1
|
Barreto RDSN, Mançanares ACF, Miglino MA, Meirelles FV, Oliveira LDJ. Expression of MHC I Isoforms in Bovine Placentomes: Impact of Cloning. Vet Sci 2025; 12:196. [PMID: 40266903 PMCID: PMC11946372 DOI: 10.3390/vetsci12030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
Major histocompatibility complex class I (MHC-I) gene expression in the placenta is modulated to tailor the maternal immune response to fetal antigens during pregnancy. This study evaluated MHC-I expression through immunohistochemistry (IHC) using an anti-mouse preimplantation embryo development (PED) clone Qa-2 and anti-bovine leukocyte antigen I (BoLA) monoclonal antibody clone IL-A88 (n = 23), as well as RT-qPCR (n = 17) for classical and non-classical (BoLA-NC) genes in control and cloned bovine placentomes during early and near-term gestation. Control samples showed minimal Qa-2 protein expression in early gestation, with intense labeling in trophoblasts and the maternal uterine epithelium near term. In contrast, cloned samples exhibited intense Qa-2 labeling in both maternal and trophoblastic epithelia at both stages, while trophoblast giant cells (TGCs), located apposed to the maternal epithelium, showed no labeling. Control samples exhibited intense IL-A88 labeling in the maternal epithelium at both stages. In cloned samples, weak to no labeling was observed in early gestation, with intense labeling in maternal and fetal epithelium near term. RT-qPCR revealed significant upregulation of BoLA-NC3 in early gestation, with sustained elevated expression in cloned samples in the near term. These findings suggest that altered BoLA protein expression and gene regulation in cloned pregnancies may contribute to pregnancy complications and increased losses.
Collapse
Affiliation(s)
| | | | - Maria Angelica Miglino
- Department of Veterinary Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - Lilian de Jesus Oliveira
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Zheng H, Guan X, Meng X, Tong Y, Wang Y, Xie S, Guo L, Lu R. IFN-γ in ovarian tumor microenvironment upregulates HLA-E expression and predicts a poor prognosis. J Ovarian Res 2023; 16:229. [PMID: 38007483 PMCID: PMC10675946 DOI: 10.1186/s13048-023-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/26/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Inflammation and immunity are two main characteristics of tumor microenvironment (TME). Interferon-gamma (IFN-γ) is generally considered as a pro-inflammatory cytokine which mediates anti-tumor immune response. Recently, IFN-γ was also reported to play a protumorigenic role. However, the mechanisms of tumor-promoting effect induced by IFN-γ remain unclear. METHODS The expression of leukocyte antigen-E (HLA-E), IFN-γ, CD3 and CD56 in clinical samples of ovarian cancer was detected by mutiplexed immunohistochemistry. The mechanism to induce HLA-E overexpression by IFN-γ was explored using human ovarian cancer cell lines through western blot and flow cytometry. We further clarify the role of overexpressed-HLA-E on natural killer (NK)-mediated cell lysis. RESULTS We found that IFN-γ could upregulate HLA-E protein expression through activating of JAK/STAT1 signaling pathway, and increase cell surface HLA-E level through enhancing proteasome activity. We also observed that only high levels of membrane HLA-E expression contributed to the inhibition of NK-mediated cytotoxicity. We showed that progression-free survival (PFS) of ovarian cancer patients was negatively correlated with IFN-γ expression in their tumor tissues, due to more tumor infiltrating NK cells compared with T lymphocytes. CONCLUSIONS Our study revealed the protumorigenic role of IFN-γ by upregulation of HLA-E expression and rendering tumors less susceptible to immune attack. We also provided a novel insight into the relationship between tumor microenvironment and immune evasion.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaolin Guan
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Xin Meng
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Li C, Li S, Yang C, Ding Y, Zhang Y, Wang X, Zhou X, Su Z, Ming W, Zeng L, Ma Y, Shi Y, Kang X. Blood transcriptome reveals immune and metabolic-related genes involved in growth of pasteurized colostrum-fed calves. Front Genet 2023; 14:1075950. [PMID: 36814903 PMCID: PMC9939824 DOI: 10.3389/fgene.2023.1075950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The quality of colostrum is a key factor contributing to healthy calf growth, and pasteurization of colostrum can effectively reduce the counts of pathogenic microorganisms present in the colostrum. Physiological changes in calves fed with pasteurized colostrum have been well characterized, but little is known about the underlying molecular mechanisms. In this study, key genes and functional pathways through which pasteurized colostrum affects calf growth were identified through whole blood RNA sequencing. Our results showed that calves in the pasteurized group (n = 16) had higher body height and daily weight gain than those in the unpasteurized group (n = 16) in all months tested. Importantly, significant differences in body height were observed at 3 and 4 months of age (p < 0.05), and in daily weight gain at 2, 3, and 6 months of age (p < 0.05) between the two groups. Based on whole blood transcriptome data from 6-months old calves, 630 differentially expressed genes (DEGs), of which 235 were upregulated and 395 downregulated, were identified in the pasteurized compared to the unpasteurized colostrum groups. Most of the DEGs have functions in the immune response (e.g., CCL3, CXCL3, and IL1A) and metabolism (e.g., PTX3 and EXTL1). Protein-protein interaction analyses of DEGs revealed three key subnetworks and fifteen core genes, including UBA52 and RPS28, that have roles in protein synthesis, oxidative phosphorylation, and inflammatory responses. Twelve co-expression modules were identified through weighted gene co-expression network analysis. Among them, 17 genes in the two modules that significantly associated with pasteurization were mainly involved in the tricarboxylic acid cycle, NF-kappa B signaling, and NOD-like receptor signaling pathways. Finally, DEGs that underwent alternative splicing in calves fed pasteurized colostrum have roles in the immune response (SLCO4A1, AKR1C4, and MED13L), indicative of potential roles in immune regulation. Results from multiple analytical methods used suggest that differences in calf growth between the pasteurized and unpasteurized groups may be due to differential immune activity. Our data provide new insights into the impact of pasteurization on calf immune and metabolic-related pathways through its effects on gene expression.
Collapse
|
4
|
Davies CJ, Fan Z, Morgado KP, Liu Y, Regouski M, Meng Q, Thomas AJ, Yun SI, Song BH, Frank JC, Perisse IV, Van Wettere A, Lee YM, Polejaeva IA. Development and characterization of type I interferon receptor knockout sheep: A model for viral immunology and reproductive signaling. Front Genet 2022; 13:986316. [PMID: 36246651 PMCID: PMC9556006 DOI: 10.3389/fgene.2022.986316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Type I interferons (IFNs) initiate immune responses to viral infections. Their effects are mediated by the type I IFN receptor, IFNAR, comprised of two subunits: IFNAR1 and IFNAR2. One or both chains of the sheep IFNAR were disrupted in fetal fibroblast lines using CRISPR/Cas9 and 12 lambs were produced by somatic cell nuclear transfer (SCNT). Quantitative reverse transcription-polymerase chain reaction for IFN-stimulated gene expression showed that IFNAR deficient sheep fail to respond to IFN-alpha. Furthermore, fibroblast cells from an IFNAR2−/− fetus supported significantly higher levels of Zika virus (ZIKV) replication than wild-type fetal fibroblast cells. Although many lambs have died from SCNT related problems or infections, one fertile IFNAR2−/− ram lived to over 4 years of age, remained healthy, and produced more than 80 offspring. Interestingly, ZIKV infection studies failed to demonstrate a high level of susceptibility. Presumably, these sheep compensated for a lack of type I IFN signaling using the type II, IFN-gamma and type III, IFN-lambda pathways. These sheep constitute a unique model for studying the pathogenesis of viral infection. Historical data supports the concept that ruminants utilize a novel type I IFN, IFN-tau, for pregnancy recognition. Consequently, IFNAR deficient ewes are likely to be infertile, making IFNAR knockout sheep a valuable model for studying pregnancy recognition. A breeding herd of 32 IFNAR2+/− ewes, which are fertile, has been developed for production of IFNAR2−/− sheep for both infection and reproduction studies.
Collapse
Affiliation(s)
- Christopher J. Davies
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Christopher J. Davies, ; Irina A. Polejaeva,
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Kira P. Morgado
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Aaron J. Thomas
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Sang-Im Yun
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Byung-Hak Song
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Jordan C. Frank
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Iuri V. Perisse
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Arnaud Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Young-Min Lee
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Christopher J. Davies, ; Irina A. Polejaeva,
| |
Collapse
|
5
|
Rutigliano HM, Thomas AJ, Umbaugh JJ, Wilhelm A, Sessions BR, Kaundal R, Duhan N, Hicks BA, Schlafer DH, White KL, Davies CJ. Increased expression of pro-inflammatory cytokines at the fetal-maternal interface in bovine pregnancies produced by cloning. Am J Reprod Immunol 2022; 87:e13520. [PMID: 34974639 PMCID: PMC9285385 DOI: 10.1111/aji.13520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
PROBLEM A significant rate of spontaneous abortion is observed in cattle pregnancies produced by somatic cell nuclear transfer (SCNT). Major histocompatibility complex class I (MHC-I) proteins are abnormally expressed on the surface of trophoblast cells from SCNT conceptuses. METHOD OF STUDY MHC-I homozygous compatible (n = 9), homozygous incompatible (n = 8), and heterozygous incompatible (n = 5) pregnancies were established by SCNT. Eight control pregnancies were established by artificial insemination. Uterine and trophoblast samples were collected on day 35 ±1 of pregnancy, the expression of immune-related genes was examined by qPCR, and the expression of trophoblast microRNAs was assessed by sequencing. RESULTS Compared to the control group, trophoblast from MHC-I heterozygous incompatible pregnancies expressed increased levels of CD28, CTLA4, CXCL8, IFNG, IL1A, IL2, IL10, IL12B, TBX21, and TNF, while GNLY expression was downregulated. The MHC-I homozygous incompatible treatment group expressed increased levels of IFNG, IL1A, and IL2 while the MHC-I homozygous compatible group did not differentially express any genes compared to the control group. In the endometrium, relative to the control group, MHC-I heterozygous incompatible pregnancies expressed increased levels of CD28, CTLA4, CXCL8, IFNG, IL10, IL12B, and TNF, while GATA3 expression was downregulated. The MHC-I homozygous incompatible group expressed decreased amounts of CSF2 transcripts compared with the control group but did not have abnormal expression of any other immune-related genes. MHC-I incompatible pregnancies had 40 deregulated miRNAs compared to control pregnancies and 62 deregulated microRNAs compared to MHC-I compatible pregnancies. CONCLUSIONS MHC-I compatibility between the dam and fetus prevented an exacerbated maternal immune response from being mounted against fetal antigens.
Collapse
Affiliation(s)
- Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Janae J Umbaugh
- School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Amanda Wilhelm
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Benjamin R Sessions
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Rakesh Kaundal
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA.,Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Naveen Duhan
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA.,Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Brady A Hicks
- J.R. Simplot Company Cattle Reproduction Facility, Boise, Idaho, USA
| | - Donald H Schlafer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| |
Collapse
|
6
|
Wei J, Liu Y, Zhao C. Integrated Analysis of FAM57A Expression and Its Potential Roles in Hepatocellular Carcinoma. Front Oncol 2021; 11:719973. [PMID: 34790567 PMCID: PMC8591096 DOI: 10.3389/fonc.2021.719973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
Background Family with sequence similarity 57 member A (FAM57A) is a membrane associated gene contributing to lung carcinogenesis. In hepatocellular carcinoma (HCC) and other cancers, whether FAM57A exerts similar roles has been rarely reported. Herein, the biological functions and clinical significance of FAM57A in HCC were explored. Methods Initially the differential expression of FAM57A between nontumor and HCC tissues was validated using a number of publicly accessible databases and immunohistochemistry (IHC). Then, the Kruskal–Wallis rank sum test or the Wilcoxon rank sum test as well as logistic regression were employed to analyze the association of FAM57A expression with clinical characteristics of HCC. The Cox regression and Kaplan–Meier analyses were conducted to assess the prognostic significance. Besides, with the coexpression analysis, Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the molecular pathomechanisms that were mediated by FAM57A in HCC were elucidated. Furthermore, the correlations between FAM57A expression and tumor-infiltrating immune cells (TIICs) or immune checkpoint genes were analyzed. Finally, in vitro cell functional assay was carried out to preliminarily verify the role of FAM57A in HCC. Results FAM57A expression was demonstrated to be higher in HCC samples than in nontumor samples (all p-values <0.05), statistically correlated with clinicopathological characteristics (clinical stage, T stage, pathological grade), and inversely correlated to HCC patient survival. Univariate and multivariate Cox regression analyses showed that FAM57A expression could independently predict prognosis in HCC patients. Functional enrichment analyses further indicated that FAM57A was involved in multiple tumor-related pathways. FAM57A expression was positively correlated with TIICs, gene markers of TIICs, as well as immune checkpoint genes. Also, high expression of FAM57A predicted a poor prognosis for HCC based on immune cell subgroups. Functional assay of FAM57A knockdown significantly inhibited cell proliferation and induced cell apoptosis in HCC cells. Conclusions Our results indicated that FAM57A could be used as a biomarker to predict the prognosis and immunotherapy response for HCC patients and might function as an oncogene to promote HCC progression.
Collapse
Affiliation(s)
- Junwei Wei
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Gastroenterology, The First Hospital of Handan City, Handan, China
| | - Yun Liu
- Department of General Surgery, The First Hospital of Handan City, Handan, China
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
DNA methylation studies in cattle. J Appl Genet 2021; 62:121-136. [PMID: 33400132 DOI: 10.1007/s13353-020-00604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Investigation of the role of epigenetics in cattle breeding is gaining importance. DNA methylation represents an epigenetic modification which is essential for genomic stability and maintenance of development. Recently, DNA methylation research in cattle has intensified. The studies focus on the definition of methylomes in various organs and tissues in relation to the expression of genes underlying economically important traits, and explore methylome changes under developmental, environmental, disease, and diet influences. The investigations further characterize the methylation patterns of gametes in connection with their quality, and study methylome alterations in the developing naturally or assisted produced zygotes, embryos, and fetuses, considering their viability. A wide array of technologies developed for accurate and precise analysis of DNA methylation patterns is employed for both single-gene and genome-wide studies. Overall, the research is directed towards the identification of single methylation markers or their combinations which may be useful in the selection and breeding of animals to ensure cattle improvement.
Collapse
|
8
|
Xu F, He L, Zhan X, Chen J, Xu H, Huang X, Li Y, Zheng X, Lin L, Chen Y. DNA methylation-based lung adenocarcinoma subtypes can predict prognosis, recurrence, and immunotherapeutic implications. Aging (Albany NY) 2020; 12:25275-25293. [PMID: 33234739 PMCID: PMC7803536 DOI: 10.18632/aging.104129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
The marked heterogeneity of lung adenocarcinoma (LUAD) makes its diagnosis and treatment difficult. In addition, the aberrant DNA methylation profile contributes to tumor heterogeneity and alters the immune response. We used DNA methylation array data from publicly available databases to establish a predictive model for LUAD prognosis. Thirty-three methylation sites were identified as specific prognostic biomarkers, independent of patients' clinical characteristics. These methylation profiles were used to identify potential drug candidates and study the immune microenvironment of LUAD and response to immunotherapy. When compared with the high-risk group, the low-risk group had a lower recurrence rate and favorable prognosis. The tumor microenvironment differed between the two groups as reflected by the higher number of resting dendritic cells and a lower number of monocytes and resting mast cells in the low-risk group. Moreover, low-risk patients reported higher immune and stromal scores, lower tumor purity, and higher expression of HLA genes. Low-risk patients responded well to immunotherapy due to higher expression of immune checkpoint molecules and lower stemness index. Thus, our model predicted a favorable prognosis and increased overall survival for patients in the low-risk methylation group. Further, this model could provide potential drug targets to develop effective immunotherapies for LUAD.
Collapse
Affiliation(s)
- Feng Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqin Zhan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiexin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huan Xu
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoling Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yangyi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaohe Zheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Lin
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongsong Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
9
|
Promotion on NLRC5 upregulating MHC-I expression by IFN-γ in MHC-I–deficient breast cancer cells. Immunol Res 2020; 67:497-504. [DOI: 10.1007/s12026-019-09111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Genetic and Epigenetic Regulation of Immune Response and Resistance to Infectious Diseases in Domestic Ruminants. Vet Clin North Am Food Anim Pract 2019; 35:405-429. [PMID: 31590895 DOI: 10.1016/j.cvfa.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases are the outcome of complex interactions between the host, pathogen, and environment. After exposure to a pathogen, the host immune system uses various mechanisms to remove the pathogen. However, environmental factors and characteristics of pathogens can compromise the host immune responses and subsequently alter the outcome of infection. In this article, genetic and epigenetic factors that shape the individual variation in mounting protective responses are reviewed. Different approaches that have been used by researchers to investigate the genetic regulation of immunity in ruminants and various sources of genetic information are discussed.
Collapse
|
11
|
Huo X, Sun H, Cao D, Yang J, Peng P, Yu M, Shen K. Identification of prognosis markers for endometrial cancer by integrated analysis of DNA methylation and RNA-Seq data. Sci Rep 2019; 9:9924. [PMID: 31289358 PMCID: PMC6617448 DOI: 10.1038/s41598-019-46195-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer is highly malignant and has a poor prognosis in the advanced stage, thus, prediction of its prognosis is important. DNA methylation has rapidly gained clinical attention as a biomarker for diagnostic, prognostic and predictive purposes in various cancers. In present study, differentially methylated positions and differentially expressed genes were identified according to DNA methylation and RNA-Seq data. Functional analyses and interaction network were performed to identify hub genes, and overall survival analysis of hub genes were validated. The top genes were evaluated by immunohistochemical staining of endometrial cancer tissues. The gene function was evaluated by cell growth curve after knockdown CDC20 and CCNA2 of endometrial cancer cell line. A total of 329 hypomethylated highly expressed genes and 359 hypermethylated lowly expressed genes were identified, and four hub genes were obtained according to the interaction network. Patients with low expression of CDC20 and CCNA2 showed better overall survival. The results also were demonstrated by the immunohistochemical staining. Cell growth curve also demonstrated that knockdown CDC20 and CCNA2 can suppress the cell proliferation. We have identified two aberrantly methylated genes, CDC20 and CCNA2 as novel biomarkers for precision diagnosis in EC.
Collapse
Affiliation(s)
- Xiao Huo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Lu T, Chen D, Wang Y, Sun X, Li S, Miao S, Wo Y, Dong Y, Leng X, Du W, Jiao W. Identification of DNA methylation-driven genes in esophageal squamous cell carcinoma: a study based on The Cancer Genome Atlas. Cancer Cell Int 2019; 19:52. [PMID: 30886542 PMCID: PMC6404309 DOI: 10.1186/s12935-019-0770-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background Aberrant DNA methylations are significantly associated with esophageal squamous cell carcinoma (ESCC). In this study, we aimed to investigate the DNA methylation-driven genes in ESCC by integrative bioinformatics analysis. Methods Data of DNA methylation and transcriptome profiling were downloaded from TCGA database. DNA methylation-driven genes were obtained by methylmix R package. David database and ConsensusPathDB were used to perform gene ontology (GO) analysis and pathway analysis, respectively. Survival R package was used to analyze overall survival analysis of methylation-driven genes. Results Totally 26 DNA methylation-driven genes were identified by the methylmix, which were enriched in molecular function of DNA binding and transcription factor activity. Then, ABCD1, SLC5A10, SPIN3, ZNF69, and ZNF608 were recognized as significant independent prognostic biomarkers from 26 methylation-driven genes. Additionally, a further integrative survival analysis, which combined methylation and gene expression data, was identified that ABCD1, CCDC8, FBXO17 were significantly associated with patients’ survival. Also, multiple aberrant methylation sites were found to be correlated with gene expression. Conclusion In summary, we studied the DNA methylation-driven genes in ESCC by bioinformatics analysis, offering better understand of molecular mechanisms of ESCC and providing potential biomarkers precision treatment and prognosis detection. Electronic supplementary material The online version of this article (10.1186/s12935-019-0770-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Lu
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Di Chen
- 2Department of Gastroenterology, Affiliated Hospital of Qingdao University, No 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Yuanyong Wang
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Xiao Sun
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Shicheng Li
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Shuncheng Miao
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Yang Wo
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Yanting Dong
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Xiaoliang Leng
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Wenxing Du
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| | - Wenjie Jiao
- 1Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003 China
| |
Collapse
|
13
|
Maibach V, Vigilant L. Reduced bonobo MHC class I diversity predicts a reduced viral peptide binding ability compared to chimpanzees. BMC Evol Biol 2019; 19:14. [PMID: 30630404 PMCID: PMC6327438 DOI: 10.1186/s12862-019-1352-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The highly polymorphic genes of the major histocompatibility complex (MHC) class I are involved in defense against viruses and other intracellular pathogens. Although several studies found reduced MHC class I diversity in bonobos in comparison to the closely related chimpanzee, it is unclear if this lower diversity also influences the functional ability of MHC class I molecules in bonobos. Here, we use a bioinformatic approach to analyze the viral peptide binding ability of all published bonobo MHC class I molecules (n = 58) in comparison to all published chimpanzee MHC class I molecules (n = 161) for the class I loci A, B, C and A-like. RESULTS We examined the peptide binding ability of all 219 different MHC class I molecules to 5,788,712 peptides derived from 1432 different primate viruses and analyzed the percentage of bound peptides and the overlap of the peptide binding repertoires of the two species. We conducted multiple levels of analysis on the "species"-, "population"- and "individual"-level to account for the characterization of MHC variation in a larger number of chimpanzees and their broader geographic distribution. We found a lower percentage of bound peptides in bonobos at the B locus in the "population"-level comparison and at the B and C loci in the "individual"-level comparison. Furthermore, we found evidence of a limited peptide binding repertoire in bonobos by tree-based visualization of functional clustering of MHC molecules, as well as an analysis of peptides bound by both species. CONCLUSION Our results suggest a reduced MHC class I viral peptide binding ability at the B and C loci in bonobos compared to chimpanzees. The effects of this finding on the immune defense against viruses in wild living bonobos are unclear. However, special caution is needed to prevent introduction and spread of new viruses to bonobos, as their defensive ability to cope with new viruses could be limited compared to chimpanzees.
Collapse
Affiliation(s)
- Vincent Maibach
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Wattegedera SR, Doull LE, Goncheva MI, Wheelhouse NM, Watson DM, Pearce J, Benavides J, Palarea-Albaladejo J, McInnes CJ, Ballingall K, Entrican G. Immunological Homeostasis at the Ovine Placenta May Reflect the Degree of Maternal Fetal Interaction. Front Immunol 2019; 9:3025. [PMID: 30687304 PMCID: PMC6334339 DOI: 10.3389/fimmu.2018.03025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023] Open
Abstract
Successful mammalian pregnancies are a result of complex physiological, endocrinological, and immunological processes that combine to create an environment where the mother is tolerant to the semi-allogeneic fetus. Our knowledge of the mechanisms that contribute to maternal tolerance is derived mainly from human and murine studies of haemochorial placentation. However, as this is the most invasive type of placentation it cannot be assumed that identical mechanisms apply to the less invasive epitheliochorial placentation found in other species such as ruminants. Here, we examine three features associated with reproductive immune regulation in a transformed ovine trophoblast cell line and ex-vivo ovine reproductive tissues collected at term, namely: major histocompatibility complex (MHC) expression, Indoleamine 2,3 dioxygenase-1 (IDO-1) expression, and Natural Killer (NK) cell infiltration. High levels of MHC class I protein expression were detected at the surface of the trophoblast cell line using a pan-MHC class I specific monoclonal antibody. The majority of MHC class I transcripts isolated from the cell line clustered with classical MHC alleles. Transcriptional analysis of placental tissues identified only classical MHC class I transcripts. We found no evidence of constitutive transcription of IDO-1 in either the trophoblast cell line or placental tissues. Ex-vivo tissues collected from the materno-fetal interface were negative for cells expressing NKp46/NCR1. Collectively, these observations suggest that the relatively non-invasive synepitheliochorial placentation found in sheep has a more limited requirement for local immunoregulation compared to the more invasive haemochorial placentation of primates and rodents.
Collapse
Affiliation(s)
- Sean R Wattegedera
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Laura E Doull
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
| | - Mariya I Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | | | | | - Julian Pearce
- University College London Hospital, London, United Kingdom
| | | | | | - Colin J McInnes
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Keith Ballingall
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Gary Entrican
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
15
|
Fan G, Tu Y, Chen C, Sun H, Wan C, Cai X. DNA methylation biomarkers for hepatocellular carcinoma. Cancer Cell Int 2018; 18:140. [PMID: 30245591 PMCID: PMC6142709 DOI: 10.1186/s12935-018-0629-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant methylation of DNA is a key driver of hepatocellular carcinoma (HCC). In this study, we sought to integrate four cohorts profile datasets to identify such abnormally methylated genes and pathways associated with HCC. Methods To this end, we downloaded microarray datasets examining gene expression (GSE84402, GSE46408) and gene methylation (GSE73003, GSE57956) from the GEO database. Abnormally methylated differentially expressed genes (DEGs) were sorted and pathways were analyzed. The String database was then used to perform enrichment and functional analysis of identified pathways and genes. Cytoscape software was used to create a protein-protein interaction network, and MCODE was used for module analysis. Finally, overall survival analysis of hub genes was performed by the OncoLnc online tool. Results In total, we identified 19 hypomethylated highly expressed genes and 14 hypermethylated lowly expressed genes at the screening step, and finally found six mostly changed hub genes including MAD2L1, CDC20, CCNB1, CCND1, AR and ESR1. Pathway analysis showed that aberrantly methylated-DEGs mainly associated with the cell cycle process, p53 signaling, and MAPK signaling in HCC. After validation in TCGA database, the methylation and expression status of hub genes was significantly altered and same with our results. Patients with high expression of MAD2L1, CDC20 and CCNB1 and low expression of CCND1, AR, and ESR1 was associated with shorter overall survival. Conclusions Taken together, we have identified novel aberrantly methylated genes and pathways linked to HCC, potentially offering novel insights into the molecular mechanisms governing HCC progression and serving as novel biomarkers for precision diagnosis and disease treatment.
Collapse
Affiliation(s)
- Guorun Fan
- 1Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yaqin Tu
- 1Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Cai Chen
- 3Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiying Sun
- 1Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Chidan Wan
- 2Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiong Cai
- 2Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
16
|
Tu Y, Fan G, Xi H, Zeng T, Sun H, Cai X, Kong W. Identification of candidate aberrantly methylated and differentially expressed genes in thyroid cancer. J Cell Biochem 2018; 119:8797-8806. [PMID: 30069928 PMCID: PMC6220990 DOI: 10.1002/jcb.27129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022]
Abstract
Aberrant methylation of DNA sequences plays a criticle role in finding novel aberrantly methylated genes and pathways in thyroid cancer (THCA). This study aimed to integrate three cohorts profile datasets to find novel aberrantly methylated genes and pathways in THCA. Data of gene expression profiling microarrays (GSE33630 and GSE65144) and gene methylation profiling microarrays (GSE51090) were downloaded from the Gene Expression Omnibus database. Aberrantly methylated and differentially expressed genes were sorted and pathways were analyzed. Functional and enrichment analyses of selected genes were performed using the String database. A protein‐protein interaction network was constructed using the Cytoscape software, and module analysis was performed using Molecular Complex detection. In total, we identified 12 hypomethylation/high‐expression genes and 30 hypermethylation/low‐expression genes at the screening step and, finally, found 6 mostly changed hub genes including PPARGC1A, CREBBP, EP300, CD44, SPP1, and MMP9. Pathway analysis showed that aberrantly methylated differentially expressed genes were mainly associated with the thyroid hormone signaling pathway, AMP‐activated protein kinase (AMPK) signaling pathway, and cell cycle process in THCA. After validation in the Cancer Genome Atlas database, the methylation and expression status of hub genes was significantly altered and the same with our results. Taken together, we identified novel aberrantly methylated genes and pathways in THCA, which could improve our understanding of the cause and underlying molecular events, and these candidate genes could serve as aberrant methylation‐based biomarkers for precise diagnosis and treatment of THCA.
Collapse
Affiliation(s)
- Yaqin Tu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongli Xi
- Department of Clinical laboratory, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Shi B, Thomas AJ, Benninghoff AD, Sessions BR, Meng Q, Parasar P, Rutigliano HM, White KL, Davies CJ. Genetic and epigenetic regulation of major histocompatibility complex class I gene expression in bovine trophoblast cells. Am J Reprod Immunol 2017; 79. [PMID: 29131441 PMCID: PMC5728445 DOI: 10.1111/aji.12779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/10/2017] [Indexed: 11/28/2022] Open
Abstract
Problem The regulatory mechanisms governing differential expression of classical major histocompatibility complex (MHC) class I (MHC‐Ia) and non‐classical MHC class I (MHC‐Ib) genes are poorly understood. Method of study Quantitative reverse transcription‐ polymerase chain reaction (PCR) was used to compare the abundance of MHC‐I transcripts and related transcription factors in peripheral blood mononuclear cells (PBMC) and placental trophoblast cells (PTC). Methylation of MHC‐I CpG islands was detected by bisulfite treatment and next‐generation sequencing. Demethylation of PBMC and PTC with 5′‐aza‐deoxycytidine was used to assess the role of methylation in gene regulation. Results MHC‐I expression was higher in PBMC than PTC and was correlated with expression of IRF1, class II MHC transactivator (CIITA), and STAT1. The MHC‐Ia genes and BoLA‐NC1 were devoid of CpG methylation in PBMC and PTC. In contrast, CpG sites in the gene body of BoLA‐NC2, ‐NC3, and ‐NC4 were highly methylated in PBMC but largely unmethylated in normal PTC and moderately methylated in somatic cell nuclear transfer PTC. In PBMC, demethylation resulted in upregulation of MHC‐Ib by 2.8‐ to 6‐fold, whereas MHC‐Ia transcripts were elevated less than 2‐fold. Conclusion DNA methylation regulates bovine MHC‐Ib expression and is likely responsible for the different relative levels of MHC‐Ib to MHC‐Ia transcripts in PBMC and PTC.
Collapse
Affiliation(s)
- Bi Shi
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Benjamin R Sessions
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Parveen Parasar
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| |
Collapse
|