1
|
Liss A, Siddiqi MT, Marsland P, Varodayan FP. Neuroimmune regulation of the prefrontal cortex tetrapartite synapse. Neuropharmacology 2025; 269:110335. [PMID: 39904409 DOI: 10.1016/j.neuropharm.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The prefrontal cortex (PFC) is an essential driver of cognitive, affective, and motivational behavior. There is clear evidence that the neuroimmune system directly influences PFC synapses, in addition to its role as the first line of defense against toxins and pathogens. In this review, we first describe the core structures that form the tetrapartite PFC synapse, focusing on the signaling microdomain created by astrocytic cradling of the synapse as well as the emerging role of the extracellular matrix in synaptic organization and plasticity. Neuroimmune signals (e.g. pro-inflammatory interleukin 1β) can impact the function of each core structure within the tetrapartite synapse, as well as promote intra-synaptic crosstalk, and we will provide an overview of recent advances in this field. Finally, evidence from post mortem human brain tissue and preclinical studies indicate that inflammation may be a key contributor to PFC dysfunction. Therefore, we conclude with a mechanistic discussion of neuroimmune-mediated maladaptive plasticity in neuropsychiatric disorders, with a focus on alcohol use disorder (AUD). Growing recognition of the neuroimmune system's role as a critical regulator of the PFC tetrapartite synapse provides strong support for targeting the neuroimmune system to develop new pharmacotherapeutics.
Collapse
Affiliation(s)
- Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Mahum T Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA.
| |
Collapse
|
2
|
Brigagão Pacheco da Silva C, Nascimento-Silva EA, Zaramela LS, da Costa BRB, Rodrigues VF, De Martinis BS, Carlos D, Tostes RC. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Physiol Genomics 2025; 57:179-194. [PMID: 39918827 DOI: 10.1152/physiolgenomics.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Gut microbiota impacts host homeostasis and diseases. Chronic plus binge ethanol consumption has been linked to increased injuries than chronic or binge ethanol intake alone. We hypothesized that distinct shapes in gut microbiota composition are induced by chronic, binge, and the association of these treatments, thereby affecting host functions and contributing to sex-based differences in alcohol use disorders. Male and female C57BL/6J mice were submitted to chronic, binge, or chronic plus binge ethanol feeding. DNA was extracted from fecal microbiota, followed by analysis of the V3-V4 region of the 16S rRNA gene and sequencing on an Illumina platform. Gut microbiome analysis was performed using QIIME v2022.2.0. Functional profiling of the gut microbiome was performed using PICRUSt2. Ethanol differentially affected the gut microbiota of female and male mice. Decreased α diversity was observed in male and female mice from the chronic plus binge and chronic groups, respectively. The genera Faecalibaculum, Lachnospiraceae, and Alistipes were identified as major potential biomarkers for gut dysbiosis induced by ethanol consumption. In addition, ethanol-induced gut dysbiosis altered several metabolic pathways. Ethanol consumption modifies the mouse gut microbiome in a drinking pattern- and sex-dependent manner, potentially leading to different susceptibility to ethanol-related diseases. Chronic plus binge ethanol intake induces a more pronounced gut dysbiosis in male mice. Conversely, chronic ethanol is linked to a greater degree of gut dysbiosis in female mice. The changed gut microbiome may be potentially targeted to prevent, mitigate, or treat alcohol use disorders.NEW & NOTEWORTHY Ethanol alters the mouse gut microbiome in a drinking pattern- and sex-dependent manner. Chronic plus binge ethanol intake induces a more severe gut dysbiosis in male mice, whereas chronic ethanol consumption appears to be a more potent inductor of gut dysbiosis in female mice. Ethanol-induced gut dysbiosis alters several pathways linked to metabolism, genetic and environmental information processing, cellular processes, organism systems, and neurological human diseases.
Collapse
Affiliation(s)
| | | | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Mayberry HK, Rinker JA, Chandler LJ. Effect of chronic alcohol exposure and single-prolonged stress on conditioned fear behavior. Behav Brain Res 2025; 477:115294. [PMID: 39419182 DOI: 10.1016/j.bbr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The present study investigated the impact of chronic intermittent ethanol (CIE) exposure and single-prolonged stress (SPS) on the acquisition of fear memories in both male and female Wistar rats. Adult rats were first subjected to CIE by vapor inhalation followed by SPS. Following a subsequent 8-day incubation period, the rats underwent a Pavlovian fear conditioning procedure (tone-shock pairings) followed by cued-tone extinction training, and then testing of extinction recall memory and fear renewal memory. In control animals that had not been exposed to either CIE or SPS, female rats exhibited significantly lower levels of freezing compared to male rats during tone-shock pairings. This lower level of freezing in female rats during conditioning was associated with an increased speed of movement compared to males. Also compared to males, female rats exhibited lower levels of fear extinction, recall, and renewal. Exposure to CIE, SPS, or CIE+SPS had no effect on freezing during the cued-conditioning, extinction, or extinction recall phases of the testing procedure in either sex. In fear renewal, CIE exposure decreased freezing in male but not female rats, while SPS increased freezing in female but not male rats. CIE exposure significantly reduced freezing during the fear renewal phase. Taken together, these results provide further evidence that male and female rats adopt different avoidance strategies for threat responding. These results also revealed that prior exposure to CIE, SPS, or CIE+SPS had minimal effects on threat responding using conditioned freezing as an indicator of fear responsivity.
Collapse
Affiliation(s)
- Heyam K Mayberry
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
4
|
Pei J, Zhang C, Zhang Q, Yu H, Yuan H, Guo Y, Shen H, Liu H, Wang C, Meng F, Yu C, Tie J, Chen X, Wu X, Zhang G, Wang X. Probiotics alleviate chronic ethanol exposure-induced anxiety-like behavior and hippocampal neuroinflammation in male mice through gut microbiota-derived extracellular vesicles. J Nanobiotechnology 2024; 22:730. [PMID: 39578835 PMCID: PMC11585232 DOI: 10.1186/s12951-024-03017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Probiotics can colonize both the human and animal bodies and consist of active microorganisms that are beneficial to health. The use of probiotics has been shown to alleviate certain neurological diseases and disturbances in gut microbiota resulting from chronic ethanol exposure. Research indicates that probiotics can influence the nervous system via the microbial-gut-brain axis, wherein extracellular vesicles secreted by the gut microbiota play a significant role in this process. RESULTS In this study, we first established a 30-day ethanol exposure and probiotic gavage mouse model, both of which influenced behavior and the composition of gut microbiota. We then extracted gut microbiota-derived extracellular vesicles from the feces of these model mice and injected them into new mice via the tail vein to assess the role of each set of extracellular vesicles. The results indicated that the extracellular vesicles derived from the intestinal microbiota in the ethanol group induced anxiety-like behavior and hippocampal neuroinflammation in the recipient mice. In contrast, the extracellular vesicles secreted by the gut microbiota from the probiotic group mitigated the anxiety-like behavior and neuroinflammation induced by ethanol-influenced extracellular vesicles. CONCLUSIONS Our study demonstrates that extracellular vesicles secreted by the gut microbiota can influence the nervous system via the microbial-gut-brain axis. Furthermore, we found that the extracellular vesicles secreted by the gut microbiota from the probiotic group exert a beneficial therapeutic effect on anxiety and hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, People's Republic of China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, People's Republic of China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, People's Republic of China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
- Department of Morphology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Shen H, Zhang C, Zhang Q, Lv Q, Liu H, Yuan H, Wang C, Meng F, Guo Y, Pei J, Yu C, Tie J, Chen X, Yu H, Zhang G, Wang X. Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids. J Neuroinflammation 2024; 21:290. [PMID: 39508236 PMCID: PMC11539449 DOI: 10.1186/s12974-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear. METHODS Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining. RESULTS Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs. CONCLUSION SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.
Collapse
Affiliation(s)
- Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, 110001, P. R. China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, P. R. China
| | - Qing Lv
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, P. R. China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110122, P. R. China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
6
|
Pan X, Guo A, Guan K, Chen C, Xu S, Tang Y, Li X, Huang Z. Lactobacillus rhamnosus GG attenuates depression-like behaviour and cognitive deficits in chronic ethanol exposure mice by down-regulating systemic inflammatory factors. Addict Biol 2024; 29:e13445. [PMID: 39585236 PMCID: PMC11587820 DOI: 10.1111/adb.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024]
Abstract
Ethanol can directly or indirectly lead to cognitive and mental disorders. The long-term intake of alcohol can directly affect the distribution of gut microbiota. Lactobacillus rhamnosus GG (LGG) is a natural bacterium isolated from healthy human intestines that has the function of preventing cytokine-induced cell apoptosis and protecting cell barriers. However, the regulatory effect of LGG on cognitive and mental disorders caused by chronic ethanol exposure (CEE) is still unclear. In this study, we established a CEE mouse model through free alcohol consumption and added LGG or antibiotics in the later stages of the model. Sequencing analysis of the 16S rRNA gene showed that CEE resulted in a decrease in the abundance and diversity of mouse gut microbial communities accompanied by alterations in the relative abundance of multiple enterobacterial genera. The use of LGG and antibiotics alleviated the depression-like behaviour and cognitive impairment of CEE-induced mice, reduced expression of inflammatory factors such as interleukin (IL)-6, IL-1β and tumour necrosis factor (TNF)-α in the ileum, serum and brain and increased the expression of synaptophysin (SYN), postsynaptic density protein-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Together, LGG can alleviate depression-like behaviour caused by CEE in mice while also improving cognitive and memory functions through reducing peripheral and nervous system inflammation factors and balancing gut microbiota.
Collapse
Affiliation(s)
- Xiaoyu Pan
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Anqi Guo
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Kaiyu Guan
- Peking University Sixth Hospital, Peking University Institute of Mental HealthBeijingChina
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Shengnan Xu
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yali Tang
- Institute of Brain ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Zhengwei Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| |
Collapse
|
7
|
Šardzíková S, Gajewska M, Gałka N, Štefánek M, Baláž A, Garaiová M, Holič R, Świderek W, Šoltys K. Can longer lifespan be associated with gut microbiota involvement in lipid metabolism? FEMS Microbiol Ecol 2024; 100:fiae135. [PMID: 39354675 PMCID: PMC11503954 DOI: 10.1093/femsec/fiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Biological aging is linked to altered body composition and reduced neuroactive steroid hormones like dehydroepiandrosterone sulfate (DHEAS), which can stimulate the GABA signaling pathway via gut microbiota. Our study examined the association of gut microbiota with lifespan in mice through comprehensive analysis of its composition and functional involvement in cholesterol sulfate, a precursor of DHEAS, metabolism. We used 16S rRNA and metagenomic sequencing, followed by metabolic pathway prediction and thin layer chromatography and MALDI-TOF cholesterol sulfate identification. Significant increases in bacteria such as Bacteroides, typical for long-lived and Odoribacter and Colidextribacter, specific for short-lived mice were detected. Furthermore, for males (Rikenella and Alloprevotella) and females (Lactobacillus and Bacteroides), specific bacterial groups emerged as predictors (AUC = 1), highlighting sex-specific patterns. Long-lived mice showed a strong correlation of Bacteroides (0.918) with lipid and steroid hormone metabolism, while a negative correlation of GABAergic synapse with body weight (-0.589). We found that several Bacteroides species harboring the sulfotransferase gene and gene cluster for sulfonate donor synthesis are involved in converting cholesterol to cholesterol sulfate, significantly higher in the feces of long-lived individuals. Overall, we suggest that increased involvement of gut bacteria, mainly Bacteroides spp., in cholesterol sulfate synthesis could ameliorate aging through lipid metabolism.
Collapse
Affiliation(s)
- Sára Šardzíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Marta Gajewska
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Norbert Gałka
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Matúš Štefánek
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia
| | - Martina Garaiová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Wiesław Świderek
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
8
|
Li C, Zhu C, Tu G, Chen Z, Mo Z, Luo C. Impact of Altered Gut Microbiota on Ketamine-Induced Conditioned Place Preference in Mice. Neuropsychiatr Dis Treat 2024; 20:1725-1740. [PMID: 39318552 PMCID: PMC11421448 DOI: 10.2147/ndt.s476420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Objects Ketamine is a drug of abuse worldwide and current treatments for ketamine abuse are inadequate. It is an urgent need to develop novel anti-addictive strategy. Since gut microbiota plays a crucial role in drug abuse, the present study investigates the impact and mechanisms of the gut microbiota in addictive behaviors induced by ketamine addiction. Methods Conditioned place preference (CPP) was employed to assess addiction, followed by 16S rRNA gene sequencing to elucidate alterations in the gut microbiota. Furthermore, qRT-PCR, ELISA, and immunohistochemistry were conducted to evaluate the expression levels of crucial genes and proteins associated with the gut-brain axis. Additionally, we investigated whether ketamine addiction is regulated through the gut microbiota by orally administering antibiotics to establish pseudo-germ-free mice. Results We found that repeated ketamine administration (20 mg/kg) induced CPP and significantly altered gut microbiota diversity and composition, as revealed by 16S rRNA gene sequencing. Compared to the control group, ketamine exposure exhibited differences in the relative abundance of 5 microbial families, with 4 (Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae and Family-XIII) showing increases, while one (Prevotellaceae) displayed a decrease. At the genus level, five genera were upregulated, while one was downregulated. Furthermore, COG analysis revealed significant differences in protein functionality between the two groups. Additionally, axis series studies showed that ketamine dependence reduced levels of tight junction proteins, GABA and GABRA1, while increasing BDNF and 5-HT. Moreover, an oral antibiotic cocktail simulating pseudo germ-free conditions in mice did not enhance the addictive behavior induced by ketamine. Conclusion Our study supports the hypothesis that ketamine-induced CPP is mediated through the gut microbiota. The present study provides new insights into improvement of efficient strategy for addiction treatment.
Collapse
Affiliation(s)
- Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- School of Life Sciences, Guangzhou University, Guangzhou, People's Republic of China
| | - Chen Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, People's Republic of China
| | - Zhijie Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, People's Republic of China
| | - Chaohua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Wang D, Sun Y, Liu J, Sun J, Fan B, Lu C, Wang F. Research on the Anti-Fatigue Effects and Mechanisms of Arecoline in Sleep-Deprived Mice. Nutrients 2024; 16:2783. [PMID: 39203919 PMCID: PMC11357251 DOI: 10.3390/nu16162783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The betel nut is one of the most widely consumed addictive substances in the world after nicotine, ethanol, and caffeine. Arecoline is an active ingredient from the areca nut. It has many pharmacological effects and can affect the central nervous system. In this study, we found that arecoline can relieve fatigue behavior. OBJECTIVE This research aims to estimate the anti-fatigue effects of arecoline and explore its underlying mechanisms using a murine model of central fatigue precipitated by sleep deprivation (SD). METHODS Seventy-two male C57BL/6 mice were randomly assigned to six groups: a control group, an SD-induced fatigue model group, a group that received Rhodiola Rosea capsules (2.5 mg/kg), and three arecoline groups, which were administered at low, medium, and high doses (10, 20, and 40 mg/kg, respectively). Following 28 days of continuous administrations, the effects of arecoline on mouse fatigue-related behaviors were assessed by behavioral tests, including grip strength, rotarod performance, and weight-bearing swimming endurance. The release levels of the related biochemical markers were measured by enzyme-linked immunosorbent assays (ELISAs). Western blotting was employed to quantify the expression levels of nuclear factor erythroid 2-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase 1 (HO-1), sequestosome-1 (p62), and NADPH quinone oxidoreductase 1 (NQO1) in the gastrocnemius muscle. RESULTS Arecoline administration notably enhanced grip strength, delayed the onset of fatigue as evidenced by extended latencies in rotarod tests, and increased the duration of weight-bearing swimming in mice. In the elevated plus maze, arecoline obviously decreased both the number of entries and the total distance traveled in the open arms. Arecoline markedly decreased the contents of creatine kinase, blood urea nitrogen, lactate dehydrogenase, triglycerides, and cholesterol in the serum, while it elevated the levels of total testosterone, lactate dehydrogenase, and immunoglobulin G. Furthermore, it significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in the gastrocnemius muscle, reduced malondialdehyde levels, augmented hippocampal SOD and CAT activity, and elevated glycogen stores in both liver and muscle tissues. Neurotransmitter levels showed significant increases, cytokine levels were markedly reduced, and the expressions of Nrf2, Keap1, NQO1, p62, and HO-1 in brain tissues were significantly upregulated. CONCLUSIONS This study demonstrates that arecoline has anti-fatigue activity, and the specific mechanisms are associated with elevating glucose and lipid metabolism levels, relieving oxidative stress damage, inhibiting neuroinflammatory response, and regulating neurotransmitter levels and the Keap1/Nrf2/HO-1 signaling pathway. The research provides a new direction for arecoline's potential in preventing and improving fatigue.
Collapse
Affiliation(s)
- Danyang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (D.W.); (Y.S.); (J.L.); (J.S.); (B.F.)
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yuan Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (D.W.); (Y.S.); (J.L.); (J.S.); (B.F.)
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (D.W.); (Y.S.); (J.L.); (J.S.); (B.F.)
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (D.W.); (Y.S.); (J.L.); (J.S.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (D.W.); (Y.S.); (J.L.); (J.S.); (B.F.)
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (D.W.); (Y.S.); (J.L.); (J.S.); (B.F.)
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (D.W.); (Y.S.); (J.L.); (J.S.); (B.F.)
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
10
|
Zhao W, Zhao S, Wei R, Wang Z, Zhang F, Zong F, Zhang HT. cGAS/STING signaling pathway-mediated microglial activation in the PFC underlies chronic ethanol exposure-induced anxiety-like behaviors in mice. Int Immunopharmacol 2024; 134:112185. [PMID: 38701540 DOI: 10.1016/j.intimp.2024.112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Chronic ethanol consumption is a prevalent condition in contemporary society and exacerbates anxiety symptoms in healthy individuals. The activation of microglia, leading to neuroinflammatory responses, may serve as a significant precipitating factor; however, the precise molecular mechanisms underlying this phenomenon remain elusive. In this study, we initially confirmed that chronic ethanol exposure (CEE) induces anxiety-like behaviors in mice through open field test and elevated plus maze test. The cGAS/STING signaling pathway has been confirmed to exhibits a significant association with inflammatory signaling responses in both peripheral and central systems. Western blot analysis confirmed alterations in the cGAS/STING signaling pathway during CEE, including the upregulation of p-TBK1 and p-IRF3 proteins. Moreover, we observed microglial activation in the prefrontal cortex (PFC) of CEE mice, characterized by significant alterations in branching morphology and an increase in cell body size. Additionally, we observed that administration of CEE resulted in mitochondrial dysfunction within the PFC of mice, accompanied by a significant elevation in cytosolic mitochondrial DNA (mtDNA) levels. Furthermore, our findings revealed that the inhibition of STING by H-151 effectively alleviated anxiety-like behavior and suppressed microglial activation induced by CEE. Our study unveiled a significant association between anxiety-like behavior, microglial activation, inflammation, and mitochondria dysfunction during CEE.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Shuang Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Ran Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Ziqi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Fangjiao Zong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China.
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China.
| |
Collapse
|
11
|
Braga JD, Thongngam M, Kumrungsee T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut-brain axis. NPJ Sci Food 2024; 8:16. [PMID: 38565567 PMCID: PMC10987602 DOI: 10.1038/s41538-024-00253-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) plays a crucial role in the central nervous system as an inhibitory neurotransmitter. Imbalances of this neurotransmitter are associated with neurological diseases, such as Alzheimer's and Parkinson's disease, and psychological disorders, including anxiety, depression, and stress. Since GABA has long been believed to not cross the blood-brain barrier, the effects of circulating GABA on the brain are neglected. However, emerging evidence has demonstrated that changes in both circulating and brain levels of GABA are associated with changes in gut microbiota composition and that changes in GABA levels and microbiota composition play a role in modulating mental health. This recent research has raised the possibility that GABA may be a potent mediator of the gut-brain axis. This review article will cover up-to-date information about GABA-producing microorganisms isolated from human gut and food sources, explanation why those microorganisms produce GABA, food factors inducing gut-GABA production, evidence suggesting GABA as a mediator linking between gut microbiota and mental health, including anxiety, depression, stress, epilepsy, autism spectrum disorder, and attention deficit hyperactivity disorder, and novel information regarding homocarnosine-a predominant brain peptide that is a putative downstream mediator of GABA in regulating brain functions. This review will help us to understand how the gut microbiota and GABA-homocarnosine metabolism play a significant role in brain functions. Nonetheless, it could support further research on the use of GABA production-inducing microorganisms and food factors as agents to treat neurological and psychological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
- Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanutchaporn Kumrungsee
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan.
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
12
|
Hayer SS, Hwang S, Clayton JB. Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: a systematic review and meta-analysis. Front Neurosci 2023; 17:1237177. [PMID: 37719161 PMCID: PMC10504664 DOI: 10.3389/fnins.2023.1237177] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
There are previous epidemiological studies reporting associations between antibiotic use and psychiatric symptoms. Antibiotic-induced gut dysbiosis and alteration of microbiota-gut-brain axis communication has been proposed to play a role in this association. In this systematic review and meta-analysis, we reviewed published articles that have presented results on changes in cognition, emotion, and behavior in rodents (rats and mice) after antibiotic-induced gut dysbiosis. We searched three databases-PubMed, Web of Science, and SCOPUS to identify such articles using dedicated search strings and extracted data from 48 articles. Increase in anxiety and depression-like behavior was reported in 32.7 and 40.7 percent of the study-populations, respectively. Decrease in sociability, social novelty preference, recognition memory and spatial cognition was found in 18.1, 35.3, 26.1, and 62.5 percent of the study-populations, respectively. Only one bacterial taxon (increase in gut Proteobacteria) showed statistically significant association with behavioral changes (increase in anxiety). There were no consistent findings with statistical significance for the potential biomarkers [Brain-derived neurotrophic factor (BDNF) expression in the hippocampus, serum corticosterone and circulating IL-6 and IL-1β levels]. Results of the meta-analysis revealed a significant association between symptoms of negative valence system (including anxiety and depression) and cognitive system (decreased spatial cognition) with antibiotic intake (p < 0.05). However, between-study heterogeneity and publication bias were statistically significant (p < 0.05). Risk of bias was evaluated to be high in the majority of the studies. We identified and discussed several reasons that could contribute to the heterogeneity between the results of the studies examined. The results of the meta-analysis provide promising evidence that there is indeed an association between antibiotic-induced gut dysbiosis and psychopathologies. However, inconsistencies in the implemented methodologies make generalizing these results difficult. Gut microbiota depletion using antibiotics may be a useful strategy to evaluate if and how gut microbes influence cognition, emotion, and behavior, but the heterogeneity in methodologies used precludes any definitive interpretations for a translational impact on clinical practice.
Collapse
Affiliation(s)
- Shivdeep S. Hayer
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
13
|
Müller SG, Jardim NS, Lutz G, Zeni G, Nogueira CW. (m-CF 3-PhSe) 2 benefits against anxiety-like phenotype associated with synaptic plasticity impairment and NMDAR-mediated neurotoxicity in young mice exposed to a lifestyle model. Chem Biol Interact 2023; 378:110486. [PMID: 37054933 DOI: 10.1016/j.cbi.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Lifestyle habits including energy-dense foods and ethanol intake are associated with anxiety disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been reported to modulate serotonergic and opioidergic systems and elicit an anxiolytic-like phenotype in animal models. This study investigated if the modulation of synaptic plasticity and NMDAR-mediated neurotoxicity contributes to the (m-CF3-PhSe)2 anxiolytic-like effect in young mice exposed to a lifestyle model. Swiss male mice (25-days old) were subjected to a lifestyle model, an energy-dense diet (20:20% lard: corn syrup) from the postnatal day (PND) 25-66 and sporadic ethanol (2 g/kg) (3 x a week, intragastrically, i.g.) from PND 45 to 60. From PND 60 to 66, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g). The corresponding vehicle (control) groups were carried out. After, mice performed anxiety-like behavioral tests. Mice exposed only to an energy-dense diet or sporadic ethanol did not show an anxiety-like phenotype. (m-CF3-PhSe)2 abolished the anxiety-like phenotype in young mice exposed to a lifestyle model. Anxious-like mice showed increased levels of cerebral cortical NMDAR2A and 2B, NLRP3 and inflammatory markers, and decreased contents of synaptophysin, PSD95, and TRκB/BDNF/CREB signaling. (m-CF3-PhSe)2 reversed cerebral cortical neurotoxicity, the increased levels of NMDA2A and 2B, and decreased levels of synaptic plasticity-related signaling in the cerebral cortex of young mice exposed to a lifestyle model. In conclusion, the (m-CF3-PhSe)2 anxiolytic-like effect was associated with the modulation of NMDAR-mediated neurotoxicity and synaptic plasticity in the cerebral cortex of young mice exposed to the lifestyle model.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Natália S Jardim
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Lutz
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Gilson Zeni
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
14
|
Yao H, Wang C, Xia Z. Prenatal alcohol exposure enhanced alcohol preference and susceptibility to PTSD in a sex-dependent manner through the synaptic HCN1 channel. J Affect Disord 2023; 324:143-152. [PMID: 36587902 DOI: 10.1016/j.jad.2022.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) adversely affects the neurobiological and behavioral functions of offspring. Increasing evidence indicates that alcohol-use disorders and post-traumatic stress disorder (PTSD) commonly co-occur. Enhanced function of hyperpolarization-activated gated channel 1 (HCN1) may be involved in the pathogenesis of PTSD. This study aimed to explore the effect of PAE on fear extinction, spontaneous recovery, alcohol preference, and function of HCN1 channels in offspring of both sexes. METHODS The PAE model was established with a 20 % (m/V) ethanol solution, and offspring were treated with 0.5, 1, and 2 μg/mL ZD7288 to block the HCN1 channel. Behavioral tests were used to detect the mental state and fear of extinction of the mice. Western blot was used to detect HCN1 expression in the synaptosomes. The BDNF/TrkB-pmTOR pathway was also examined. RESULTS ZD7288 administration ameliorated PAE-induced impairment of fear extinction and depression-like behavior. ZD7288 administration also alleviated PAE-induced inhibition of the HCN1 channel in the prefrontal cortex (PFC) and the BDNF/TrkB-pmTOR pathway in the hippocampus of offspring. In addition, the therapeutic effect of ZD7288 in males was better than that in females. CONCLUSIONS Overall, these results suggest that PAE enhances alcohol preference and susceptibility to PTSD through synaptic HCN1 channels in the PFC. In addition, ZD7288 may be a promising candidate for preventing alcohol-associated PTSD-like syndrome, particularly in males. LIMITATIONS The effects of ZD7288 were only studied in PAE animals and not in healthy animals.
Collapse
Affiliation(s)
- Hui Yao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, No. 46, Cong San East Road, Shenyang, Liaoning 110032, PR China
| | - Zhixiu Xia
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
15
|
The microbiota-gut-brain axis in pathogenesis of depression: A narrative review. Physiol Behav 2023; 260:114056. [PMID: 36528127 DOI: 10.1016/j.physbeh.2022.114056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The microbiota-gut-brain axis is a bidirectional regulatory pathway between the brain and the gastrointestinal tract, which plays an important role in maintain homeostasis. Gut microbiota could influence the behavior, cognition, stress response and others via the axis. Depression is a complex psychiatric disease, giving rise to heavy social health and economic burden. In recent years, studies have shown that the gut microbiota are closely linked to the pathophysiological processes of depression. In this article, the interaction and its underlying mechanisms between depression and gut microbiota were summarized.
Collapse
|
16
|
Yao H, Zhang D, Yu H, Yuan H, Shen H, Lan X, Liu H, Chen X, Meng F, Wu X, Zhang G, Wang X. Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation. Mol Psychiatry 2023; 28:919-930. [PMID: 36280756 PMCID: PMC9908543 DOI: 10.1038/s41380-022-01841-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Chronic ethanol exposure (CEE), which can lead to neuroinflammation, is an increasing risk factor for depression disorder, but the underlying mechanism is not clear. Recent observations have revealed the associations among psychiatric disorders, ethanol exposure and alterations of the gut microbiota. Here, we found that CEE induced depressive-like behavior, which could be alleviated by probiotics and transferred from donor to recipient mice by fecal microbiota transplantation (FMT). Neuroinflammation and the activation of the NLRP3 inflammasome were also observed in recipient mice. The downregulation of NLRP3 in the hippocampus mitigated CEE-induced depressive-like behavior and neuroinflammation but had no significant effect on FMT recipient mice. Moreover, elevated serum inflammatory factors in recipient mice showed a significant mediation effect between the gut microbiota and depressive-like behavior. Together, our study findings indicate that the gut microbiota contributes to both hippocampal NLRP3-mediated neuroinflammation and depressive-like behavior induced by CEE, which may open avenues for potential interventions against CEE-associated psychiatric disorders.
Collapse
Affiliation(s)
- Hui Yao
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Dalin Zhang
- grid.412636.40000 0004 1757 9485Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning PR China
| | - Hao Yu
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China
| | - Hui Shen
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Xinze Lan
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Hao Liu
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Xiaohuan Chen
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Fanyue Meng
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Xu Wu
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122 Liaoning PR China ,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122 Liaoning PR China ,grid.412449.e0000 0000 9678 1884China Medical University Center of Forensic Investigation, Shenyang, 110122 Liaoning PR China
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122, Liaoning, PR China. .,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122, Liaoning, PR China. .,China Medical University Center of Forensic Investigation, Shenyang, 110122, Liaoning, PR China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110122, Liaoning, PR China. .,Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, 110122, Liaoning, PR China. .,China Medical University Center of Forensic Investigation, Shenyang, 110122, Liaoning, PR China.
| |
Collapse
|
17
|
Yu X, Yao H, Zhang X, Liu L, Liu S, Dong Y. Comparison of LPS and MS-induced depressive mouse model: behavior, inflammation and biochemical changes. BMC Psychiatry 2022; 22:590. [PMID: 36064335 PMCID: PMC9443001 DOI: 10.1186/s12888-022-04233-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 12/28/2022] Open
Abstract
Depression is a mental disease involving complex pathophysiological mechanisms, and there are many ways to establish depressive mouse models. The purpose of this study is to comprehensively compare the behavioral changes and its mechanism induced by two different models. This study established two depressive mouse models by maternal separation (MS) or lipopolysaccharide (LPS) administration, and added fluoxetine treatment group respectively for comparison. MS induced more apparent anxiety-like behavior while LPS induced more apparent depressive-like behavior. LPS increased peripheral inflammatory factors more apparent, which were mitigated by fluoxetine. MS inhibited the 5-HT system more obviously and was relieved by fluoxetine. LPS triggered stronger immune response in the hippocampus and prefrontal cortex (PFC). MS significantly reduced the expression of neurotrophic proteins and was alleviated by fluoxetine. Overall, LPS induced stronger system inflammation, while MS impaired the function of HPA axis and 5-HT system. Our results will contribute to a deeper understanding of the pathophysiology of different stress-induced depression and will also help researchers select appropriate models of depression for their own needs.
Collapse
Affiliation(s)
- Xiaojin Yu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110004, P. R. China.
| | - Hui Yao
- grid.412449.e0000 0000 9678 1884Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110012 P. R. China
| | - Xiaohui Zhang
- grid.412467.20000 0004 1806 3501Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004 P. R. China
| | - Lulu Liu
- grid.412467.20000 0004 1806 3501Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004 P. R. China
| | - Shuangmei Liu
- grid.412467.20000 0004 1806 3501Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004 P. R. China
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110004, P. R. China.
| |
Collapse
|