychomotor and reinforcing effects of AMPH and that the latter is potentially mediated, at least in part, by homeostatic changes in the glutamatergic synapse of the nucleus accumbens shell and/or core.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Karine Roversi
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieska Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Golebiowska
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Caffino L, Mottarlini F, Mingardi J, Zita G, Barbon A, Fumagalli F. Anhedonic-like behavior and BDNF dysregulation following a single injection of cocaine during adolescence. Neuropharmacology 2020; 175:108161. [PMID: 32585251 DOI: 10.1016/j.neuropharm.2020.108161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that a single exposure to cocaine during adolescence causes several behavioural and neurobiological changes, highlighting the unique vulnerability of this period of life. The purpose of our work was to investigate whether a single exposure to cocaine during brain development is sufficient to shape a negative emotional state in adolescent rats. A single injection of cocaine during adolescence followed by measurement of sucrose consumption, a measure of anhedonia, identifies two separate groups of rats, i.e. anhedonic (AN) and non anhedonic (NON-AN) rats. AN rats show reduced ability to synthesize, traffic and translate the neurotrophin BDNF at synaptic level, reduced activation of hippocampal BDNF signaling, reduced BDNF plasma levels and a steep rise of corticosterone secretion. Conversely, NON-AN rats exhibit reduced trafficking of BDNF while up-regulating hippocampal BDNF synthesis and stabilizing its downstream signaling with no changes of BDNF and corticosterone plasma levels. Adult rats exposed to cocaine showed no signs of anhedonia, an increase of BDNF both in hippocampus and plasma and decreased levels of corticosterone. In conclusion, our findings reveal a complex central and peripheral dysregulation of BDNF-related mechanisms that instead are preserved in NON-AN rats, suggesting that BDNF modulation dictates behavioural vulnerability vs. resiliency to cocaine-induced anhedonia, a profile uniquely restricted to adolescent rats.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Jessica Mingardi
- Biology and Genetic Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gianmaria Zita
- Dipartimento di Salute Mentale e Dipendenze, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Alessandro Barbon
- Biology and Genetic Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
15
|
Repeated cocaine exposure during adolescence impairs recognition memory in early adulthood: A role for BDNF signaling in the perirhinal cortex. Dev Cogn Neurosci 2020; 43:100789. [PMID: 32510348 PMCID: PMC7200858 DOI: 10.1016/j.dcn.2020.100789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
The perirhinal cortex (PrhC) is critical for object recognition memory; however, information regarding the molecular mechanisms underlying this type of memory following repeated exposure to drugs of abuse during adolescence is unknown. To this end, adolescent or adult rats were exposed to cocaine from postnatal day (PND) 28 to PND 42 or PND 63 to PND 77, respectively. Two weeks later, rats were subjected to the cognitive test named Novel Object Recognition (NOR) test. We found that adolescent, but not adult, cocaine exposure caused a significant impairment in the NOR test, independently from changes in the stress response system. In adolescent saline-treated rats, NOR test up-regulated BDNF and its downstream signaling whereas a downregulation of the same pathway was observed in cocaine-treated rats together with a reduction of Arc/Arg3.1 and PSD95 expression, indicating reduced pro-cognitive structural adaptations in the PrhC. Of note, cocaine-treated adult rats correctly performed in the NOR test indicating intact recognition memory mechanisms, despite a significant cocaine-induced reduction of BDNF levels in the PrhC, suggesting that recognition memory is heavily dependent on BDNF during adolescence whereas during adulthood other mechanisms come into play.
Collapse
|
16
|
Smaga I, Sanak M, Filip M. Cocaine-induced Changes in the Expression of NMDA Receptor Subunits. Curr Neuropharmacol 2020; 17:1039-1055. [PMID: 31204625 PMCID: PMC7052821 DOI: 10.2174/1570159x17666190617101726] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 11/28/2022] Open
Abstract
Cocaine use disorder is manifested by repeated cycles of drug seeking and drug taking. Cocaine exposure causes synaptic transmission in the brain to exhibit persistent changes, which are poorly understood, while the pharmacotherapy of this disease has not been determined. Multiple potential mechanisms have been indicated to be involved in the etiology of co-caine use disorder. The glutamatergic system, especially N-methyl-D-aspartate (NMDA) receptors, may play a role in sever-al physiological processes (synaptic plasticity, learning and memory) and in the pathogenesis of cocaine use disorder. The composition of the NMDA receptor subunits changes after contingent and noncontingent cocaine administration and after drug abstinence in a region-specific and time-dependent manner, as well as depending on the different protocols used for co-caine administration. Changes in the expression of NMDA receptor subunits may underlie the transition from cocaine abuse to dependence, as well as the transition from cocaine dependence to cocaine withdrawal. In this paper, we summarize the cur-rent knowledge regarding neuroadaptations within NMDA receptor subunits and scaffolding proteins observed following voluntary and passive cocaine intake, as well as the effects of NMDA receptor antagonists on cocaine-induced behavioral changes during cocaine seeking and relapse.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland.,Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
17
|
Simmler LD, Blakely RD. The SERT Met172 Mouse: An Engineered Model To Elucidate the Contributions of Serotonin Signaling to Cocaine Action. ACS Chem Neurosci 2019; 10:3053-3060. [PMID: 30817127 DOI: 10.1021/acschemneuro.9b00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cocaine abuse and addiction remain highly prevalent and, unfortunately, poorly treated. It is well-known that essential aspects of cocaine's addictive actions involve the drug's ability to block the presynaptic dopamine (DA) transporter (DAT), thereby elevating extracellular levels of DA in brain circuits that subserve reward, reinforcement, and habit. Less well appreciated are the multiple DA-independent actions of cocaine, activities that we and others believe contribute key pieces to the puzzle of cocaine addiction, treatment, and relapse. In particular, a significant body of work points to altered serotonin (5-HT) signaling as one such component, not surprising given that, relative to DAT, cocaine acts as potently to block the 5-HT transporter (SERT) as to block DAT, and thereby elevates extracellular 5-HT levels throughout the brain when reward-eliciting DA elevations occur. To elucidate the contribution of SERT antagonism to the actions of cocaine, we engineered a mouse model that significantly reduces cocaine potency at SERT without disrupting the expression or function of SERT in vivo. In this short Perspective, we review the rationale for development of the SERT Met172 model, the studies that document the pharmacological impact of the Ile172Met substitution in vitro and in vivo, and our findings with the model that demonstrate serotonergic contributions to the genetic, physiological, and behavioral actions of cocaine.
Collapse
Affiliation(s)
- Linda D. Simmler
- Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|