1
|
DNMT3B Expression Might Contribute to Abnormal Methylation of RASSF1A in Lager Colorectal Adenomatous Polyps. Gastroenterol Res Pract 2020; 2020:1798729. [PMID: 33061956 PMCID: PMC7547352 DOI: 10.1155/2020/1798729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/04/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
Background It is pretty well known that DNA methyltransferases (DNMTs) are actively involved in abnormal cell growth. The goal of the current study is to explore the correlation between DNMT expression and colorectal adenomatous polyps (CAPs). Method Twenty pairs of CAP samples with a diameter ≥ 10 mm and corresponding normal colorectal mucosa (NCM) tissues from patients were used in the present study. The expression levels and activity of DNA methyltransferases (DNMTs) were measured in the CAP tissues. The global methylation and the promoter methylation level of 3 kinds of tumour suppressor gene were detected. Results mRNA and protein levels of DNMT3B were found to be elevated in the CAP tissues compared with the control tissue. Additionally, the methylation of long interspersed nuclear elements-1 (LINE-1/L1) was decreased in the CAP tissue. Furthermore, methylation of the promoter of a tumour suppressor gene Ras association domain family 1A (RASSF1A) was increased in the CAP tissues, while the mRNA levels of RASSF1A were decreased. Conclusions These results suggest that the overexpression of DNMT3B may contribute to a role in the genesis of CAPs through the hypomethylation of chromosomes in the whole cell and promoter hypermethylation of RASSF1A.
Collapse
|
2
|
Sabit H, Abdel-Ghany SE, M Said OA, Mostafa MA, El-Zawahry M. Metformin Reshapes the Methylation Profile in Breast and Colorectal Cancer Cells. Asian Pac J Cancer Prev 2018; 19:2991-2999. [PMID: 30371994 PMCID: PMC6291041 DOI: 10.22034/apjcp.2018.19.10.2991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With no sharp cure, breast cancer still be the major and the most serious life-threatening disease worldwide. Colorectal is the third most commonly occurring cancer in men and the second most commonly occurring cancer in women. In the present investigation, colon cancer cells (CaCo-2) and breast cancer cells (MCF-7) were treated with elevated doses of metformin (MET) for 48h. Cell count was assessed using trypan blue test, and the cytotoxicity was evaluated using MTT assay. Methylation-specific PCR was performed on the bisulfite-treated DNA against two tumor suppressor genes; RASSF1A and RB. Results indicated that: in breast cancer, the cell count was decreased significantly (P>0.005) after being treated with 5, 10, 20, 50, and 100 mM of MET. The elevated concentration had increased reduction percentages on the MCF-7 cells, as 5 mM and 100 mM have yielded 35% and 93.3% reduction in cell viability, respectively. Colon cancer cells have responded to the doses of MET differently, as for the 5 mM and the 100 mM, it gave 88% and 60% reduction in cells viability, respectively. Cytotoxicity assay revealed that 5 mM and 100 mM of MET caused breast cancer cells to loss 61.53% and 85.16% of its viability, respectively, whereas colon cancer cells have responded to the 5 mM and 100 mM of MET by reducing the cells viability with 96.91% and 96.24%, respectively. No RB promoter methylation was detected in colon cells, while RASSF1A was partially methylated. In the MCF-7 breast cancer cells, both RASSF1A and RB were partially methylated.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia.
| | | | | | | | | |
Collapse
|
3
|
Pan R, Zhou C, Dai J, Ying X, Yu H, Zhong J, Zhang Y, Wu B, Mao Y, Wu D, Ying J, Zhang W, Duan S. Endothelial PAS domain protein 1 gene hypomethylation is associated with colorectal cancer in Han Chinese. Exp Ther Med 2018; 16:4983-4990. [PMID: 30542453 PMCID: PMC6257466 DOI: 10.3892/etm.2018.6856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1) serves a role in angiogenesis, which is important for the development of tumors, including colorectal cancer (CRC). The current study aimed to estimate whether EPAS1 methylation was associated with CRC. A two-stage association study of EPAS1 methylation and CRC was conducted. In the first phase, EPAS1 methylation was evaluated in the tumor and adjacent non-tumor tissue samples from 41 patients with sporadic CRC in Jiangsu province, China. The diagnostic value of methylation of EPAS1 for CRC in the second phase was evaluated in 79 patients with sporadic CRC and 22 normal individuals in Zhejiang province, China. The methylation assay was performed using a quantitative methylation-specific polymerase chain reaction (qMSP) method. The percentage of methylated reference (PMR) was used to quantify the methylation level. The first-stage results indicated that EPAS1 promoter methylation was significantly lower in CRC tumor tissues compared with 5-cm-para-tumor tissues (median PMR, 0.59 vs. 1.22%; P=0.027) and 10-cm-para-tumor tissues (median PMR, 0.59 vs. 1.89%; P=0.001). In addition, the second-stage results indicated that EPAS1 promoter methylation was significantly lower in tumor tissues compared with 5-cm-para-tumor tissues (median PMR, 1.91 vs. 6.25%; P=3×10−7) and normal intestinal tissues from healthy controls (median PMR, 1.91 vs. 28.4%; P=5×10−7). Receiver Operating Characteristic curve analysis of the second-stage data indicated that the highest area under the curve of EPAS1 hypomethylation was 0.851 between Zhejiang CRC tissues and Zhejiang normal intestinal tissues (sensitivity, 95.5%; specificity, 60.8%).
Collapse
Affiliation(s)
- Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yihan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Boyi Wu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
4
|
Pan R, Yu H, Dai J, Zhou C, Ying X, Zhong J, Zhao J, Zhang Y, Wu B, Mao Y, Wu D, Ying J, Duan S. Significant association of PRMT6 hypomethylation with colorectal cancer. J Clin Lab Anal 2018; 32:e22590. [PMID: 29927001 DOI: 10.1002/jcla.22590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein arginine N-methyltransferase 6 (PRMT6) was deemed to be indispensable in the variety of biological processes. Upregulated PRMT6 was found in various human diseases including cancer. Herein, we investigated the performance of PRMT6 methylation in the diagnosis for CRC. METHODS A quantitative methylation-specific polymerase chain reaction (qMSP) method was used to measure PRMT6 promoter methylation. The percentage of methylated reference (PMR) was applied to represent gene methylation level. RESULTS Our data indicated that PRMT6 promoter methylation levels were significantly lower in CRC tissues than those in paired nontumor tissues (median PMR: 36.93% vs 63.12%, P = 1E-6) and normal intestinal tissues (median PMR: 36.93% vs 506.55%, P = 8E-12). We further examined the potential role of PRMT6 hypomethylation by the receiver operating characteristic (ROC) curve. Our results showed that the area under the curve (AUC) was 0.644 (95% CI = 0.596-0.733) between CRC tissues and paired nontumor tissues, 0.958 (95% CI = 0.919-0.998) between CRC tissues and normal intestinal tissues, and 0.899 (95% CI = 0.825-0.972) between paired nontumor tissues and normal intestinal tissues. CONCLUSION Our study firstly indicated that the hypomethylation of PRMT6 promoter could be a novel diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yihan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Boyi Wu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
The relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma: A meta-analysis and bioinformatics. PLoS One 2017; 12:e0171676. [PMID: 28207831 PMCID: PMC5312935 DOI: 10.1371/journal.pone.0171676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/24/2017] [Indexed: 01/23/2023] Open
Abstract
Background The function of the tumor suppressor gene RASSF1A in cancer cells has been detailed in many studies. However, due to the methylation of its promoter, the expression of RASSF1A is missing in most cancers. In the literature, we found that the conclusion regarding the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma was not unified. This study adopts the use of a meta-analysis and bioinformatics to explore the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma. Methods Data on melanoma susceptibility were downloaded from the PubMed, Cochrane Library, Web of Science and Google Scholar databases, which were analyzed via a meta-analysis. The effect sizes were estimated by measuring an odds ratio (OR) with a 95% confidence interval (CI). We also used a chi-squared-based Q test to examine the between-study heterogeneity, and used funnel plots to evaluate publication bias. The data on melanoma prognosis, which were analyzed by bioinformatics methods, were downloaded from The Cancer Genome Atlas (TCGA) project. The effect sizes were estimated by measuring the hazard ratios (HRs) with a 95% confidence interval (CI). Results Our meta-analysis included 10 articles. We found that RASSF1A gene promoter methylation was closely related to melanoma susceptibility (OR = 12.67, 95% CI: 6.16 ∼ 26.05, z = 6.90, P<0.0001 according to a fixed effects model and OR = 9.25, 95% CI: 4.37 ∼ 19.54, z = 5.82, P<0.0001 according to a random effects model). The results of the meta-analysis did not reveal any heterogeneity (tau2 = 0.00; H = 1 [1; 1.55]; I2 = 0% [0%; 58.6%], P = 0.5158) or publication bias (t = 0.87, P = 0.4073 by Egger’s test; Z = 0.45, P = 0.6547 by Begg’s test); therefore, we believe that the results of our meta-analysis were more reliable. To explore the relationship between RASSF1A gene methylation, the prognosis of melanoma and the clinical features of this cancer type, we used the melanoma DNA methylation data and clinical data from TCGA project. We found that RASSF1A gene promoter methylation and melanoma prognosis did not demonstrate any relationship (HR was 0.94 (95% CI = [0.69; 1.27], P = 0.694) with disease-free survival and 0.74 (95% CI = [0.53; 1.05], P = 0.106) for overall survival), and no significant difference was observed between RASSF1A gene promoter methylation and the clinical-pathological features of melanoma. Conclusions In conclusion, the meta-analysis of the data in these articles provides strong evidence that the methylation status of the RASSF1A gene promoter was strongly related to melanoma susceptibility. Our bioinformatics analysis revealed no significant difference between RASSF1A gene promoter methylation and the prognosis and clinical-pathological features of melanoma.
Collapse
|
6
|
Shim HJ, Lee R, Shin MH, Kim HN, Kweon SS. Association between the TCF7L2 polymorphism and colorectal cancer does not differ by diabetes and obesity statuses. Cancer Epidemiol 2016; 45:108-111. [PMID: 27792933 DOI: 10.1016/j.canep.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
This study evaluated the association between polymorphism in a newly identified locus, rs11196172, located in transcription factors 7-like 2 (TCF7L2) and colorectal cancer (CRC) risk according to diabetes and obesity statuses. A study enrolled 6138 CRC patients and 4367 community controls. The adjusted odds ratios (aORs) with age, sex, smoking, and body mass index of the A allele, compared with the G allele, was 1.08 (95% CI 1.01-1.16). The significantly higher risk of CRC with the A allele remained after adjusting for diabetic status (aOR 1.07, 95% CI 1.01-1.15). When stratified by diabetic or obesity status, significant associations between TCF7L2 polymorphism and CRC risk were limited to non-diabetic or normal-weight subjects. No significant interactions between the A/G allele and diabetes status or the A/G allele and overweight status were found. The results indicated that the TCF7L2 rs11196172 polymorphism increases the risk of CRC independently, with no evidence of an interaction with diabetes or obesity.
Collapse
Affiliation(s)
- Hyun-Jeong Shim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Ran Lee
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea; Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Korea
| | - Hee-Nam Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea; Jeonnam Regional Cancer center, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea.
| |
Collapse
|
7
|
Skrypkina I, Tsyba L, Onyshchenko K, Morderer D, Kashparova O, Nikolaienko O, Panasenko G, Vozianov S, Romanenko A, Rynditch A. Concentration and Methylation of Cell-Free DNA from Blood Plasma as Diagnostic Markers of Renal Cancer. DISEASE MARKERS 2016; 2016:3693096. [PMID: 27725787 PMCID: PMC5048037 DOI: 10.1155/2016/3693096] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022]
Abstract
The critical point for successful treatment of cancer is diagnosis at early stages of tumor development. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA (cfDNA) circulating in the blood is a convenient tumor-associated DNA marker. Therefore methylated cfDNA can be used as a minimally invasive diagnostic marker. We analysed the concentration of plasma cfDNA and methylation of six tumor suppressor genes in samples of 27 patients with renal cancer and 15 healthy donors as controls. The cfDNA concentrations in samples from cancer patients and healthy donors was measured using two different methods, the SYBR Green I fluorescence test and quantitative real-time PCR. Both methods revealed a statistically significant increase of cfDNA concentrations in cancer patients. Hypermethylation on cfDNA was detected for the LRRC3B (74.1%), APC (51.9%), FHIT (55.6%), and RASSF1 (62.9%) genes in patients with renal cancer. Promoter methylation of VHL and ITGA9 genes was not found on cfDNA. Our results confirmed that the cfDNA level and methylation of CpG islands of RASSF1A, FHIT, and APC genes in blood plasma can be used as noninvasive diagnostic markers of cancer.
Collapse
Affiliation(s)
- Inessa Skrypkina
- Department of Functional Genomics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Liudmyla Tsyba
- Department of Functional Genomics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Kateryna Onyshchenko
- Department of Functional Genomics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Dmytro Morderer
- Department of Functional Genomics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olena Kashparova
- Department of Functional Genomics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Oleksii Nikolaienko
- Department of Functional Genomics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Grigory Panasenko
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Sergii Vozianov
- Institute of Urology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Alina Romanenko
- Institute of Urology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Alla Rynditch
- Department of Functional Genomics, Institute of Molecular Biology and Genetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Wang HL, Liu P, Zhou PY, Zhang Y. Retraction: Promoter Methylation of the RASSF1A Gene may Contribute to Colorectal Cancer Susceptibility: A Meta-Analysis of Cohort Studies. Ann Hum Genet 2016; 80:246. [PMID: 27346737 DOI: 10.1111/ahg.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- He-Ling Wang
- Department of General Surgery; Shengjing Hospital of China Medical University; Shenyang 110022 P.R. China
| | - Peng Liu
- Department of General Surgery; Shengjing Hospital of China Medical University; Shenyang 110022 P.R. China
| | - Ping-Yi Zhou
- Department of General Surgery; Shengjing Hospital of China Medical University; Shenyang 110022 P.R. China
| | - Yu Zhang
- Department of General Surgery; Shengjing Hospital of China Medical University; Shenyang 110022 P.R. China
| |
Collapse
|
9
|
LIU AIYUN, LIU MINGNA, PEI FENGHUA, CHEN JING, WANG XINHONG, LIU DAN, DU YAJU, LIU BINGRONG. Functional characterization of the nitrogen permease regulator-like-2 candidate tumor suppressor gene in colorectal cancer cell lines. Mol Med Rep 2015; 12:3487-3493. [PMID: 26044952 PMCID: PMC4526051 DOI: 10.3892/mmr.2015.3881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/30/2015] [Indexed: 01/29/2023] Open
Abstract
The nitrogen permease regulator‑like‑2 (NPRL2) gene is a candidate tumor suppressor gene, which has been identified in the 3p21.3 human chromosome region. Decreased expression levels of NPRL2 have been observed in colorectal cancer (CRC) tissues, however, the function of NPRL2 in CRC progression remains to be fully elucidated. The present study investigated the biological characteristics of the HCT116 and HT29 CRC cell lines overexpressing exogenous NPRL2. NPRL2 recombinant lentiviral vectors were also constructed and transfected in the present study. Cell growth was determined using a Cell Counting Kit‑8 assay and a colony formation assay. The cell cycle and rate of apoptosis were assessed using flow cytometric analysis. Transwell assays were used to evaluate cell invasion. The protein expression of phosphorylated (p)‑AKT and caspase 3, B‑cell lymphoma 2 (Bcl2) and Bcl‑2‑associated X protein apoptosis‑associated genes, were detected using western blotting. The results revealed that NPRL2 overexpression inhibited cell growth, induced cell cycle G1 phase arrest, promoted apoptosis and inhibited invasion in the two human CRC cell lines. Furthermore, the protein expression levels of p‑AKT and Bcl2 were significantly reduced in the NPRL2‑transfected HCT116 and HT29 cells, compared with the mock‑transfected group and control group, while the protein expression of caspase‑3 was increased. Therefore, NPRL2 acted as a functional tumor suppressor in the CRC cell lines.
Collapse
Affiliation(s)
- AI-YUN LIU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - MING-NA LIU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - FENG-HUA PEI
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - JING CHEN
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - XIN-HONG WANG
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - DAN LIU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - YA-JU DU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - BING-RONG LIU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
10
|
Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer 2015; 113:372-81. [PMID: 26158424 PMCID: PMC4522630 DOI: 10.1038/bjc.2015.221] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
The high frequency of RASSF1A methylation has been noted in a vast number of patients in a broad spectrum of malignancies, suggesting that RASSF1A inactivation is associated with cancer pathogenesis. However, whether this recurrent incidence of RASSF1A hypermethylation in human malignancies and its association with more aggressive tumour phenotype is a frequent event across different cancer types has not yet been discussed. In this review, we interrogated existing evidence for association of RASSF1A hypermethylation with clinicopathological characteristics that can indicate more invasive lesions.
Collapse
Affiliation(s)
- A M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| | - E O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Du Z, Ma K, Sun X, Li A, Wang H, Zhang L, Lin F, Feng X, Song J. Methylation of RASSF1A gene promoter and the correlation with DNMT1 expression that may contribute to esophageal squamous cell carcinoma. World J Surg Oncol 2015; 13:141. [PMID: 25886188 PMCID: PMC4403718 DOI: 10.1186/s12957-015-0557-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/23/2015] [Indexed: 01/10/2023] Open
Abstract
Background Esophageal squamous cell carcinoma is one of the most common malignancies in the world. Studies have confirmed that there are many genes abnormally hypermethylated in esophageal squamous cell carcinoma. The objective is to detect methylation of the RASSF1A gene promoter and the expression of the DNA methyltransferase 1 (DNMT1) protein in esophageal cancer tissue and discuss their relationship with esophageal squamous cell carcinoma. Methods The CpG island methylation status of RASSF1A genes were analyzed in 100 cases of tumor specimens as well as their adjacent tissues which was used for methylation-specific polymerase chain reaction (MSP). The expression of DNMT1 protein was determined by immunohistochemistry. Difference between measurement data and categorical data was compared through analysis of t test and chi-square test. All the statistics were taken with a bilateral test. The difference was statistically significant (P < 0.05). Results The promoter methylation of the RASSF1A gene promoter has been detected in 45 out of 100 (45%) esophageal squamous carcinoma cases, while methylation of RASSF1A gene has been detected in 2 out of 100 adjacent normal tissues (2%). The RASSF1A gene promoter was highly methylated in cancer tissues, and there were significant differences between normal esophagus tissues and esophageal squamous carcinoma (P < 0.05). The expression of DNMT1 protein has been detected in 61 out of 100 (61%) esophageal squamous carcinoma cases, including 41 cases in the above 45 methylated samples of RASSF1A gene promoter, and none in adjacent tissues. DNMT1 proteins are highly expressed in cancer tissues, and there were significant differences (P < 0.05). In positive cases for methylation of RASSF1A, the DNMT1 protein had been detected in 41 out of 45 (91%), while in non-methylated cancer cases, 20 out of 55(36.3%), and the difference is significant (P < 0.05). Conclusions Esophageal squamous carcinoma tumorigenesis may be related with hypermethylation of DNMT1 and RASSF1A promoter CpG island due to their high expression and also their hypermethylation.
Collapse
Affiliation(s)
- Zhenzong Du
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Kui Ma
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Xiaolin Sun
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Angui Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Haiyong Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Lifei Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Feng Lin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Xiaoyan Feng
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Jianfei Song
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
12
|
Tao H, Yang JJ, Chen ZW, Xu SS, Zhou X, Zhan HY, Shi KH. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 2014; 323:42-50. [DOI: 10.1016/j.tox.2014.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|