1
|
Muñiz XF, Encinas M, da Silva WM, Garbaccio SG, Garro CJ, Sammarruco RA, Carignano HA, Bianco MV, Cataldi ÁA, Zumárraga MJ, Eirin ME. Humoral and cell-mediated immune response against the Mce2B (Rv0590/Mb0605) cell-wall protein of Mycobacterium bovis. Vet Immunol Immunopathol 2025; 284:110938. [PMID: 40300384 DOI: 10.1016/j.vetimm.2025.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Bovine tuberculosis is a zoonotic disease with global distribution. Improved diagnosis is essential thus, research into new diagnostic reagents is valuable. The Mce2B recombinant protein was evaluated as an inducer of immune response The research involved naturally infected cattle with different immunological profiles. Moderate homology (≥ 40 %) between Mce2B of M. bovis and homologous proteins in non-tuberculous mycobacteria was corroborated, as well as the presence of epitopes restricted by the bovine leucocyte antigen class II. Despite this prediction, cell-mediated responses to Mce2B were undetectable in caudal fold tuberculin skin test (CF-TST) positive and non-infected animals. In CF-TST false-negative cattle, a minimal cell-mediated response was observed (5 %; IC 95 %: 0.13-24.9), lower than that elicited by PPDB (35 %; IC 95 %: 15,4-59,2) (p = 0.046) but identical to the recombinant Fusion Protein including ESAT-6, CFP-10, EspC antigens (5 %; IC 95 %: 34.9-96.8). Marginal humoral response (33.3 %; IC 95 %: 4.3-77.7) was observed in the non-infected group. These findings demonstrate that the Mce2B protein is not a suitable antigen for bovine tuberculosis diagnosis.
Collapse
Affiliation(s)
- Ximena Ferrara Muñiz
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Micaela Encinas
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Wanderson Marques da Silva
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Sergio Gabriel Garbaccio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Carlos Javier Garro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Romina Ayelén Sammarruco
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Hugo Adrián Carignano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología e Innovaciones Tecnológicas (IVIT), Hurlingham, Buenos Aires, Argentina.
| | - María Verónica Bianco
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Ángel Adrián Cataldi
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Martín José Zumárraga
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María Emilia Eirin
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
2
|
Petersen MI, Suarez Archilla G, Miretti MM, Trono KG, Carignano HA. Whole-transcriptome analysis of BLV-infected cows reveals downregulation of immune response genes in high proviral loads cows. Front Vet Sci 2025; 12:1550646. [PMID: 40241800 PMCID: PMC12001038 DOI: 10.3389/fvets.2025.1550646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that infects cattle, causing bovine enzootic leukosis, a chronic disease characterized by the proliferation of infected B cells. BLV proviral load (PVL) is a key determinant of disease progression and transmission risk. Cattle can exhibit distinct phenotypes of low PVL (LPVL) or high PVL (HPVL), which remain stable throughout their lifetime. Differential expression analysis revealed 1,908 differentially expressed genes (DEGs) between HPVL and LPVL animals, including 774 downregulated (DReg) and 1,134 upregulated (UReg) genes. Functional enrichment analysis revealed that DReg genes were associated primarily with immune response pathways. Conversely, the UReg genes were enriched in processes related to cell cycle regulation, mitotic division, and DNA biosynthesis. Protein-protein interaction analysis revealed six highly interconnected clusters. Interestingly, a cluster was enriched for sphingolipid metabolism, a process critical to enveloped virus infection and immune receptor signaling. These findings provide valuable insights into the molecular mechanisms of BLV infection, suggesting potential markers for disease monitoring and targets for therapeutic intervention.
Collapse
Affiliation(s)
- M. I. Petersen
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - G. Suarez Archilla
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Argentina
| | - M. M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical, FCEQyN, Universidad Nacional de Misiones, Posadas, Argentina
| | - K. G. Trono
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - H. A. Carignano
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
3
|
Ferrara Muñiz X, Marques da Silva W, Garbaccio SG, Garro CJ, Sammarruco RA, Encinas M, Carignano HA, Bianco MV, Zumárraga MJ, Cataldi ÁA, Eirin ME. Performance of the PhoP (Rv0757/Mb0780) protein as diagnostic antigen for bovine tuberculosis. Res Vet Sci 2025; 184:105513. [PMID: 39753057 DOI: 10.1016/j.rvsc.2024.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
Bovine tuberculosis (bTB), a global zoonotic disease, causes negative effects on human and animal health. PhoP protein is a key regulator of pathogenic phenotypes in members of the Mycobacterium tuberculosis complex, which includes the causative agent of bTB. Despite extensive research on this protein focused in deciphering its regulatory role, little was explored about it as a diagnostic antigen. In humans, a novel role of anti-PhoP antibodies as a possible marker for the diagnosis of TB was demonstrated. However, this issue was not addressed in bovines. In this study, antigenic properties of the PhoP protein were evaluated in naturally Mycobacterium bovis (M. bovis) infected bovines. A high homology of PhoP (≥ 75 %) was observed in environmental mycobacterial species and other genera such as Salmonella and Pasteurella. Using the IFN-gamma release assay (IGRA), we detected cell-mediated immune response against PhoP in cattle from infected herds (25 %; IC 95 % 3.2-65.1), although it was significantly lower than that evoked by the reference antigens, ESAT-6/CFP-10/Rv3615c (75 %; IC95 % 34.9-96.8), and the purified protein derivative (87.5 %; IC 95 % 47.4-99.7) (p < 0.05)). Animals from a bTB free area showed no response against PhoP when analyzed by IGRA. Although, the humoral response detected 62.5 % (CI95% 24.5-91.5) of naturally infected animals, there was 100 % cross-reactivity among TB-free cattle. These results suggest that the PhoP protein is not a promising candidate for bTB diagnosis, due to it had relatively low levels of test sensitivity in the IGRA test, and very low specificity in a humoral antibody western blot assay.
Collapse
Affiliation(s)
- Ximena Ferrara Muñiz
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Wanderson Marques da Silva
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| | - Sergio Gabriel Garbaccio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Carlos Javier Garro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Romina Ayelén Sammarruco
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Micaela Encinas
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Hugo Adrián Carignano
- CONICET, Argentina; Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología e Innovaciones Tecnológicas (IVIT) Hurlingham, Buenos Aires, Argentina.
| | - María Verónica Bianco
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Martín José Zumárraga
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| | - Ángel Adrián Cataldi
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| | - María Emilia Eirin
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| |
Collapse
|
4
|
Bongers R, Rochus CM, Houlahan K, Lynch C, Oliveira GA, Rojas de Oliveira H, van Staaveren N, Kelton DF, Miglior F, Schenkel FS, Baes CF. Estimation of genetic parameters and genome-wide association study for enzootic bovine leukosis resistance in Canadian Holstein cattle. J Dairy Sci 2025; 108:611-622. [PMID: 39343214 DOI: 10.3168/jds.2024-25196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (hereafter referred to as leukosis), frequently observed in North American dairy herds. Infection with BLV can lead to persistent lymphocytosis and tumors and is associated with decreased production, immunity. and fertility. With no available treatment or vaccine, reducing the prevalence of leukosis through management and culling has not yet been successful. Genetic selection could contribute to permanent improvement in dairy cattle resistance to leukosis. This study aimed to examine the prevalence and impact of leukosis in Canada and to assess the potential for including leukosis resistance in Canadian national genetic evaluations by characterizing the genetic architecture of leukosis resistance using pedigree and genomic information. A total of 117,349 milk ELISA test records on 96,779 Holstein cows from 950 Canadian herds taken between 2007 and 2021 were provided by Lactanet Canada (Guelph, ON, Canada). Each cow was classified as test-positive for leukosis or test-negative for leukosis. Leukosis was present in ∼77% of herds tested; within those herds, an average of 39% of cows tested were test-positive for leukosis. Heritabilities of 0.10 (SE = 0.001) and 0.07 (SE <0.001) were estimated for leukosis resistance using a linear animal model and BLUP or single-step GBLUP methodology, respectively. Breeding value correlations were estimated between leukosis resistance and economically important and phenotypically relevant traits. Most correlations between leukosis resistance and traits already included in Canadian genetic evaluations were favorable, with the exception of SCS. The candidate genes for leukosis resistance identified using a genome-wide association study were on chromosome 23, with some being part of the major histocompatibility complex. This study showed that genetic evaluation for leukosis resistance is possible, and could be considered for inclusion in Canadian national selection indices.
Collapse
Affiliation(s)
- Renee Bongers
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christina M Rochus
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kerry Houlahan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Colin Lynch
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nienke van Staaveren
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David F Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; Lactanet Canada, Guelph, ON N1K 1E5, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; Institute of Genetics, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern 3001, Switzerland.
| |
Collapse
|
5
|
Galdino Andrade TE, Scavassini Peña M, Fiorotti J, de Souza Bin R, Rodrigues Caetano A, Connelley T, Ferreira de Miranda Santos IK. Graduate Student Literature Review: The DRB3 gene of the bovine major histocompatibility complex-Discovery, diversity, and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. J Dairy Sci 2024; 107:11324-11341. [PMID: 39004123 DOI: 10.3168/jds.2023-24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The bovine major histocompatibility complex (MHC), also known as the bovine leukocyte antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a β chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. The BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and Creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.
Collapse
Affiliation(s)
| | - Maurício Scavassini Peña
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Jéssica Fiorotti
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Renan de Souza Bin
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | | | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom, EH25 9RG
| | | |
Collapse
|
6
|
Villafañe L, Rocha RV, Bigi MM, Klepp LI, Taboga OA, Forrellad MA, López MG, Bigi F. Expression and field evaluation of new Mycobacterium bovis antigens. Vet Immunol Immunopathol 2024; 273:110788. [PMID: 38838485 DOI: 10.1016/j.vetimm.2024.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Bovine tuberculosis (bTB) represents a threat to livestock production. Mycobacterium bovis is the main causative agent of bTB and a pathogen capable of infecting wildlife and humans. Eradication programs based on surveillance in slaughterhouses with mandatory testing and culling of reactive cattle have failed to eradicate bTB in many regions worldwide. Therefore, developing effective tools to control this disease is crucial. Using a computational tool, we identified proteins in the M. bovis proteome that carry predictive binding peptides to BoLADRB3.2 and selected Mb0309, Mb1090, Mb1810 and Mb3810 from all the identified proteins. The expression of these proteins in a baculovirus-insect cell expression system was successful only for Mb0309 and Mb3810. In parallel, we expressed the ESAT-6 family proteins EsxG and EsxH in this system. Among the recombinant proteins, Mb0309 and EsxG exhibited moderate performance in distinguishing between cattle that test positive and negative to bTB using the official test, the intradermal tuberculin test (IDT), when used to stimulate interferon-gamma production in blood samples from cattle. However, when combined as a protein cocktail, Mb0309 and EsxG were reactive in 50 % of positive cattle. Further assessments in cattle that evade the IDT (false negative) and cattle infected with Mycobacterium avium paratuberculosis are necessary to determine the potential utility of this cocktail as an additional tool to assist the accurate diagnosis of bTB.
Collapse
Affiliation(s)
- Luciana Villafañe
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Rosana Valeria Rocha
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | | | - Laura Inés Klepp
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Oscar Alberto Taboga
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Marina Andrea Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - María Gabriela López
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina.
| |
Collapse
|
7
|
Ilie DE, Gavojdian D, Kusza S, Neamț RI, Mizeranschi AE, Mihali CV, Cziszter LT. Kompetitive Allele Specific PCR Genotyping of 89 SNPs in Romanian Spotted and Romanian Brown Cattle Breeds and Their Association with Clinical Mastitis. Animals (Basel) 2023; 13:ani13091484. [PMID: 37174521 PMCID: PMC10177413 DOI: 10.3390/ani13091484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mastitis is the most common production disease in the dairy sector worldwide, its incidence being associated with both cows' exposure to bacteria and the cows' genetic make-up for resistance to pathogens. The objective of our study was to analyse 89 missense SNPs belonging to six genes (CXCR2, CXCL8, TLR4, BRCA1, LTF, BOLA-DRB3), which were found to be associated with genetic resistance or susceptibility to mastitis. A total of 298 cattle (250 Romanian Spotted and 48 Romanian Brown) were genotyped by Kompetitive Allele Specific PCR (KASP) and a chi-squared test was used for genetic association studies with clinical mastitis. A total of 35 SNPs (39.3%) among the selected 89 SNPs were successfully genotyped, of which 31 markers were monomorphic. The polymorphic markers were found in two genes: TLR4 (rs460053411) and BOLA-DRB3 (rs42309897, rs208816121, rs110124025). The polymorphic SNPs with MAF > 5% and call rates > 95% were used for the association study. The results showed that rs110124025 in the BOLA-DRB3 gene was significantly associated with mastitis prevalence (p ≤ 0.05) in both investigated breeds. Current results show that the SNP rs110124025 in the BOLA-DRB3 gene can be used as a candidate genetic marker in selection for mastitis resistance in Romanian dairy cattle.
Collapse
Affiliation(s)
- Daniela Elena Ilie
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
| | - Dinu Gavojdian
- The Research Department, Research and Development Institute for Bovine Balotesti, 077015 Balotesti, Romania
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, 4032 Debrecen, Hungary
| | - Radu Ionel Neamț
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
| | | | - Ciprian Valentin Mihali
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
- Department of Life Sciences, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, 310025 Arad, Romania
| | - Ludovic Toma Cziszter
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
- Department of Animal Production Engineering, Faculty of Bioengineering of Animal Resources, University of Life Sciences 'King Mihai I' from Timișoara, 300645 Timișoara, Romania
| |
Collapse
|
8
|
Abstract
In the transmission control of chronic and untreatable livestock diseases such as bovine leukemia virus (BLV) infection, the removal of viral superspreaders is a fundamental approach. On the other hand, selective breeding of cattle with BLV-resistant capacity is also critical for reducing the viral damage to productivity by keeping infected cattle. To provide a way of measuring BLV proviral load (PVL) and identifying susceptible/resistant cattle simply and rapidly, we developed a fourplex droplet digital PCR method targeting the BLV pol gene, BLV-susceptible bovine major histocompatibility complex (BoLA)-DRB3*016:01 allele, resistant DRB3*009:02 allele, and housekeeping RPP30 gene (IPATS-BLV). IPATS-BLV successfully measured the percentage of BLV-infected cells and determined allele types precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this method to determine the impact of carrying these alleles on the BLV PVL, we found DRB3*009:02-carrying cattle could suppress the PVL to a low or undetectable level, even with the presence of a susceptible heterozygous allele. Although the population of DRB3*016:01-carrying cattle showed significantly higher PVLs compared with cattle carrying other alleles, their individual PVLs were highly variable. Because of the simplicity and speed of this single-well assay, our method has the potential of being a suitable platform for the combined diagnosis of pathogen level and host biomarkers in other infectious diseases satisfying the two following characteristics of disease outcomes: (i) pathogen level acts as a critical maker of disease progression; and (ii) impactful disease-related host genetic biomarkers are already identified. IMPORTANCE While pathogen-level quantification is an important diagnostic of disease severity and transmissibility, disease-related host biomarkers are also useful in predicting outcomes in infectious diseases. In this study, we demonstrate that combined proviral load (PVL) and host biomarker diagnostics can be used to detect bovine leukemia virus (BLV) infection, which has a negative economic impact on the cattle industry. We developed a fourplex droplet digital PCR assay for PVL of BLV and susceptible and resistant host genes named IPATS-BLV. IPATS-BLV has inherent merits in measuring PVL and identifying susceptible and resistant cattle with superior simplicity and speed because of a single-well assay. Our new laboratory technique contributes to strengthening risk-based herd management used to control within-herd BLV transmission. Furthermore, this assay design potentially improves the diagnostics of other infectious diseases by combining the pathogen level and disease-related host genetic biomarker to predict disease outcomes.
Collapse
|
9
|
Ordoñez D, Bohórquez MD, Avendaño C, Patarroyo MA. Comparing Class II MHC DRB3 Diversity in Colombian Simmental and Simbrah Cattle Across Worldwide Bovine Populations. Front Genet 2022; 13:772885. [PMID: 35186024 PMCID: PMC8854852 DOI: 10.3389/fgene.2022.772885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
The major histocompatibility complex (MHC) exerts great influence on responses to infectious diseases and vaccination due to its fundamental role in the adaptive immune system. Knowledge about MHC polymorphism distribution among breeds can provide insights into cattle evolution and diversification as well as population-based immune response variability, thus guiding further studies. Colombian Simmental and Simbrah cattle’s BoLA-DRB3 genetic diversity was compared to that of taurine and zebuine breeds worldwide to estimate functional diversity. High allele richness was observed for Simmental and Simbrah cattle; nevertheless, high homozygosity was associated with individual low sequence variability in both the β1 domain and the peptide binding region (PBR), thereby implying reduced MHC-presented peptide repertoire size. There were strong signals of positive selection acting on BoLA-DRB3 in all populations, some of which were poorly structured and displayed common alleles accounting for their high genetic similarity. PBR sequence correlation analysis suggested that, except for a few populations exhibiting some divergence at PBR, global diversity regarding potential MHC-presented peptide repertoire could be similar for the cattle populations analyzed here, which points to the retention of functional diversity in spite of the selective pressures imposed by breeding.
Collapse
Affiliation(s)
- Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
- PhD Program in Tropical Health and Development, Universidad de Salamanca, Salamanca, Spain
| | - Michel David Bohórquez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- MSc Program in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Manuel Alfonso Patarroyo,
| |
Collapse
|
10
|
Lohr CE, Sporer KRB, Brigham KA, Pavliscak LA, Mason MM, Borgman A, Ruggiero VJ, Taxis TM, Bartlett PC, Droscha CJ. Phenotypic Selection of Dairy Cattle Infected with Bovine Leukemia Virus Demonstrates Immunogenetic Resilience through NGS-Based Genotyping of BoLA MHC Class II Genes. Pathogens 2022; 11:pathogens11010104. [PMID: 35056052 PMCID: PMC8779071 DOI: 10.3390/pathogens11010104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Characterization of the bovine leukocyte antigen (BoLA) DRB3 gene has shown that specific alleles associate with susceptibility or resilience to the progression of bovine leukemia virus (BLV), measured by proviral load (PVL). Through surveillance of multi-farm BLV eradication field trials, we observed differential phenotypes within seropositive cows that persist from months to years. We sought to develop a multiplex next-generation sequencing workflow (NGS-SBT) capable of genotyping 384 samples per run to assess the relationship between BLV phenotype and two BoLA genes. We utilized longitudinal results from milk ELISA screening and subsequent blood collections on seropositive cows for PVL determination using a novel BLV proviral load multiplex qPCR assay to phenotype the cows. Repeated diagnostic observations defined two distinct phenotypes in our study population, ELISA-positive cows that do not harbor detectable levels of provirus and those who do have persistent proviral loads. In total, 565 cows from nine Midwest dairy farms were selected for NGS-SBT, with 558 cows: 168 BLV susceptible (ELISA-positive/PVL-positive) and 390 BLV resilient (ELISA-positive/PVL-negative) successfully genotyped. Three BoLA-DRB3 alleles, including one novel allele, were shown to associate with disease resilience, *009:02, *044:01, and *048:02 were found at rates of 97.5%, 86.5%, and 90.3%, respectively, within the phenotypically resilient population. Alternatively, DRB3*015:01 and *027:03, both known to associate with disease progression, were found at rates of 81.1% and 92.3%, respectively, within the susceptible population. This study helps solidify the immunogenetic relationship between BoLA-DRB3 alleles and BLV infection status of these two phenotypic groupings of US dairy cattle.
Collapse
Affiliation(s)
- Chaelynne E. Lohr
- CentralStar Cooperative, Lansing, MI 48910, USA; (C.E.L.); (K.R.B.S.); (K.A.B.); (L.A.P.); (M.M.M.)
| | - Kelly R. B. Sporer
- CentralStar Cooperative, Lansing, MI 48910, USA; (C.E.L.); (K.R.B.S.); (K.A.B.); (L.A.P.); (M.M.M.)
| | - Kelsey A. Brigham
- CentralStar Cooperative, Lansing, MI 48910, USA; (C.E.L.); (K.R.B.S.); (K.A.B.); (L.A.P.); (M.M.M.)
| | - Laura A. Pavliscak
- CentralStar Cooperative, Lansing, MI 48910, USA; (C.E.L.); (K.R.B.S.); (K.A.B.); (L.A.P.); (M.M.M.)
| | - Matelyn M. Mason
- CentralStar Cooperative, Lansing, MI 48910, USA; (C.E.L.); (K.R.B.S.); (K.A.B.); (L.A.P.); (M.M.M.)
| | | | - Vickie J. Ruggiero
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (P.C.B.)
| | - Tasia M. Taxis
- Department of Animal Science, College of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Paul C. Bartlett
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (P.C.B.)
| | - Casey J. Droscha
- CentralStar Cooperative, Lansing, MI 48910, USA; (C.E.L.); (K.R.B.S.); (K.A.B.); (L.A.P.); (M.M.M.)
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (P.C.B.)
- Correspondence:
| |
Collapse
|
11
|
Nicole VM, Eugenia CM, Viviana LV, Mario P, Elizabeth WS. Diversity of the BoLA-DRB3 gene in cattle breeds from tropical and subtropical regions of Argentina. Trop Anim Health Prod 2021; 54:23. [PMID: 34950978 DOI: 10.1007/s11250-021-03031-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Bovine leukocyte antigens (BoLA) have been widely studied because of their primary function in the recognition of pathogens by the immune system. To date, however, the characterization of the BoLA-DRB3 gene in Latin American Zebu and mixed zebuine breeds is scarce. By a sequence-based typing method, here we sequenced exon 2 of BoLA class II DRB3 gene in 264 animals from the five most commonly used breeds in northern Argentina (Creole, Brahman, Braford, Brangus, and Nellore).The Bos taurus, Bos indicus, and mixed breeds analyzed here contained 61 previously reported alleles. Genetic diversity was high at both allelic and nucleotide sequence levels, particularly in the mixed breeds Braford and Brangus. In contrast to previous reports on DRB3 diversity, no evidence of balancing selection was found in our data. Differentiation among breeds was highly significant, as shown by FST (FST = 0.052, P < 0.001) and cluster analyses. In accordance with historical origin of the breeds, UPGMA trees and metric multidimensional scaling (MDS) analyses showed that Creole is distantly related to the other zebuine breeds. Among them, Brahman, Braford, and Brangus exhibited the closest affiliations. Despite the overall differentiation of the breeds, analysis of the peptide binding regions at the aminoacid level revealed that the key aminoacids involved in peptide recognition are greatly conserved suggesting little influence of domestication and breeding in functional MHC variability. In sum, this is the first report of BoLA-DRB3 diversity in pure and mixed Bos indicus cattle breeds from Argentina. Knowledge of BoLA-DRB3 variability in breeds adapted to tropical and subtropical environments contributes not only to the characterization of MHC diversity but also to the design of peptide-based vaccines.
Collapse
Affiliation(s)
- Valenzano Magali Nicole
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO) (INTA-CONICET), de los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Caffaro Maria Eugenia
- Instituto Nacional de Tecnología Agropecuaria CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", de Los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Lia Veronica Viviana
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO) (INTA-CONICET), de los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Poli Mario
- Instituto Nacional de Tecnología Agropecuaria CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", de Los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Wilkowsky Silvina Elizabeth
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO) (INTA-CONICET), de los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Thi DL, Vu SN, Lo CW, Dao TD, Bui VN, Ogawa H, Imai K, Sugiura K, Aida Y, Haga T. Association between BoLA-DRB3 polymorphism and bovine leukemia virus proviral load in Vietnamese Holstein Friesian cattle. HLA 2021; 99:105-112. [PMID: 34854239 DOI: 10.1111/tan.14503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. Polymorphism in bovine leukocyte antigen (BoLA)-DRB3 allele can influence the host immune response to pathogens, including BLV. However, association between specific BoLA-DRB3 alleles and BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, in Vietnamese cattle are unknown. Here, association study of BoLA-DRB3 allele frequency between cattle with high or low PVL demonstrated BoLA-DRB3*12:01 associates with high PVL in Vietnamese Holstein-Friesian (HF) crossbred cattle. This is the first study to demonstrate that BoLA-DRB3 polymorphism confers susceptibility to BLV high PVL in HF crossbred kept in Vietnam. Our results may be useful in disease control and eradiation for BLV through genetic selection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dung Le Thi
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Son Nguyen Vu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam.,Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chieh-Wen Lo
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tung Duy Dao
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.,National Institute of Veterinary Research, Hanoi, Vietnam
| | - Vuong Nghia Bui
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.,National Institute of Veterinary Research, Hanoi, Vietnam
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Kunitoshi Imai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Katsuaki Sugiura
- Laboratory of Environment Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nippon Institute for Biological Science, Tokyo, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Notsu K, El Daous H, Mitoma S, Norimine J, Sekiguchi S. A pooled testing system to rapidly identify cattle carrying the elite controller BoLA-DRB3*009:02 haplotype against bovine leukemia virus infection. HLA 2021; 99:12-24. [PMID: 34837483 PMCID: PMC9543338 DOI: 10.1111/tan.14502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
As genetically resistant individuals, the “elite controllers” (ECs) of human immunodeficiency virus infection have been focused on as the keys to developing further functional treatments in medicine. In the livestock production field, identifying the ECs of bovine leukemia virus (BLV) infection in cattle is desired to stop BLV transmission chains on farms. Cattle carrying the bovine leukocyte antigen (BoLA)‐DRB3*009:02 allele (DRB3*009:02) have a strong possibility of being BLV ECs. Most of cattle carrying this allele maintain undetectable BLV proviral loads and do not shed virus even when infected. BLV ECs can act as transmission barriers when placed between uninfected and infected cattle in a barn. To identify cattle carrying DRB3*009:02 in large populations more easily, we developed a pooled testing system. It employs a highly sensitive, specific real‐time PCR assay and TaqMan MGB probes (DRB3*009:02‐TaqMan assay). Using this system, we determined the percentage of DRB3*009:02‐carrying cattle on Kyushu Island, Japan. Our pooled testing system detected cattle carrying the DRB3*009:02 allele from a DNA pool containing one DRB3*009:02‐positive animal and 29 cattle with other alleles. Its capacity is sufficient for herd‐level screening for DRB3*009:02‐carrying cattle. The DRB3*009:02‐TaqMan assay showed high‐discriminative sensitivity and specificity toward DRB3*009:02, making it suitable for identifying DRB3*009:02‐carrying cattle in post‐screening tests on individuals. We determined that the percentage of DRB3*009:02‐carrying cattle in Kyushu Island was 10.56%. With its ease of use and reliable detection, this new method strengthens the laboratory typing for DRB3*009:02‐carrying cattle. Thus, our findings support the use of BLV ECs in the field.
Collapse
Affiliation(s)
- Kosuke Notsu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hala El Daous
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shuya Mitoma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
14
|
Murakami H, Murakami-Kawai M, Kamisuki S, Hisanobu S, Tsurukawa Y, Uchiyama J, Sakaguchi M, Tsukamoto K. Specific antiviral effect of violaceoid E on bovine leukemia virus. Virology 2021; 562:1-8. [PMID: 34242747 DOI: 10.1016/j.virol.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022]
Abstract
Bovine leukemia virus (BLV) infection has spread worldwide causing significant economic losses in the livestock industry. In countries with a high prevalence of BLV, minimizing economic losses is challenging; thus, research into various countermeasures is important for improving BLV control. Because anti-BLV drugs have not been developed, the present study explored a promising chemical compound with anti-BLV activity. Initially, screening of a chemical compound library revealed that violaceoid E (vioE), which is isolated from fungus, showed antiviral activity. Further analysis demonstrated that the antiviral effect of vioE inhibited transcriptional activation of BLV. Cellular thermal shift assay and pulldown assays provided evidence for a direct interaction between vioE and the viral transactivator protein, Tax. These data indicate that interference with Tax-dependent transcription could be a novel target for development of anti-BLV drugs. Therefore, it is suggested that vioE is a novel antiviral compound against BLV.
Collapse
Affiliation(s)
- Hironobu Murakami
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan; Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Makoto Murakami-Kawai
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shinji Kamisuki
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan; Laboratory of Chemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shibasaki Hisanobu
- Laboratory of Chemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yukine Tsurukawa
- Laboratory of Chemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Jumpei Uchiyama
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan; Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Masahiro Sakaguchi
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kenji Tsukamoto
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
15
|
Analysis of Nucleotide Sequence of Tax, miRNA and LTR of Bovine Leukemia Virus in Cattle with Different Levels of Persistent Lymphocytosis in Russia. Pathogens 2021; 10:pathogens10020246. [PMID: 33672613 PMCID: PMC7924208 DOI: 10.3390/pathogens10020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), a lymphoproliferative disease of the bovine species. In BLV-infected cells, the long terminal repeat (LTR), the viral Tax protein and viral miRNAs promote viral and cell proliferation as well as tumorigenesis. Although their respective roles are decisive in BLV biology, little is known about the genetic sequence variation of these parts of the BLV genome and their impact on disease outcome. Therefore, the objective of this study was to assess the relationship between disease progression and sequence variation of the BLV Tax, miRNA and LTR regions in infected animals displaying either low or high levels of persistent lymphocytosis (PL). A statistically significant association was observed between the A(+187)C polymorphism in the downstream activator sequence (DAS) region in LTR (p-value = 0.00737) and high lymphocytosis. Our study also showed that the mutation A(−4)G in the CAP site occurred in 70% of isolates with low PL and was not found in the high PL group. Conversely, the mutations G(−133)A/C in CRE2 (46.7%), C(+160)T in DAS (30%) and A(310)del in BLV-mir-B4-5p, A(357)G in BLV-mir-B4-3p, A(462)G in BLV-mir-B5-5p, and GA(497–498)AG in BLV-mir-B5-3p (26.5%) were often seen in isolates with high PL and did not occur in the low PL group. In conclusion, we found several significant polymorphisms among BLV genomic sequences in Russia that would explain a progression towards higher or lower lymphoproliferation. The data presented in this article enabled the classification between two different genotypes; however, clear association between genotypes and the PL development was not found.
Collapse
|
16
|
Bartlett PC, Ruggiero VJ, Hutchinson HC, Droscha CJ, Norby B, Sporer KRB, Taxis TM. Current Developments in the Epidemiology and Control of Enzootic Bovine Leukosis as Caused by Bovine Leukemia Virus. Pathogens 2020; 9:E1058. [PMID: 33352855 PMCID: PMC7766781 DOI: 10.3390/pathogens9121058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Enzootic Bovine Leukosis (EBL) caused by the bovine leukemia virus (BLV) has been eradicated in over 20 countries. In contrast, the U.S. and many other nations are experiencing increasing prevalence in the absence of efforts to control transmission. Recent studies have shown that BLV infection in dairy cattle has a greater impact beyond the long-recognized lymphoma development that occurs in <5% of infected cattle. Like other retroviruses, BLV appears to cause multiple immune system disruptions, affecting both cellular and humoral immunity, which are likely responsible for increasingly documented associations with decreased dairy production and decreased productive lifespan. Realization of these economic losses has increased interest in controlling BLV using technology that was unavailable decades ago, when many nations eradicated BLV via traditional antibody testing and slaughter methods. This traditional control is not economically feasible for many nations where the average herd antibody prevalence is rapidly approaching 50%. The ELISA screening of cattle with follow-up testing via qPCR for proviral load helps prioritize the most infectious cattle for segregation or culling. The efficacy of this approach has been demonstrated in at least four herds. Breeding cattle for resistance to BLV disease progression also appears to hold promise, and several laboratories are working on BLV vaccines. There are many research priorities for a wide variety of disciplines, especially including the need to investigate the reports linking BLV and human breast cancer.
Collapse
Affiliation(s)
- Paul C. Bartlett
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | - Vickie J. Ruggiero
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | | | - Casey J. Droscha
- CentralStar Cooperative, East Lansing, MI 48910, USA; (C.J.D.); (K.R.B.S.)
| | - Bo Norby
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | - Kelly R. B. Sporer
- CentralStar Cooperative, East Lansing, MI 48910, USA; (C.J.D.); (K.R.B.S.)
| | - Tasia M. Taxis
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
17
|
Petersen MI, Carignano HA, Suarez Archilla G, Caffaro ME, Alvarez I, Miretti MM, Trono K. Expression-based analysis of genes related to single nucleotide polymorphism hits associated with bovine leukemia virus proviral load in Argentinean dairy cattle. J Dairy Sci 2020; 104:1993-2007. [PMID: 33246606 DOI: 10.3168/jds.2020-18924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022]
Abstract
In dairy cattle infected with bovine leukemia virus (BLV), the proviral load (PVL) level is directly related to the viral transmission from infected animals to their healthy herdmates. Two contrasting phenotypic groups can be identified when assessing PVL in peripheral blood of infected cows. A large number of reports point to bovine genetic variants (single nucleotide polymorphisms) as one of the key determinants underlying PVL level. However, biological mechanisms driving BLV PVL profiles and infection progression in cattle have not yet been elucidated. In this study, we evaluated whether a set of candidate genes affecting BLV PVL level according to whole genome association studies are differentially expressed in peripheral blood mononuclear cells derived from phenotypically contrasting groups of BLV-infected cows. During a 10-mo-long sampling scheme, 129 Holstein cows were phenotyped measuring anti-BLV antibody levels, PVL quantification, and white blood cell subpopulation counts. Finally, the expression of 8 genes (BOLA-DRB3, PRRC2A, ABT1, TNF, BAG6, BOLA-A, LY6G5B, and IER3) located within the bovine major histocompatibility complex region harboring whole genome association SNP hits was evaluated in 2 phenotypic groups: high PVL (n = 7) and low PVL (n = 8). The log2 initial fluorescence value (N0) transformed mean expression values for the ABT1 transcription factor were statistically different in high- and low-PVL groups, showing a higher expression of the ABT1 gene in low-PVL cows. The PRRC2A and IER3 genes had a significant positive (correlation coefficient = 0.61) and negative (correlation coefficient = -0.45) correlation with the lymphocyte counts, respectively. Additionally, the relationships between gene expression values and lymphocyte counts were modeled using linear regressions. Lymphocyte levels in infected cows were better explained (coefficient of determination = 0.56) when fitted a multiple linear regression model using both PRRC2A and IER3 expression values as independent variables. The present study showed evidence of differential gene expression between contrasting BLV infection phenotypes. These genes have not been previously related to BLV pathobiology. This valuable information represents a step forward in understanding the BLV biology and the immune response of naturally infected cows under a commercial milk production system. Efforts to elucidate biological mechanisms leading to BLV infection progression in cows are valuable for BLV control programs. Further studies integrating genotypic data, global transcriptome analysis, and BLV progression phenotypes are needed to better understand the BLV-host interaction.
Collapse
Affiliation(s)
- M I Petersen
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - H A Carignano
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Genética, Instituto Nacional de Tecnología Agropecuaria, B1686 Hurlingham, Argentina.
| | - G Suarez Archilla
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, S2300 Rafaela, Argentina
| | - M E Caffaro
- Instituto de Genética, Instituto Nacional de Tecnología Agropecuaria, B1686 Hurlingham, Argentina
| | - I Alvarez
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - M M Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical, FCEQyN, Universidad Nacional de Misiones, N3300 Posadas, Argentina
| | - K Trono
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Fukunaga K, Yamashita Y, Yagisawa T. Copy number variations in BOLA-DQA2, BOLA-DQB, and BOLA-DQA5 show the genomic architecture and haplotype frequency of major histocompatibility complex class II genes in Holstein cows. HLA 2020; 96:601-609. [PMID: 33006253 DOI: 10.1111/tan.14086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Bovine major histocompatibility complex (MHC) class II region contains many genes. The bovine leukocyte antigen (BoLA)-DRB3 was reportedly associated with susceptibility of various phenotypes of infections including bovine leukemia virus-induced lymphoma. However, the association of the remaining genes with various phenotypes has not been clarified due to the complicated genomic structure of the MHC class II region. Thus, in this study, we elucidated the MHC class II genomic structure, including the novel alleles and copy number variations (CNVs). We determined the copy numbers of BOLA-DQA2 (DQA2), BOLA-DQB (DQB2), BOLA-DQA5 (DQA5), BLA-DQB (DQB1), LOC100848815 (DQA1), and BOLA-DRB3 (DRB3) in 127 unrelated Holstein cows by TaqMan copy number assay. The genomes were sequenced using target next-generation sequencing (NGS) based on multiplex polymerase chain reaction. Combining the results of the copy numbers and alleles, we identified the BoLA alleles directly without haplotype estimation. Pairwise linkage disequilibrium (LD) analysis between alleles and genes were performed. The CNVs of DQA2, DQB2, and DQA5 in Holstein cows were detected. The frequency of the whole gene deletion in DQA2, DQB2, and DQA5 was 35.4%, 93.7%, and 93.7%, respectively. After target NGS, we identified 37 alleles in the six genes. Fifteen novel alleles (40.5%) were not registered in the IPD-MHC Database. LD analysis showed strong LD among the DQB2*deletion, DQA5*deletion, and DRB3*27:03 alleles. Our findings will provide important insights into the identification of the BoLA genes associated with various infection-related phenotypes.
Collapse
Affiliation(s)
- Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yusuke Yamashita
- Hokkaido Chuo Agricultural Mutual Aid Association, Hokkaido, Japan
| | - Takuya Yagisawa
- Hokkaido Chuo Agricultural Mutual Aid Association, Hokkaido, Japan
| |
Collapse
|
19
|
Eirin M, Carignano H, Shimizu E, Pando MA, Zumárraga M, Magnano G, Macías A, Garbaccio S, Huertas P, Morsella C, Ferrara Muñiz X, Cataldi A, Paolicchi F, Poli M. BoLA-DRB3 exon2 polymorphisms among tuberculous cattle: Nucleotide and functional variability and their association with bovine tuberculosis pathology. Res Vet Sci 2020; 130:118-125. [PMID: 32172000 DOI: 10.1016/j.rvsc.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Bovine tuberculosis (bTB) is caused by Mycobacterium bovis and disseminated worldwide. In Argentina, the highest prevalence occurs in dairy areas. BoLA DRB3.2 is related to the adaptive immunity in mycobacterial infections. Genetic polymorphisms of this marker have been associated with resistance or susceptibility to bovine diseases. We evaluated the association between BoLA DRB3.2 polymorphisms and bTB pathology scores in dairy and beef cattle breeds of Argentina. Most bovines exhibited visible lesions compatible with tuberculosis and, furthermore, 150 (85.7%) were also positive by bacteriology. A pathology index showed a variable degree of disease, from 3 to 76 (median pathology score = 9 (IQR: 7-15)). Thirty-five BoLA DRB3.2 alleles were identified with an associated frequency from 16% to 0.3%, distributed 73% (n = 128) in heterozygosis and 27% (n = 47) in homozygosis, with 12 BoLA DRB3.2 alleles (*0101, *1101, *1501, *0201, *2707 *1001, *1002, *1201, *14011, *0501 *0902 and *0701) representing the 74.7% of the population variability. A functional analysis grouped them in 4 out of 5 clusters (A-D), suggesting a functional overlapping. Among the 90 identified genotypes, *1101/*1101, *1101/*1501 and *0101/*0101 were the most frequent (10%, 8.9% and 8.9%, respectively). No association was detected between the pathology scores and a specific DRB3.2 allele (p > .05). Animals infected with M. bovis spoligotype SB0153 showed a significantly higher pathology score than those affected by the spoligotype SB0145 (p = .018). Furthermore, the Aberdeen Angus breed exhibited highest pathological scores (p < .0001), which were associated with disseminated lesion, thus suggesting that the host component could be important to the disease progression.
Collapse
Affiliation(s)
- M Eirin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina; CONICET, Argentina.
| | - H Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Genética, Buenos Aires, Argentina.
| | - E Shimizu
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina.
| | - M A Pando
- CONICET, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), UBA-CONICET, Facultad de Medicina, Buenos Aires, Argentina.
| | - M Zumárraga
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina; CONICET, Argentina.
| | - G Magnano
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Córdoba, Argentina.
| | - A Macías
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Córdoba, Argentina.
| | - S Garbaccio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IPV), INTA, CONICET, Buenos Aires, Argentina.
| | - P Huertas
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IPV), INTA, CONICET, Buenos Aires, Argentina.
| | - C Morsella
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, Buenos Aires, Argentina.
| | - X Ferrara Muñiz
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina.
| | - A Cataldi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina; CONICET, Argentina.
| | - F Paolicchi
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, Buenos Aires, Argentina.
| | - M Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Genética, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Forletti A, Lützelschwab CM, Cepeda R, Esteban EN, Gutiérrez SE. Early events following bovine leukaemia virus infection in calves with different alleles of the major histocompatibility complex DRB3 gene. Vet Res 2020; 51:4. [PMID: 31931875 PMCID: PMC6958566 DOI: 10.1186/s13567-019-0732-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 01/25/2023] Open
Abstract
Cattle maintaining a low proviral load (LPL) status after bovine leukaemia virus (BLV) infection have been recognized as BLV controllers and non-transmitters to uninfected cattle in experimental and natural conditions. LPL has been associated with host genetics, mainly with the BoLA class II DRB3 gene. The aim of this work was to study the kinetics of BLV and the host response in Holstein calves carrying different BoLA-DRB3 alleles. Twenty BLV-free calves were inoculated with infected lymphocytes. Two calves were maintained uninfected as controls. Proviral load, total leukocyte and lymphocyte counts, anti-BLVgp51 titres and BLVp24 expression levels were determined in blood samples at various times post-inoculation. The viral load peaked at 30 days post-inoculation (dpi) in all animals. The viral load decreased steadily from seroconversion (38 dpi) to the end of the study (178 dpi) in calves carrying a resistance-associated allele (*0902), while it was maintained at elevated levels in calves with *1501 or neutral alleles after seroconversion. Leukocyte and lymphocyte counts and BLVp24 expression did not significantly differ between genetic groups. Animals with < 20 proviral copies/30 ng of DNA at 178 dpi or < 200 proviral copies at 88 dpi were classified as LPL, while calves with levels above these limits were considered to have high proviral load (HPL) profiles. All six calves with the *1501 allele progressed to HPL, while LPL was attained by 6/7 (86%) and 2/6 (33%) of the calves with the *0902 and neutral alleles, respectively. One calf with both *0902 and *1501 developed LPL. This is the first report of experimental induction of the LPL profile in cattle.
Collapse
Affiliation(s)
- Agustina Forletti
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia María Lützelschwab
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina
| | - Rosana Cepeda
- Area de Bioestadística, Facultad de Ciencias Veterinarias, Instituto Multidisciplinario de Ecosistemas y Desarrollo Sustentable, Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina
| | - Eduardo N Esteban
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina
| | - Silvina Elena Gutiérrez
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Bohórquez MD, Ordoñez D, Suárez CF, Vicente B, Vieira C, López-Abán J, Muro A, Ordóñez I, Patarroyo MA. Major Histocompatibility Complex Class II (DRB3) Genetic Diversity in Spanish Morucha and Colombian Normande Cattle Compared to Taurine and Zebu Populations. Front Genet 2020; 10:1293. [PMID: 31998362 PMCID: PMC6965167 DOI: 10.3389/fgene.2019.01293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Bovine leukocyte antigens (BoLA) have been used as disease markers and immunological traits in cattle due to their primary role in pathogen recognition by the immune system. A higher MHC allele diversity in a population will allow presenting a broader peptide repertoire. However, loss of overall diversity due to domestication process can decrease a population's peptide repertoire. Within the context of zebu and taurine cattle populations, BoLA-DRB3 genetic diversity in Spanish Morucha and Colombian Normande cattle was analyzed and an approach to estimate functional diversity was performed. Sequence-based typing was used for identifying 29, 23, 27, and 28 alleles in Spanish Morucha, Nariño-, Boyacá-, and Cundinamarca-Normande cattle, respectively. These breeds had remarkably low heterozygosity levels and the Hardy-Weinberg principle revealed significant heterozygote deficiency. FST and DA genetic distance showed that Colombian Normande populations had greater variability than other phenotypically homogeneous breeds, such as Holstein. It was also found that Spanish Morucha cattle were strongly differentiated from other cattle breeds. Spanish Morucha had greater divergence in the peptide-binding region regarding other cattle breeds. However, peptide-binding region covariation indicated that the potential peptide repertoire seemed equivalent among cattle breeds. Despite the genetic divergence observed, the extent of the potential peptide repertoire in the cattle populations studied appears to be similar and thus their pathogen recognition potential should be equivalent, suggesting that functional diversity might persist in the face of bottlenecks imposed by domestication and breeding.
Collapse
Affiliation(s)
- Michel David Bohórquez
- Microbiology Postgraduate Programme, Universidad Nacional de Colombia, Bogotá, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Diego Ordoñez
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Carlos Fernando Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Carmen Vieira
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Iván Ordóñez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
22
|
Takeshima SN, Ohno A, Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology 2019; 16:14. [PMID: 31096993 PMCID: PMC6524304 DOI: 10.1186/s12977-019-0476-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis and is closely related to the human T-lymphotropic virus. Bovine major histocompatibility complex (BoLAs) are used extensively as markers of disease and immunological traits in cattle. For BLV diagnosis, proviral load is a major diagnosis index for the determination of disease progression and transmission risk. Therefore, we investigated the frequency of BoLA-DRB3 alleles, BoLA-DQA1 alleles, and haplotypes of BoLA class II isolated from the heads of 910 BLV-infected cows out of 1290 cows assessed from BLV-positive farms, in a nationwide survey from 2011 to 2014 in Japan. Our aim was to identify BoLA class II polymorphisms associated with the BLV proviral load in the Holstein cow. The study examined 569 cows with a high proviral load and 341 cows with a low proviral load. Using the highest odds ratio (OR) as a comparison index, we confirmed that BoLA-DRB3 was the best marker for determining which cow spread the BLV (OR 13.9 for BoLA-DRB3, OR 11.5 for BoLA-DQA1, and OR 6.2 for BoLA class II haplotype). In addition, DRB3*002:01, *009:02, *012:01, *014:01, and *015:01 were determined as BLV provirus associated alleles. BoLA-DRB3*002:01, *009:02, and *014:01 were determined as resistant alleles (OR > 1), and BoLA-DRB3*012:01 and *015:01 were determined as susceptible alleles (OR < 1). In this study, we showed that BoLA-DRB3 was a good marker for determining which cow spread BLV, and we found not only one resistant allele (BoLA-DRB3*009:02), but also two other disease-resistant alleles and two disease-susceptible alleles. This designation of major alleles as markers of susceptibility or resistance can allow the determination of the susceptibility or resistance of most cows to disease. Overall, the results of this study may be useful in eliminating BLV from farms without having to separate cows into several cowsheds.
Collapse
Affiliation(s)
- Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 3510198, Japan.,Department of Food and Nutrition, Jumonji University, Niiza, Saitama, 352-8510, Japan
| | - Ayumu Ohno
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
23
|
Peters SO, Hussain T, Adenaike AS, Adeleke MA, De Donato M, Hazzard J, Babar ME, Imumorin IG. Genetic Diversity of Bovine Major Histocompatibility Complex Class II DRB3 locus in cattle breeds from Asia compared to those from Africa and America. J Genomics 2018; 6:88-97. [PMID: 29928467 PMCID: PMC6004549 DOI: 10.7150/jgen.26491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Genetic polymorphisms and diversity of BoLA-DRB3.2 are essential because of DRB3 gene's function in innate immunity and its association with infectious diseases resistance or tolerance in cattle. The present study was aimed at assessing the level of genetic diversity of DRB3 in the exon 2 (BoLA-DRB3.2) region in African, American and Asian cattle breeds. Amplification of exon 2 in 174 cattle revealed 15 haplotypes. The breeds with the highest number of haplotypes were Brangus (10), Sokoto Gudali (10) and Dajal (9), while the lowest number of haplotypes were found in Holstein and Sahiwal with 4 haplotypes each. Medium Joining network obtained from haplotypic data showed that all haplotypes condensed around a centric area and each sequence (except in H-3, H-51 and H-106) representing almost a specific haplotype. The BoLA-DRB3.2 sequence analyses revealed a non-significant higher rate of non-synonymous (dN) compared to synonymous substitutions (dS). The ratio of dN/dS substitution across the breeds were observed to be greater than one suggesting that variation at the antigen-binding sites is under positive selection; thus increasing the chances of these breeds to respond to wide array of pathogenic attacks. An analysis of molecular variance revealed that 94.01 and 5.99% of the genetic variation was attributable to differences within and among populations, respectively. Generally, results obtained suggest that within breed genetic variation across breeds is higher than between breeds. This genetic information will be important for investigating the relationship between BoLADRB3.2 and diseases in various cattle breeds studied with attendant implication on designing breeding programs that will aim at selecting individual cattle that carry resistant alleles.
Collapse
Affiliation(s)
- Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149.,Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Adeyemi S Adenaike
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), P/Bag X54001, Durban 4000, South Africa
| | - Marcos De Donato
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Quretaro, Mexico
| | - Jordan Hazzard
- Department of Animal Science, Berry College, Mount Berry, GA 30149
| | - Masroor E Babar
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Ikhide G Imumorin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332.,African Institute for Bioscience Research and Training, Ibadan, Nigeria
| |
Collapse
|
24
|
Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Poli MA, Miretti MM. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics 2018; 19:142. [PMID: 29439661 PMCID: PMC5812220 DOI: 10.1186/s12864-018-4523-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.
Collapse
Affiliation(s)
- Hugo A. Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Dana L. Roldan
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - María J. Beribe
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino, B2700 Pergamino, Argentina
| | - María A. Raschia
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Ariel Amadio
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P. Nani
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
| | - Gerónimo Gutierrez
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Irene Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Mario A. Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Marcos M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical (GIGA - IBS), Universidad Nacional de Misiones, N3300 Posadas, Argentina
| |
Collapse
|