1
|
Urban MC. Climate change extinctions. Science 2024; 386:1123-1128. [PMID: 39636977 DOI: 10.1126/science.adp4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Climate change is expected to cause irreversible changes to biodiversity, but predicting those risks remains uncertain. I synthesized 485 studies and more than 5 million projections to produce a quantitative global assessment of climate change extinctions. With increased certainty, this meta-analysis suggests that extinctions will accelerate rapidly if global temperatures exceed 1.5°C. The highest-emission scenario would threaten approximately one-third of species, globally. Amphibians; species from mountain, island, and freshwater ecosystems; and species inhabiting South America, Australia, and New Zealand face the greatest threats. In line with predictions, climate change has contributed to an increasing proportion of observed global extinctions since 1970. Besides limiting greenhouse gases, pinpointing which species to protect first will be critical for preserving biodiversity until anthropogenic climate change is halted and reversed.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Center of Biological Risk, University of Connecticut, Storrs, CT, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Raj U, Banerjee A, Ray S, Bhattacharya S. Structure of higher-order interactions in social-ecological networks through Q-analysis of their neighbourhood and clique complex. PLoS One 2024; 19:e0306409. [PMID: 39186487 PMCID: PMC11346666 DOI: 10.1371/journal.pone.0306409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/17/2024] [Indexed: 08/28/2024] Open
Abstract
This paper studies higher-order interactions in social-ecological networks, which formally represent interactions within the social and ecological units of an ecosystem. Many real-world social ecosystems exhibit not only pairwise interactions but also higher-order interactions among their units. Therefore, the conventional graph-theoretic description of networks falls short of capturing these higher-order interactions due to the inherent limitations of the graph definition. In this work, a mathematical framework for capturing the higher-order interactions of a social-ecological system has been given by incorporating notions from combinatorial algebraic topology. In order to achieve this, two different simplicial complexes, the clique and the neighbourhood complex, have been constructed from a pairwise social-ecological network. As a case study, the Q-analysis and a structural study of the interactions in the rural agricultural system of southern Madagascar have been done at various structural levels denoted by q. The results obtained by calculating all the structural vectors for both simplicial complexes, along with exciting results about the participation of facets of the clique complex at different q-levels, have been discussed. This work also establishes significant theorems concerning the dimension of the neighbourhood complex and clique complex obtained from the parent pairwise network.
Collapse
Affiliation(s)
- Udit Raj
- Department of Mathematics, School of Natural Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Greater Noida, Uttar Pradesh, India
| | - Arnab Banerjee
- Department of Zoology, School of Life Sciences, Sikkim University (A Central University), Gangtok, Sikkim, India
| | - Santanu Ray
- School of Informatics, Kerala University of Digital Sciences, Innovation and Technology, Veiloor, Kerala, India
| | - Sudeepto Bhattacharya
- Department of Mathematics, School of Natural Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Mondanaro A, Di Febbraro M, Castiglione S, Belfiore AM, Girardi G, Melchionna M, Serio C, Esposito A, Raia P. Modelling reveals the effect of climate and land use change on Madagascar's chameleons fauna. Commun Biol 2024; 7:889. [PMID: 39034315 PMCID: PMC11271463 DOI: 10.1038/s42003-024-06597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
The global biodiversity crisis is generated by the combined effects of human-induced climate change and land conversion. Madagascar is one of the World's most renewed hotspots of biodiversity. Yet, its rich variety of plant and animal species is threatened by deforestation and climate change. Predicting the future of Madagascar's chameleons, in particular, is complicated by their ecological rarity, making it hard to tell which factor is the most menacing to their survival. By applying an extension of the ENphylo species distribution model algorithm to work with extremely rare species, we find that Madagascar chameleons will face intense species loss in the north-western sector of the island. Land conversion by humans will drive most of the loss, and will intersect in a complex, nonlinear manner with climate change. We find that some 30% of the Madagascar's chameleons may lose in the future nearly all their habitats, critically jeopardizing their chance for survival.
Collapse
Affiliation(s)
| | - Mirko Di Febbraro
- EnviXLab, Department of Biosciences and Territory, University of Molise, 86090, Pesche, (Isernia), Italy
| | | | - Arianna Morena Belfiore
- EnviXLab, Department of Biosciences and Territory, University of Molise, 86090, Pesche, (Isernia), Italy
| | - Giorgia Girardi
- DiSTAR, University of Naples Federico II, 80126, Naples, Italy
| | | | - Carmela Serio
- DiSTAR, University of Naples Federico II, 80126, Naples, Italy
| | | | - Pasquale Raia
- DiSTAR, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
4
|
Karimi N, Hanes MM. Patterns of Grewia (Malvaceae) diversity across geographical scales in Africa and Madagascar. ANNALS OF BOTANY 2024; 133:773-788. [PMID: 38243607 PMCID: PMC11082522 DOI: 10.1093/aob/mcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND AND AIMS Quantifying spatial species richness is useful to describe biodiversity patterns across broad geographical areas, especially in large, poorly known plant groups. We explore patterns and predictors of species richness across Africa in one such group, the palaeotropical genus Grewia L. (Malvaceae). METHODS Grewia species richness was quantified by extracting herbarium records from GBIF and Tropicos and creating geographical grids at varying spatial scales. We assessed predictors of species richness using spatial regression models with 30 environmental variables. We explored species co-occurrence in Madagascar at finer resolutions using Schoener's index and compared species range sizes and International Union for Conservation of Nature status among ecoregions. Lastly, we derived a trait matrix for a subset of species found in Madagascar to characterize morphological diversity across space. KEY RESULTS Grewia species occur in 50 countries in Africa, with the highest number of species in Madagascar (93, with 80 species endemic). Species richness is highest in Madagascar, with ≤23 Grewia species in a grid cell, followed by coastal Tanzania/Kenya (≤13 species) and northern South Africa and central Angola (11 species each). Across Africa, higher species richness was predicted by variables related to aridity. In Madagascar, a greater range in environmental variables best predicted species richness, consistent with geographical grid cells of highest species richness occurring near biome/ecoregion transitions. In Madagascar, we also observe increasing dissimilarity in species composition with increasing geographical distance. CONCLUSIONS The spatial patterns and underlying environmental predictors that we uncover in Grewia represent an important step in our understanding of plant distribution and diversity patterns across Africa. Madagascar boasts nearly twice the Grewia species richness of the second most species-rich country in Africa, which might be explained by complex topography and environmental conditions across small spatial scales.
Collapse
Affiliation(s)
- Nisa Karimi
- Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110, USA
| | - Margaret M Hanes
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
5
|
Wiens JJ, Zelinka J. How many species will Earth lose to climate change? GLOBAL CHANGE BIOLOGY 2024; 30:e17125. [PMID: 38273487 DOI: 10.1111/gcb.17125] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Joseph Zelinka
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Ferreira MR, Belluardo F, Cocca W, Crottini A, Carvalho SB. A conservation planning strategy applied to the evolutionary history of the mantellid frogs of Madagascar. NPJ BIODIVERSITY 2023; 2:21. [PMID: 39242839 PMCID: PMC11332064 DOI: 10.1038/s44185-023-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/04/2023] [Indexed: 09/09/2024]
Abstract
Phylogenetic diversity is an increasingly applied metric used to maximize the representation of evolutionary history in spatial conservation planning. When following this approach, researchers commonly overlook sites with a relatively higher proportion of recently diverged endemic species, also known as centers of neo-endemism. Here we aim to demonstrate how targeting the conservation of different facets of diversity (taxonomic diversity, phylogenetic diversity and centers of endemism) can provide more cost-effective solutions to the conservation of the all evolutionary spectrum of biodiversity. We do so by using the mantellid frogs of Madagascar as a case study. Our results confirm that areas with high concentrations of neo-endemism can be effectively identified as conservation planning priorities only if we specifically target them. Neglecting areas that are poor in phylogenetic diversity may therefore compromise the maintenance of diversification processes, particularly when lesser proportions of the landscape are protected. This approach can be of particular interest to island ecosystems, since they often harbor unique and restricted evolutionary radiations.
Collapse
Affiliation(s)
- Miguel R Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Francesco Belluardo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Walter Cocca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Sílvia B Carvalho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|