1
|
Arioli M, Bossert I, D’Ambrosio D, Manera M, Andreolli EM, Canessa N, Trifirò G. Neural correlates of executive dysfunction in alcohol use disorder: preliminary evidence from 18F-FDG-PET. Front Psychol 2025; 16:1568085. [PMID: 40420979 PMCID: PMC12104261 DOI: 10.3389/fpsyg.2025.1568085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Neuroimaging studies have shown that cognitive impairments in Alcohol Use Disorder (AUD), particularly involving executive functions, reflect widespread structural and functional brain alterations. However, these findings mostly result from magnetic resonance imaging (MRI). To complement previous MRI findings with a more direct measure of brain metabolism, we therefore explored the neural bases of executive impairments in AUD using FDG-PET. Twenty-three AUD patients and 18 healthy controls underwent a neurocognitive assessment, and patients also an 18F-FDG-PET scan. Using as reference for brain metabolism a FDG-PET dataset of age-matched healthy controls, we assessed a relationship between executive impairment and regional hypometabolism in AUD patients, while also considering a possible moderating age effect. Compared with controls, AUD patients exhibited widespread hypometabolism in the anterior/midcingulate cortex, fronto-insular cortex, and medial precuneus, supporting the hypothesis that their impaired executive performance might reflect an altered transition from automatic to controlled processing. Patients' worse executive performance reflected in higher metabolism in the midcingulate cortex and medial precuneus, suggesting a possible compensatory neural mechanism. This relationship was moderated by age in the right anterior insula, where the decrease of metabolism is steeper, in older patients, at the lowest level of cognitive performance. This finding suggests that an age-related decrease in the compensatory capacity of the insular node of the salience network might contribute to cognitive decline in older patients. While supporting the use of FDG-PET to improve the understanding of AUD-related cognitive decline, and differential diagnosis in older patients, these findings might help design personalized innovative treatment protocols.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Irene Bossert
- Istituti Clinici Scientifici Maugeri IRCCS, Nuclear Medicine Unit of Pavia Institute, Pavia, Italy
| | - Daniela D’Ambrosio
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Physics Unit of Pavia Institute, Pavia, Italy
| | - Marina Manera
- Istituti Clinici Scientifici Maugeri IRCCS, Clinical Psychology Unit of Pavia Institute, Pavia, Italy
| | - Elena Maria Andreolli
- Istituti Clinici Scientifici Maugeri IRCCS, Nuclear Medicine Unit of Pavia Institute, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia, Italy
| | - Giuseppe Trifirò
- Istituti Clinici Scientifici Maugeri IRCCS, Nuclear Medicine Unit of Pavia Institute, Pavia, Italy
| |
Collapse
|
2
|
Cousijn J, Toenders YJ, Kaag AM, Filbey F, Kroon E. The role of sex in the association between cannabis use disorder and resting-state functional connectivity. Neuropsychopharmacology 2025; 50:991-999. [PMID: 40102266 PMCID: PMC12032362 DOI: 10.1038/s41386-025-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
While Cannabis use disorder (CUD) is twice as prevalent in males, females transition more quickly from heavy use to CUD and experience more severe withdrawal. These clinically relevant sex differences contrast the lack of knowledge about the underlying brain mechanisms. This study investigated the relationship between CUD and resting-state functional brain connectivity (RSFC), assessing potential sex differences herein. RSFC of the Salience Network (SN), Basal Ganglia Network (BGN), Executive Control Network (ECN), and Default Mode Network (DMN) was compared between 152 individuals (76 males) with CUD and 114 matched controls (47 males). Within the CUD group, relationships between RSFC and heaviness of cannabis use, age of onset, and CUD symptom severity, along with their associations with sex, were investigated. CUD and control groups showed similar RSFC across all networks, regardless of sex. In the CUD group, heavier cannabis use correlated with higher RSFC across all networks and earlier age of onset was related to higher RSFC in the anterior SN, BGN, left ECN, and dorsal DMN. These associations were similar for males and females. CUD severity was related to higher RSFC in the anterior SN, which was moderated by sex, with a positive association seen only in males. In conclusion, CUD may not necessarily be associated with altered RSFC. Individual use characteristics such age of onset and severity of use may determine the potential impact of cannabis use on RSFC in a largely similar way in males and females.
Collapse
Affiliation(s)
- Janna Cousijn
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Yara J Toenders
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anne Marije Kaag
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Francesca Filbey
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Emese Kroon
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Regier PS, Hager NM, Gawrysiak M, Ehmann S, Ayaz H, Childress AR, Fan Y. Differential large-scale network functional connectivity in cocaine-use disorder associates with drug-use outcomes. Sci Rep 2025; 15:9636. [PMID: 40113802 PMCID: PMC11926260 DOI: 10.1038/s41598-025-91465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Cocaine-use disorder (CUD) affects both structure and function of the brain. A triple network model of large-scale brain networks has been useful for identifying aberrant resting-state functional connectivity (rsFC) associated with mental health disorders including addiction. The present study investigated differences between people with CUD vs. controls (CONs) and whether putative differences were associated with drug-use outcomes. Participants with CUD (n = 38) and CONs (n = 34) completed a resting functional magnetic resonance imaging (fMRI) scan. Participants with CUD completed several mental health measures and participated in an 8-week, drug-use outcomes phase. A classification framework based on the triple network model was built, and triple networks (salience [SN], executive control [ECN], default mode [DMN]) and subcortical (striatum [ST], hippocampus/amygdala) regions were identified with the algorithm of group-information-guided independent components analysis (GIG-ICA) and subsequent support-vector machines. This classifier achieved 77.1% accuracy, 73.8% sensitivity, and 80.0% specificity, with an area under the curve of 0.87 for distinguishing CUD vs. CON. The two groups differed in SN-anterior DMN (aDMN) and ECN-aDMN rsFC, with the CUD group exhibiting stronger rsFC compared to CONs. They also differed in rsFC between several subcortical and triple networks, with CUD generally showing a lack of rsFC. Within the CUD group, ST-aDMN and ST-rECN rsFC were associated with differential drug-use outcomes. Exploratory results suggested SN-aDMN rsFC was associated with anxiety symptoms. These results add to the growing literature showing aberrant triple network and subcortical rsFC associated with substance use disorders. They suggest the aDMN specifically may underlie important differences between people with CUD and CONs and may be a potential target for intervention.
Collapse
Affiliation(s)
- Paul S Regier
- Perelman School of Medicine, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Nathan M Hager
- Perelman School of Medicine, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Gawrysiak
- Perelman School of Medicine, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychology, West Chester University of Pennsylvania, West Chester, PA, 19383, USA
| | - Sebastian Ehmann
- Department of Psychology, West Chester University of Pennsylvania, West Chester, PA, 19383, USA
- Department of Psychology, University of Arizona, Tuscon, AZ, 85721, USA
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, 19104, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, 19104, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Anna Rose Childress
- Perelman School of Medicine, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Byun AJS, Deshpande HU, Stover J, Kangas BD, Kohut SJ. Central Executive Network drives delta-9-tetrahydrocannabinol (THC)-induced nonlinear changes in large-scale functional connectivity in adolescent nonhuman primates. Neuropsychopharmacology 2025:10.1038/s41386-025-02068-5. [PMID: 40016367 DOI: 10.1038/s41386-025-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Adolescent cannabinoid exposure has been implicated in enduring modifications to adult brain circuitry; however, well-controlled, systematic analyses investigating dose-dependent effects of chronic delta-9-tetrahydrocannabinol (THC) exposure on brain connectivity are lacking. It is hypothesized that large-scale intrinsic networks, such as default mode (DMN), central executive (CEN), and salience networks (SN), are critically involved in vulnerability to deficits in cognitive processing often associated with adolescent cannabis use. The present study aimed to elucidate the effects of chronic THC exposure on functional connectivity (FC) of these putative large-scale networks in nonhuman primates. Separate groups of adolescent squirrel monkeys (aged 2.0-yrs [female] and 2.5-yrs [male]) were administered intramuscular injections of vehicle or THC daily (0.32 or 3.2mg/kg) for 6-months during adolescence. Resting state functional connectivity from scans conducted in awake subjects was measured before dosing, at 6-months of chronic dosing, and 60-days following discontinuation of daily THC exposure. Utilizing two distinct analytical methodologies, we observed a non-linear, dosage-dependent alteration in DMN-CEN FC across scan intervals. Specifically, exposure to a low THC dosage increased FC during chronic exposure compared to both the pre-dosing and discontinuation periods. This pattern, however, was not observed in either the vehicle or high THC dosage groups. Dual-regression unveiled a similar non-linear effect within the CEN, but not DMN, suggesting the effect on DMN-CEN FC may be driven by modifications within the CEN. Taken together, these results suggest adolescent THC exposure differentially affects large-scale brain networks and contributes to a nuanced understanding of CEN's role in disrupting brain connectivity following chronic THC exposure.
Collapse
Affiliation(s)
- Andrew Jin Soo Byun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
| | - Harshawardhan U Deshpande
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jessi Stover
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
| | - Brian D Kangas
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen J Kohut
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
5
|
Kardan O, Weigard AS, Cope LM, Martz ME, Angstadt M, McCurry KL, Michael C, Hardee JE, Hyde LW, Sripada C, Heitzeg MM. Functional Brain Connectivity Predictors of Prospective Substance Use Initiation and Their Environmental Correlates. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:203-212. [PMID: 39490580 PMCID: PMC12017335 DOI: 10.1016/j.bpsc.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Early substance use initiation (SUI) places youth at substantially higher risk for later substance use disorders. Furthermore, adolescence is a critical period for the maturation of brain networks, the pace and magnitude of which are susceptible to environmental influences and may shape risk for SUI. METHODS We examined whether patterns of functional brain connectivity during rest (rsFC), measured longitudinally during pre- and early adolescence, can predict future SUI. Next, in an independent subsample, we tested whether these patterns were associated with earlier environmental exposures, specifically neighborhood pollution and socioeconomic dimensions. We utilized data from the ABCD (Adolescent Brain Cognitive Development) Study. SUI was defined as first-time use of at least 1 full dose of alcohol, nicotine, cannabis, or other drugs. We created a control group (n = 228) of participants without SUI who were matched to the SUI group (n = 233) on age, sex, race/ethnicity, household income, and parental education. RESULTS Multivariate analysis showed that whole-brain rsFC from 9-10 to 11-12 years of age (prior to SUI) prospectively differentiated the SUI and control groups. The SUI-related rsFC pattern was also related to aging in both groups, suggesting a pattern of accelerated maturation in the years prior to SUI. This same pattern of rsFC was predicted by higher pollution but not neighborhood disadvantage (adjusted for family socioeconomic factors) in an independent subsample (n = 2854). CONCLUSIONS Brain functional connectivity patterns in early adolescence that are linked to accelerated maturation can predict SUI in youth and are associated with exposure to pollution.
Collapse
Affiliation(s)
- Omid Kardan
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Michigan, Ann Arbor, Michigan.
| | | | - Lora M Cope
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Meghan E Martz
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | | | - Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Jillian E Hardee
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, Michigan; Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Kania A, Porco N, Caravaggio F. Measuring Alcohol-Induced Striatal Dopamine Release in Healthy Humans With [ 11C]-Raclopride: A Meta-Analysis. Synapse 2025; 79:e70007. [PMID: 39729041 DOI: 10.1002/syn.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [11C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [11C]-raclopride binding potential (BPND) in the ventral striatum (Cohen's d = -0.76), indicative of increased DA release, particularly at lower blood alcohol concentration (BAC) levels (0.08 gm%; Z = 2.34, p = 0.02). That oral alcohol may increase DA release in the ventral striatum at lower doses, and decrease DA release at higher doses, warrants further investigation but appears consistent with other known biphasic, hermetic dose-response effects of alcohol. Additionally, larger effect-sizes in the ventral striatum were observed among those studies which sampled more males than females (Z = -2.08, p = 0.04). While oral alcohol administration was associated with reduced [11C]-raclopride BPND in the caudate (Cohen's d = -0.39) and putamen (Cohen's d = -0.37), these findings in the dorsal striatum were more variable and less robust. Our analyses suggests that study design (i.e., counterbalanced versus fixed order) may moderate effect sizes observed in the putamen across studies (Z = -2.27, p = 0.02). By identifying gaps in the current literature and proposing directions for future research, this study hopes to inform the design of future PET studies aimed at quantifying alcohol-induced dopamine release in the striatum of humans.
Collapse
Affiliation(s)
- Amir Kania
- Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada
| | - Natasha Porco
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Ding JE, Yang S, Zilverstand A, Kulkarni KR, Gu X, Liu F. Spatial Craving Patterns in Marijuana Users: Insights From fMRI Brain Connectivity Analysis With High-Order Graph Attention Neural Networks. IEEE J Biomed Health Inform 2025; 29:358-370. [PMID: 39321007 PMCID: PMC11875913 DOI: 10.1109/jbhi.2024.3462371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The excessive consumption of marijuana can induce substantial psychological and social consequences. In this investigation, we propose an elucidative framework termed high-order graph attention neural networks (HOGANN) for the classification of Marijuana addiction, coupled with an analysis of localized brain network communities exhibiting abnormal activities among chronic marijuana users. HOGANN integrates dynamic intrinsic functional brain networks, estimated from functional magnetic resonance imaging (fMRI), using graph attention-based long short-term memory (GAT-LSTM) to capture temporal network dynamics. We employ a high-order attention module for information fusion and message passing among neighboring nodes, enhancing the network community analysis. Our model is validated across two distinct data cohorts, yielding substantially higher classification accuracy than benchmark algorithms. Furthermore, we discern the most pertinent subnetworks and cognitive regions affected by persistent marijuana consumption, indicating adverse effects on functional brain networks, particularly within the dorsal attention and frontoparietal networks. Intriguingly, our model demonstrates superior performance in cohorts exhibiting prolonged dependence, implying that prolonged marijuana usage induces more pronounced alterations in brain networks. The model proficiently identifies craving brain maps, thereby delineating critical brain regions for analysis.
Collapse
|
8
|
Taebi A, Mathiak K, Becker B, Klug GK, Zweerings J. Connectivity-Based Real-Time Functional Magnetic Resonance Imaging Neurofeedback in Nicotine Users: Mechanistic and Clinical Effects of Regulating a Meta-Analytically Defined Target Network in a Double-Blind Controlled Trial. Hum Brain Mapp 2024; 45:e70077. [PMID: 39559854 PMCID: PMC11574450 DOI: 10.1002/hbm.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
One of the fundamental questions in real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) investigations is the definition of a suitable neural target for training. Previously, we applied a meta-analytical approach to define a network-level target for connectivity-based rt-fMRI NF in substance use disorders. The analysis yielded consistent connectivity alterations between the insula and anterior cingulate cortex (ACC) as well as the dorsal striatum and the ACC. In the current investigation, we addressed the feasibility of regulating this network and its functional relevance using connectivity-based neurofeedback. In a double-blind, sham-controlled design, 60 nicotine users were randomly assigned to the experimental or sham control group for one NF training session. The preregistered primary outcome was defined as improved inhibitory control performance after regulation of the target network compared to sham control. Secondary outcomes were (1) neurofeedback-specific changes in functional connectivity of the target network; (2) changes in smoking behavior and impulsivity measures; and (3) changes in resting-state connectivity profiles. Our results indicated no differences in behavioral measures after receiving feedback from the target network compared to the sham feedback. Target network connectivity was increased during regulation blocks compared to rest blocks, however, the experimental and sham groups could regulate to a similar degree. Accordingly, the observed activation patterns may be related to the mental strategies used during regulation attempts irrespective of the group assignment. We discuss several crucial factors regarding the efficacy of a single-session connectivity-based neurofeedback for the target network. This includes high fluctuation in the connectivity values of the target network that may impact controllability of the signal. To our knowledge, this investigation is the first randomized, double-blind controlled real-time fMRI study in nicotine users. This raises the question of whether previously observed effects in nicotine users are specific to the neurofeedback signal or reflect more general self-regulation attempts.
Collapse
Affiliation(s)
- Arezoo Taebi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of MedicineRWTH AachenAachenGermany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of MedicineRWTH AachenAachenGermany
- Jara‐BrainAachenGermany
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive SciencesUniversity of Hong KongHong KongChina
- Department of PsychologyUniversity of Hong KongHong KongChina
| | - Greta Kristin Klug
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of MedicineRWTH AachenAachenGermany
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of MedicineRWTH AachenAachenGermany
| |
Collapse
|
9
|
Kayış H, Göven BA, Yüncü Z, Bora E, Zorlu N. Resting state functional connectivity in adolescents with substance use disorder and their unaffected siblings. Psychiatry Res Neuroimaging 2024; 345:111916. [PMID: 39579625 DOI: 10.1016/j.pscychresns.2024.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
We aimed to examine resting-state functional connectivity (rsFC) in adolescents with substance use disorder (SUD) and their unaffected biological siblings (SIB), relative to typically-developing controls (TDC) in order to identify alterations in functional network organization that may be associated with the familial risk for SUD. Resting-state functional magnetic resonance imaging analysis included 20 adolescents with SUD, 20 SIB, and 18 TDC. Network-based analysis revealed that adolescents with SUD had significantly both weaker and higher rsFC compared to TDC mainly within the default-mode network (DMN) and between the DMN, fronto-parietal (FPN) and salience networks. In addition, adolescents with SUD showed lower rsFC between the visual network and other functional networks. Although the SIB group did not differ from TDC in the whole brain analysis, they showed lower rsFC within DMN and also between the visual network and other large-scale networks as well as higher rsFC between DMN and FPN compared to TDC in connections found to be abnormal in SUD group. Our results suggest that lower rsFC within DMN and higher rsFC between the DMN with FPN which were evident both in SUD and in SIB groups, and might be related to the familial predisposition for SUD.
Collapse
Affiliation(s)
- Hakan Kayış
- Department of Child Psychiatry, Ege University School of Medicine, Izmir, Turkey
| | - Betül Akyel Göven
- Ege University Research And Application Center Of Child And Adolescent Alcohol Drug Addiction, Izmir, Turkey
| | - Zeki Yüncü
- Department of Child Psychiatry, Ege University School of Medicine, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Faculty of Medicine, Department of Psychiatry, Dokuz Eylul University, Izmir, Turkey; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Nabi Zorlu
- Department of Psychiatry, Ataturk Education and Research Hospital, Katip Celebi University, Izmir, Turkey.
| |
Collapse
|
10
|
Li Y, Yang B, Ma J, Li Y, Zeng H, Zhang J. Assessment of rTMS treatment effects for methamphetamine addiction based on EEG functional connectivity. Cogn Neurodyn 2024; 18:2373-2386. [PMID: 39555303 PMCID: PMC11564447 DOI: 10.1007/s11571-024-10097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 11/19/2024] Open
Abstract
Methamphetamine (MA) addiction leads to impairment of neural communication functions in the brain, and functional connectivity (FC) may be a valid indicator. However, it is unclear how FC in the brain changes in methamphetamine use disorder (MUD) after treatment with repetitive transcranial magnetic stimulation (rTMS). Thirty-four patients with MUD participated in this study. The subjects were randomized to receive the active or sham rTMS for four weeks. Subjects performed electroencephalography (EEG) examinations and visual analogue scale (VAS) assessments before and after the treatment. The FC networks were constructed and visualized, and then the graph theory analysis was carried out. Finally, machine learning was used to classify FC networks before and after rTMS. The results showed that (1) the active group showed a significant enhancement in connectivity in the beta band; (2) the global efficiency, local efficiency, and aggregation coefficient of the active group in the beta band decreased significantly; (3) the LDA algorithm combined with the beta band FC matrix achieved an average accuracy of 82.5% in distinguishing before and after treatment. This study demonstrated that brain FC could effectively assess the therapeutic effect of rTMS, among which the beta band was the most sensitive and effective frequency band. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10097-x.
Collapse
Affiliation(s)
- Yongcong Li
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Banghua Yang
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Jun Ma
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Yunzhe Li
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Hui Zeng
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Jie Zhang
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China
| |
Collapse
|
11
|
Schwarze Y, Voges J, Schröder A, Dreeßen S, Voß O, Krach S, Paulus FM, Junghanns K, Rademacher L. Altered Physiological, Affective, and Functional Connectivity Responses to Acute Stress in Patients With Alcohol Use Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100358. [PMID: 39188288 PMCID: PMC11345646 DOI: 10.1016/j.bpsgos.2024.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 08/28/2024] Open
Abstract
Background There is evidence that the processing of acute stress is altered in alcohol use disorder (AUD), but little is known about how this is manifested simultaneously across different stress parameters and which neural processes are involved. The current study examined physiological and affective responses to stress and functional connectivity in AUD. Methods Salivary cortisol samples, pulse rate, and affect ratings were collected on 2 days from 34 individuals with moderate or severe AUD during early abstinence and 34 control participants. On one of the days, stress was induced, and on the other day, a nonstressful control task was performed. Following the intervention, participants underwent functional magnetic resonance imaging to assess functional connectivity, with a focus on cortical and subcortical seed regions previously reported to be involved in AUD and/or stress. Results For pulse rate and cortisol, stress responses were blunted in AUD, whereas the affective response was stronger. Neuroimaging analyses revealed stress-related group differences in functional connectivity, involving the connectivity of striatal seeds with the posterior default mode network, cerebellum, and midcingulate cortex and of the posterior default mode network seed with the striatum and thalamus. Conclusions The results suggest a dissociation between subjectively experienced distress and the physiological stress response in AUD as well as stress-related alterations in functional connectivity. These findings highlight the complex interplay between chronic alcohol use and acute stress regulation, offering valuable considerations for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yana Schwarze
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Johanna Voges
- Department of Psychosomatic Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Schröder
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Sven Dreeßen
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
| | - Oliver Voß
- AMEOS Clinic Lübeck, Department of Substance Use Disorders, Lübeck, Germany
| | - Sören Krach
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Frieder Michel Paulus
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Klaus Junghanns
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
| | - Lena Rademacher
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Li X, Kass G, Wiers CE, Shi Z. The Brain Salience Network at the Intersection of Pain and Substance use Disorders: Insights from Functional Neuroimaging Research. CURRENT ADDICTION REPORTS 2024; 11:797-808. [PMID: 39156196 PMCID: PMC11329602 DOI: 10.1007/s40429-024-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Purpose of Review The brain's salience network (SN), primarily comprising the anterior insula and anterior cingulate cortex, plays a key role in detecting salient stimuli and processing physical and socioemotional pain (e.g., social rejection). Mounting evidence underscores an altered SN in the etiology and maintenance of substance use disorders (SUDs). This paper aims to synthesize recent functional neuroimaging research emphasizing the SN's involvement in SUDs and physical/socioemotional pain and explore the therapeutic prospects of targeting the SN for SUD treatment. Recent Findings The SN is repeatedly activated during the experience of both physical and socioemotional pain. Altered activation within the SN is associated with both SUDs and chronic pain conditions, characterized by aberrant activity and connectivity patterns as well as structural changes. Among individuals with SUDs, functional and structural alterations in the SN have been linked to abnormal salience attribution (e.g., heightened responsiveness to drug-related cues), impaired cognitive control (e.g., impulsivity), and compromised decision-making processes. The high prevalence of physical and socioemotional pain in the SUD population may further exacerbate SN alterations, thus contributing to hindered recovery progress and treatment failure. Interventions targeting the restoration of SN functioning, such as real-time functional MRI feedback, neuromodulation, and psychotherapeutic approaches, hold promise as innovative SUD treatments. Summary The review highlights the significance of alterations in the structure and function of the SN as potential mechanisms underlying the co-occurrence of SUDs and physical/socioemotional pain. Future work that integrates neuroimaging with other research methodologies will provide novel insights into the mechanistic role of the SN in SUDs and inform the development of next-generation treatment modalities.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Gabriel Kass
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Corinde E. Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
13
|
Fascher M, Nowaczynski S, Muehlhan M. Substance use disorders are characterised by increased voxel-wise intrinsic measures in sensorimotor cortices: An ALE meta-analysis. Neurosci Biobehav Rev 2024; 162:105712. [PMID: 38733896 DOI: 10.1016/j.neubiorev.2024.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Substance use disorders (SUDs) are severe psychiatric illnesses. Seed region and independent component analyses are currently the dominant connectivity measures but carry the risk of false negatives due to selection. They can be complemented by a data-driven and whole-brain usage of voxel-wise intrinsic measures (VIMs). We meta-analytically integrated VIMs, namely regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), voxel-mirrored homotopy connectivity (VMHC) and degree centrality (DC) across different SUDs using the Activation Likelihood Estimation (ALE) algorithm, functionally decoded emerging clusters, and analysed their connectivity profiles. Our systematic search identified 51 studies including 1439 SUD participants. Although no overall convergent pattern of alterations across VIMs in SUDs was found, sensitivity analyses demonstrated two ALE-derived clusters of increased ReHo and ALFF in SUDs, which peaked in the left pre- and postcentral cortices. Subsequent analyses showed their involvement in action execution, somesthesis, finger tapping and vibrotactile monitoring/discrimination. Their numerous clinical correlates across included studies highlight the under-discussed role of sensorimotor cortices in SUD, urging a more attentive exploration of their clinical significance.
Collapse
Affiliation(s)
- Maximilian Fascher
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany.
| | - Sandra Nowaczynski
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; Department of Addiction Medicine, Carl-Friedrich-Flemming-Clinic, Helios Medical Center Schwerin, Wismarsche Str. 393, Schwerin 19055, Germany
| | - Markus Muehlhan
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany
| |
Collapse
|
14
|
Kardan O, Weigard A, Cope L, Martz M, Angstadt M, McCurry KL, Michael C, Hardee J, Hyde LW, Sripada C, Heitzeg MM. Functional brain connectivity predictors of prospective substance use initiation and their environmental correlates. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308134. [PMID: 38853927 PMCID: PMC11160855 DOI: 10.1101/2024.05.29.24308134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Early substance use initiation (SUI) places youth at substantially higher risk for later substance use disorders. Furthermore, adolescence is a critical period for the maturation of brain networks, the pace and magnitude of which are susceptible to environmental influences and may shape risk for SUI. Methods We examined whether patterns of functional brain connectivity during rest (rsFC), measured longitudinally in pre-and-early adolescence, can predict future SUI. In an independent sub-sample, we also tested whether these patterns are associated with key environmental factors, specifically neighborhood pollution and socioeconomic dimensions. We utilized data from the Adolescent Brain Cognitive Development (ABCD) Study®. SUI was defined as first-time use of at least one full dose of alcohol, nicotine, cannabis, or other drugs. We created a control group (N = 228) of participants without SUI who were matched with the SUI group (N = 233) on age, sex, race/ethnicity, and parental income and education. Results Multivariate analysis showed that whole-brain rsFC prior to SUI during 9-10 and 11-12 years of age successfully differentiated the prospective SUI and control groups. This rsFC signature was expressed more at older ages in both groups, suggesting a pattern of accelerated maturation in the SUI group in the years prior to SUI. In an independent sub-sample (N = 2,854) and adjusted for family socioeconomic factors, expression of this rsFC pattern was associated with higher pollution, but not neighborhood disadvantage. Conclusion Brain functional connectivity patterns in early adolescence that are linked to accelerated maturation and environmental exposures can predict future SUI in youth.
Collapse
Affiliation(s)
- Omid Kardan
- University of Michigan, Department of Psychiatry
- University of Michigan, Department of Psychology
| | | | - Lora Cope
- University of Michigan, Department of Psychiatry
| | - Meghan Martz
- University of Michigan, Department of Psychiatry
| | | | | | | | | | - Luke W. Hyde
- University of Michigan, Department of Psychology
- University of Michigan, Survey Research Center at the Institute for Social Research
| | | | | |
Collapse
|
15
|
León JJ, Fernández-Martin P, González-Rodríguez A, Rodríguez-Herrera R, García-Pinteño J, Pérez-Fernández C, Sánchez-Kuhn A, Amaya-Pascasio L, Soto-Ontoso M, Martínez-Sánchez P, Sánchez-Santed F, Flores P. Decision-making and frontoparietal resting-state functional connectivity among impulsive-compulsive diagnoses. Insights from a Bayesian approach. Addict Behav 2023; 143:107683. [PMID: 36963236 DOI: 10.1016/j.addbeh.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
The Iowa Gambling Task (IGT) is one of the most widely used paradigms for assessing decision-making. An impairment in this process may be linked to several psychopathological disorders, such as obsessive-compulsive disorder (OCD), substance abuse disorder (SUD) or attention-deficit/hyperactivity disorder (ADHD), which could make it a good candidate for being consider a transdiagnostic domain. Resting-state functional connectivity (rsFC) has been proposed as a promising biomarker of decision-making. In this study, we aimed to identify idiosyncratic decision-making profiles among healthy people and impulsive-compulsive spectrum patients during the IGT, and to investigate the role of frontoparietal network (FPN) rsFC as a possible biomarker of different decision-making patterns. Using functional near-infrared spectroscopy (fNIRS), rsFC of 114 adults (34 controls; 25 OCD; 41 SUD; 14 ADHD) was obtained. Then, they completed the IGT. Hybrid clustering methods based on individual deck choices yielded three decision-makers subgroups. Cluster 1 (n = 27) showed a long-term advantageous strategy. Cluster 2 (n = 25) presented a maladaptive decision-making strategy. Cluster 3 (n = 62) did not develop a preference for any deck during the task. Interestingly, the proportion of participants in each cluster was not different between diagnostic groups. A Bayesian general linear model showed no credible differences in the IGT performance between diagnostic groups nor credible evidence to support the role of FPN rsFC as a biomarker of decision-making under the IGT context. This study highlights the importance of exploring in depth the behavioral and neurophysiological variables that may drive decision-making in clinical and healthy populations.
Collapse
Affiliation(s)
- J J León
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - P Fernández-Martin
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - A González-Rodríguez
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - R Rodríguez-Herrera
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - J García-Pinteño
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - C Pérez-Fernández
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - A Sánchez-Kuhn
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - L Amaya-Pascasio
- Department of Neurology and Stroke Centre. Torrecárdenas University Hospital, Spain.
| | - M Soto-Ontoso
- Mental Health Departament. Torrecárdenas University Hospital, Spain.
| | - P Martínez-Sánchez
- Department of Neurology and Stroke Centre. Torrecárdenas University Hospital, Spain.
| | - F Sánchez-Santed
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| | - P Flores
- Department of Psychology, Faculty of Psychology, University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain; Health Research Centre (CEINSA), University of Almeria, Carretera de Sacramento S/N, 04120, La Cañada de San Urbano, Almeria, Spain.
| |
Collapse
|
16
|
Bouchard AE, Renauld E, Fecteau S. Changes in resting-state functional MRI connectivity during and after transcranial direct current stimulation in healthy adults. Front Hum Neurosci 2023; 17:1229618. [PMID: 37545594 PMCID: PMC10398567 DOI: 10.3389/fnhum.2023.1229618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) applied over the dorsolateral prefrontal cortex (DLPFC) at rest can influence behaviors. However, its mechanisms remain poorly understood. This study examined the effect of a single session of tDCS over the bilateral DLPFC on resting-state functional connectivity using fMRI (rs-fcMRI) during and after stimulation in healthy adults. We also investigated whether baseline rs-fcMRI predicted tDCS-induced changes in rs-fcMRI. Methods This was a randomized, sham-controlled, double-blind, crossover study. We delivered tDCS for 30 min at 1 mA with the anode and cathode over the left and right DLPFC, respectively. We used seed-based analyses to measure tDCS-induced effects on whole-brain rs-fcMRI using a 3 (before, during, after stimulation) × 2 (active, sham stimulation) ANOVA. Results There were four significant Time × Stimulation interactions on the connectivity scores with the left DLPFC seed (under the anode electrode) and no interactions for the right DLPFC seed (under the cathode electrode). tDCS changed rs-fcMRI between the left DLPFC seed and parieto-occipital, parietal, parieto-occipitotemporal, and frontal clusters during and after stimulation, as compared to sham. Furthermore, rs-fcMRI prior to stimulation predicted some of these tDCS-induced changes in rs-fcMRI during and after stimulation. For instance, rs-fcMRI of the fronto-parietooccipital network predicted changes observed after active stimulation, rs-fcMRI of the fronto-parietal network predicted changes during active stimulation, whereas rs-fcMRI of the fronto-parieto-occipitotemporal and the frontal networks predicted changes both during and after active stimulation. Discussion Our findings reveal that tDCS modulated rs-fcMRI both during and after stimulation mainly in regions distal, but also in those proximal to the area under the anode electrode, which were predicted by rs-fcMRI prior to tDCS. It might be worth considering rs-fcMRI to optimize response to tDCS.
Collapse
|
17
|
Wang L, Zhou X, Song X, Gan X, Zhang R, Liu X, Xu T, Jiao G, Ferraro S, Bore MC, Yu F, Zhao W, Montag C, Becker B. Fear of missing out (FOMO) associates with reduced cortical thickness in core regions of the posterior default mode network and higher levels of problematic smartphone and social media use. Addict Behav 2023; 143:107709. [PMID: 37004381 DOI: 10.1016/j.addbeh.2023.107709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND AIMS Fear of missing out (FOMO) promotes the desire or urge to stay continuously connected with a social reference group and updated on their activities, which may result in escalating and potentially addictive smartphone and social media use. The present study aimed to determine whether the neurobiological basis of FOMO encompasses core regions of the reward circuitry or social brain, and associations with levels of problematic smartphone or social media use. METHODS We capitalized on a dimensional neuroimaging approach to examine cortical thickness and subcortical volume associations in a sample of healthy young individuals (n = 167). Meta-analytic network and behavioral decoding analyses were employed to further characterize the identified regions. RESULTS Higher levels of FOMO associated with lower cortical thickness in the right precuneus. In contrast, no associations between FOMO and variations in striatal morphology were observed. Meta-analytic decoding revealed that the identified precuneus region exhibited a strong functional interaction with the default mode network (DMN) engaged in social cognitive and self-referential domains. DISCUSSION AND CONCLUSIONS Together the present findings suggest that individual variations in FOMO are associated with the brain structural architecture of the right precuneus, a core hub within a large-scale functional network resembling the DMN and involved in social and self-referential processes. FOMO may promote escalating social media and smartphone use via social and self-referential processes rather than reward-related processes per se.
Collapse
Affiliation(s)
- Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
18
|
Montag C, Becker B. Neuroimaging the effects of smartphone (over-)use on brain function and structure-a review on the current state of MRI-based findings and a roadmap for future research. PSYCHORADIOLOGY 2023; 3:kkad001. [PMID: 38666109 PMCID: PMC10917376 DOI: 10.1093/psyrad/kkad001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/28/2024]
Abstract
The smartphone represents a transformative device that dramatically changed our daily lives, including how we communicate, work, entertain ourselves, and navigate through unknown territory. Given its ubiquitous availability and impact on nearly every aspect of our lives, debates on the potential impact of smartphone (over-)use on the brain and whether smartphone use can be "addictive" have increased over the last years. Several studies have used magnetic resonance imaging to characterize associations between individual differences in excessive smartphone use and variations in brain structure or function. Therefore, it is an opportune time to summarize and critically reflect on the available studies. Following this overview, we present a roadmap for future research to improve our understanding of how excessive smartphone use can affect the brain, mental health, and cognitive and affective functions.
Collapse
Affiliation(s)
- Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm 89081, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 611731, China
| |
Collapse
|
19
|
Klugah-Brown B, Zhou X, Wang L, Gan X, Zhang R, Liu X, Song X, Zhao W, Biswal BB, Yu F, Montag C, Becker B. Associations between levels of Internet Gaming Disorder symptoms and striatal morphology-replication and associations with social anxiety. PSYCHORADIOLOGY 2022; 2:207-215. [PMID: 38665272 PMCID: PMC10917202 DOI: 10.1093/psyrad/kkac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 04/28/2024]
Abstract
Background Brain structural alterations of the striatum have been frequently observed in internet gaming disorder (IGD); however, the replicability of the results and the associations with social-affective dysregulations such as social anxiety remain to be determined. Methods The present study combined a dimensional neuroimaging approach with both voxel-wise and data-driven multivariate approaches to (i) replicate our previous results on a negative association between IGD symptom load (assessed by the Internet Gaming Disorder Scale-Short Form) and striatal volume, (ii) extend these findings to female individuals, and (iii) employ multivariate and mediation models to determine common brain structural representations of IGD and social anxiety (assessed by the Liebowitz Social Anxiety Scale). Results In line with the original study, the voxel-wise analyses revealed a negative association between IGD and volumes of the bilateral caudate. Going beyond the earlier study investigating only male participants, the present study demonstrates that the association in the right caudate was comparable in both the male and the female subsamples. Further examination using the multivariate approach revealed regionally different associations between IGD and social anxiety with striatal density representations in the dorsal striatum (caudate) and ventral striatum (nucleus accumbens). Higher levels of IGD were associated with higher social anxiety and the association was critically mediated by the multivariate neurostructural density variations of the striatum. Conclusions Altered striatal volumes may represent a replicable and generalizable marker of IGD symptoms. However, exploratory multivariate analyses revealed more complex and regional specific associations between striatal density and IGD as well as social anxiety symptoms. Variations in both tendencies may share common structural brain representations, which mediate the association between increased IGD and social anxiety.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89069 Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| |
Collapse
|
20
|
Yu F, Li J, Xu L, Zheng X, Fu M, Li K, Yao S, Kendrick KM, Montag C, Becker B. Opposing associations of Internet Use Disorder symptom domains with structural and functional organization of the striatum: A dimensional neuroimaging approach. J Behav Addict 2022; 11:1068-1079. [PMID: 36422683 PMCID: PMC9881660 DOI: 10.1556/2006.2022.00078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests brain structural and functional alterations in Internet Use Disorder (IUD). However, conclusions are strongly limited due to the retrospective case-control design of the studies, small samples, and the focus on general rather than symptom-specific approaches. METHODS We here employed a dimensional multi-methodical MRI-neuroimaging design in a final sample of n = 203 subjects to examine associations between levels of IUD and its symptom-dimensions (loss of control/time management, craving/social problems) with brain structure, resting state and task-based (pain empathy, affective go/no-go) brain function. RESULTS Although the present sample covered the entire range of IUD, including normal, problematic as well as pathological levels, general IUD symptom load was not associated with brain structural or functional alterations. However, the symptom-dimensions exhibited opposing associations with the intrinsic and structural organization of the brain, such that loss of control/time management exhibited negative associations with intrinsic striatal networks and hippocampal volume, while craving/social problems exhibited a positive association with intrinsic striatal networks and caudate volume. CONCLUSIONS Our findings provided the first evidence for IUD symptom-domain specific associations with progressive alterations in the intrinsic structural and functional organization of the brain, particularly of striatal systems involved in reward, habitual and cognitive control processes.
Collapse
Affiliation(s)
- Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Corresponding author. E-mail:
| |
Collapse
|