1
|
Li L, Zhou Y, Zhou W, Liu Y, Mei J. Fibroblast growth factor 7 facilitates invasion of human trophoblast cells through the JNK pathway during pregnancy. Placenta 2025; 167:87-94. [PMID: 40344910 DOI: 10.1016/j.placenta.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION This study investigates the role of FGF7 in trophoblast invasion under high estrogen and progesterone levels, focusing on the JNK signaling pathway. The aim is to demonstrate that FGF7 enhances human trophoblast cell invasion via JNK activation, crucial for establishing pregnancy. METHODS We investigated the expression of FGF7 in primary human trophoblasts to evaluate the effects of elevated estrogen and progesterone levels on trophoblast invasion. The study focused on the role of FGF7 in gestational regulation and its mechanism of activating the JNK signaling pathway through FGFR2. RESULTS The study unveiled that FGF7 and FGFR2 are expressed in trophoblast cells during normal pregnancies, with the expression of FGF7 being upregulated by estrogen and progesterone. In trophoblastic cells, FGF7 activates the MAPK/JNK signaling pathway, resulting in upregulation of MMP-2 and MMP-9 expression, concomitant downregulation of TIMP-1 and TIMP-2 expression, and ultimately enhanced invasive capacity. However, in cases of recurrent spontaneous abortion (RSA), the levels of FGF7/FGFR2 expression exhibited a notable decrease. These results indicate that the involvement of FGF7/FGFR2 could be significant in maintaining normal pregnancy by regulating trophoblast invasiveness, and their impaired expression could contribute to RSA. DISCUSSION The present study elucidates the role of FGF7 in facilitating trophoblast invasion through activation of the MAPK/JNK pathway and upregulation of MMPs, thereby providing potential therapeutic insights for recurrent spontaneous abortion (RSA) attributed to impaired trophoblast invasion.
Collapse
Affiliation(s)
- Lijuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; School of Graduate, Dalian Medical University, Dalian, China
| | - Yu Zhou
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jie Mei
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Mor G, Singh A, Yang J, Adzibolosu N, Cai S, Kauf E, Yang L, Li Q, Li H, Werner A, Parthasarathy S, Ding J, Fortier J, Rodriguez-Garcia M, Diao LH. Decoding Functional and Developmental Trajectories of Tissue-Resident Uterine Dendritic Cells Through Integrative Omics. RESEARCH SQUARE 2024:rs.3.rs-5424920. [PMID: 39606471 PMCID: PMC11601813 DOI: 10.21203/rs.3.rs-5424920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Uterine dendritic cells (uDCs) are critical for endometrial function, yet their origin, molecular characteristics, and specific roles during the pre- and post-implantation periods in the human endometrium remain largely unknown. The complexity of the endometrial environment makes defining the contributions of uDCs subtypes challenging. We hypothesize that distinct uDC subsets carry out specialized functions, and that resident progenitor DCs generate these subtypes. Employing single-cell RNA sequencing on uterine tissues collected across different menstrual phases and during early pregnancy, we identify several uDCs subtypes, including resident progenitor DCs. CITE-seq was performed on endometrial single-cell suspensions to link surface protein expression with key genes identified by the RNAseq analysis. Our analysis revealed the developmental trajectory of the uDCs along with the distinct functional roles of each uDC subtype, including immune regulation, antigen presentation, and creating a conducive environment for embryo implantation. This study provides a comprehensive characterization of uDCs, serving as a foundational reference for future studies for better understanding female reproductive disorders such as infertility and pregnancy complications.
Collapse
Affiliation(s)
| | | | - Jing Yang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | | | - Songchen Cai
- Shenzhen Zhongshan Obstetrics & Gynecology Hospital
| | | | | | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Hanjie Li
- Shenzhen Institutes of Advanced Technology
| | | | | | | | | | | | | |
Collapse
|
3
|
Kirkham MN, Cooper C, Broberg E, Robertson P, Clarke D, Pickett BE, Bikman B, Reynolds PR, Arroyo JA. Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms. Cells 2024; 13:1009. [PMID: 38920640 PMCID: PMC11201565 DOI: 10.3390/cells13121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Exposure to cigarette smoke is known to induce disease during pregnancy. Recent evidence showed that exposure to secondhand smoke (SHS) negatively impacts fetal and placental weights, leading to the development of intrauterine growth restriction (IUGR). Electronic cigarettes (eCigs) represent a phenomenon that has recently emerged, and their use is also steadily rising. Even so, the effects of SHS or eCigs during gestation remain limited. In the present study, we wanted to characterize the effects of SHS or eCig exposure at two different important gestational points during mouse pregnancy. C57/Bl6 mice were exposed to SHS or eCigs via a nose-only delivery system for 4 days (from 14.5 to 17.5 gestational days (dGA) or for 6 days (from 12.5 dGA to 17.5 dGA)). At the time of necropsy (18.5 dGA), placental and fetal weights were recorded, maternal blood pressure was determined, and a dipstick test to measure proteinuria was performed. Placental tissues were collected, and inflammatory molecules in the placenta were identified. Treatment with SHS showed the following: (1) a significant decrease in placental and fetal weights following four days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. Treatment with eCigs showed the following: (1) a significant decrease in placental weight and fetal weight following four or six days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. We also observed different inflammatory markers associated with the development of IUGR or PE. We conclude that the detrimental effects of SHS or eCig treatment coincide with the length of maternal exposure. These results could be beneficial in understanding the long-term effects of SHS or eCig exposure in the development of placental diseases.
Collapse
Affiliation(s)
- Madison N. Kirkham
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Christian Cooper
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Emily Broberg
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Peter Robertson
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Derek Clarke
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Benjamin Bikman
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| |
Collapse
|
4
|
Li Q, Sharkey A, Sheridan M, Magistrati E, Arutyunyan A, Huhn O, Sancho-Serra C, Anderson H, McGovern N, Esposito L, Fernando R, Gardner L, Vento-Tormo R, Turco MY, Moffett A. Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy. Cell Stem Cell 2024; 31:181-195.e9. [PMID: 38237587 DOI: 10.1016/j.stem.2023.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 02/04/2024]
Abstract
In humans, balanced invasion of trophoblast cells into the uterine mucosa, the decidua, is critical for successful pregnancy. Evidence suggests that this process is regulated by uterine natural killer (uNK) cells, but how they influence reproductive outcomes is unclear. Here, we used our trophoblast organoids and primary tissue samples to determine how uNK cells affect placentation. By locating potential interaction axes between trophoblast and uNK cells using single-cell transcriptomics and in vitro modeling of these interactions in organoids, we identify a uNK cell-derived cytokine signal that promotes trophoblast differentiation at the late stage of the invasive pathway. Moreover, it affects transcriptional programs involved in regulating blood flow, nutrients, and inflammatory and adaptive immune responses, as well as gene signatures associated with disorders of pregnancy such as pre-eclampsia. Our findings suggest mechanisms on how optimal immunological interactions between uNK cells and trophoblast enhance reproductive success.
Collapse
Affiliation(s)
- Qian Li
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Andrew Sharkey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Megan Sheridan
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Elisa Magistrati
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Anna Arutyunyan
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Oisin Huhn
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Carmen Sancho-Serra
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Holly Anderson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Laura Esposito
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ridma Fernando
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Roser Vento-Tormo
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK.
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
5
|
Zhang H, Han WJ, Zhang ZL. The Importance of Tumor Necrosis Factor-α-Induced Protein-8 Like-2 in the Pathogenesis of Cervical Cancer and Preeclampsia via Regulation of Cell Invasion. TOHOKU J EXP MED 2022; 257:181-191. [PMID: 35418534 DOI: 10.1620/tjem.2022.j026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hong Zhang
- Department of Obstetrics, Yantaishan Hospital
| | - Wen-Jun Han
- Department of Gynecology, Qingdao Women and Children's Hospital
| | - Zhi-Lei Zhang
- Department of Gynecology, Qingdao Women and Children's Hospital
| |
Collapse
|
6
|
Ji X, Yue H, Li G, Sang N. Maternal smoking-induced lung injuries in dams and offspring via inflammatory cytokines. ENVIRONMENT INTERNATIONAL 2021; 156:106618. [PMID: 33989842 DOI: 10.1016/j.envint.2021.106618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Maternal smoking during pregnancy can induce permanent changes in neonatal inflammation, which will result in lifelong implications. An original study of data from GSE96978, composed of 2 subseries (GSE96976 and GSE96977), investigated genome-wide changes in ELT cells, the lungs of mouse dams and their juvenile offspring and focused on finding an in vitro alternative as a human tissue-based replacement for the use of animals. Therefore, the study only analyzed the similarities of GO terms between ELT cells and dams. However, the relationship between differentially expressed genes (DEGs) in dams and offspring was not investigated. The present study aimed to identify the key molecules involved in maternal smoking-induced dam and offspring lung injuries. Data from GSE96977 were downloaded from Gene Expression Omnibus (GEO) data sets. In our study, differentially expressed genes (DEGs) in dams and offspring were reanalyzed using the limma package. The results of Gene Set Enrichment Analysis (GSEA) showed that the DEGs in the lungs of dams were significantly enriched in immune-related functions and those in the lungs of offspring were enriched in cell growth. Furthermore, a total of 90 DEGs shared in the dam and offspring datasets were screened out. In addition, most of these DEGs were enriched in cytokine and cytokine receptor interaction KEGG pathways. Furthermore, protein-protein interaction (PPI) network analysis screened out 4 core genes in cluster 1. In addition, the miRNAs related to these core genes were predicted, and mmu-miR-1903 was screened out. Taken together, our data indicate that inflammatory responses may play an important role in maternal smoking induced lung injuries in dams and offspring. Furthermore, mmu-miR-1903 is a potential epigenetic biomarker of lung inflammation in the offspring of dams who smoked during pregnancy. In conclusion, by screening shared differential genes, we only need to detect maternal genes to predict maternal smoking-induced lung injuries in offspring.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
7
|
Yoshida T, Takada K, Komine-Aizawa S, Kamei Y, Ishihara O, Hayakawa S. Lactobacillus crispatus promotes invasion of the HTR-8/SVneo trophoblast cell line. Placenta 2021; 111:76-81. [PMID: 34175522 DOI: 10.1016/j.placenta.2021.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recent studies have shown that the endometrium possesses unique microbiomes, including Lactobacillus. However, the roles of these microbes are currently unknown, especially in placentation and the early stage of pregnancy. METHODS The immortalized human first-trimester trophoblast cell line HTR-8/SVneo was cultured in the presence or absence of Lactobacillus crispatus. Invasive and migrative activities were directly evaluated using an optical microscope and a time-lapse imaging system. Protein levels of the invasion-related protein matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9 were evaluated using ELISA. RESULTS Matrigel invasion of HTR-8/SVneo cells was significantly increased by L. crispatus, though migration was not affected. The culture supernatant of L. crispatus also promoted invasion. Additionally, levels of the active forms of MMP-1 and MMP-2 in the cell culture medium were upregulated by L. crispatus treatment, but that of MMP-9 was not changed. DISCUSSION L. crispatus promotes trophoblast invasion with an increase in MMP-1 and MMP-2 activation. Our results might explain why Lactobacillus dominance in the endometrium seems beneficial for implantation. Nevertheless, further research is required to determine whether the promotion of trophoblast invasion by L. cripatus is favorable for successful placentation at the early stage of pregnancy.
Collapse
Affiliation(s)
- Tomoaki Yoshida
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Obstetrics and Gynecology, Saitama Medical University Hospital, Saitama, Japan
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University Hospital, Saitama, Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical University Hospital, Saitama, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Wang XL. Effect of IL-15-Mediating IFN-γ on HTR-8/SVneo Cells and a Preeclampsia Mouse Model Induced by Lipopolysaccharides. Gynecol Obstet Invest 2021; 86:247-256. [PMID: 34107475 DOI: 10.1159/000513401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Determine the effect of interleukin (IL)-15 on HTR-8/SVneo cells and a preeclampsia (PE) mouse model induced by LPS. METHODS Transwell and Annexin-V-FITC/PI assays were performed in HTR-8/SVneo cells transfected with IL-15 activation plasmid/siRNA prior to LPS treatment. Additionally, pregnant mice were injected with LPS and IL-15 siRNA followed by measurement of systolic blood pressure (SBP), urine protein, and serum NO. HE staining was used to observe the morphological changes of the placenta and kidney. Glycogen accumulation was detected using Best's carmine. qRT-PCR, Western blotting, and ELISA were performed to detect mRNA and protein expression. RESULTS LPS increased IL-15 and IFN-γ expression in HTR-8/SVneo cells, and IL-15 positively regulated IFN-γ expression in LPS-induced HTR-8/SVneo cells. Moreover, LPS promoted apoptosis and reduced the invasion and migration of HTR-8/SVneo cells, which was, further, promoted by IL-15 overexpression but attenuated by IL-15 inhibition. Furthermore, LPS increased SBP and urine protein but decreased serum NO in mice, and these factors were reversed by IL-15 siRNA. Downregulation of IL-15 also mitigated kidney injury and improved pregnancy outcomes in LPS-induced PE mice. A significantly thicker junctional zone (JZ) and thinner labyrinth layer were found in placentas of PE mice treated with IL-15 siRNA, along with increased glycogen trophoblast cells in the JZ. Moreover, decreased IFN-γ and NKp46 were found in placentas of PE mice treated with IL-15 siRNA. CONCLUSION IL-15 inhibition reduced cell apoptosis and increased the invasive and migratory abilities of LPS-induced HTR-8/SVneo cells, thereby alleviating the PE-like phenotype and improving pregnancy outcome.
Collapse
Affiliation(s)
- Xiao-Lu Wang
- Department of Obstetrics, Yantai Yantaishan Hospital, Yantai, China
| |
Collapse
|
9
|
Environmental Pollutant Benzo[a]pyrene Upregulated Long Non-coding RNA HZ07 Inhibits Trophoblast Cell Migration by Inactivating PI3K/AKT/MMP2 Signaling Pathway in Recurrent Pregnancy Loss. Reprod Sci 2021; 28:3085-3093. [PMID: 34050522 DOI: 10.1007/s43032-021-00630-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Benzo(a)pyrene (BaP) is a ubiquitous environmental endocrine-disrupting chemical that is known to have toxic effects on reproduction. However, the underlying mechanisms describing how BaP and its metabolite benzo[a]pyrene-7, 8-diol-9, 10-epoxide (BPDE) induce recurrent pregnancy loss (RPL) are still largely unclear. In this study, we identified a novel long non-coding RNA (lnc-HZ07, NCBI MT936329) that was upregulated in trophoblast cells after exposure to BPDE, and lnc-HZ07 expression was significantly higher in RPL villous tissues than that in control villous tissues. Knockdown of lnc-HZ07 promoted trophoblast cell migration, whereas overexpression of lnc-HZ07 inhibited trophoblast cell migration. Further study showed that lnc-HZ07 inhibited trophoblast migration by downregulating matrix metalloproteinase 2 (MMP2) expression via dephosphorylation of AKT. These results demonstrated a novel regulatory pathway in which BaP downregulated AKT phosphorylation and inhibited MMP2 expression by upregulating lnc-HZ07, suggesting that lnc-HZ07 could be considered as a potential pathological marker of BaP-induced RPL and therapeutic target for this disease.
Collapse
|
10
|
Do HTT, Cho J. Involvement of the ERK/HIF-1α/EMT Pathway in XCL1-Induced Migration of MDA-MB-231 and SK-BR-3 Breast Cancer Cells. Int J Mol Sci 2020; 22:ijms22010089. [PMID: 33374849 PMCID: PMC7796296 DOI: 10.3390/ijms22010089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.
Collapse
|
11
|
Environmental Pollutant Benzo[a]pyrene Induces Recurrent Pregnancy Loss through Promoting Apoptosis and Suppressing Migration of Extravillous Trophoblast. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8983494. [PMID: 33123590 PMCID: PMC7586159 DOI: 10.1155/2020/8983494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
Methods The implantation sites, fetus resorption, and abnormal fetuses were studied in pregnant mice treated with different doses of BaP by oral gavage from day 1 to day 10 of gestation. Additionally, apoptosis and related signaling pathway, and the migration and invasion of trophoblasts, were assessed before and after exposure of BPDE in Swan 71 trophoblast cell. Besides, the migration and invasion, and its related signaling pathway, were assessed in villi obtained from women. Results We observed a concentration-dependent incidence of abnormal murine fetuses, beginning with 0.1 mg/kg BaP; with a BaP concentration of 2 mg/kg, no fetuses developed. Correspondingly, a BPDE concentration-dependent apoptosis of human trophoblasts. Beginning with 0.5 μM BPDE exposure, Bax/Caspase-3 were increased and Bcl-2 decreased. Furthermore, BPDE also inhibited, in a dose-dependent manner, the migration of villous explants from elective abortion women, consistent with the reduced migration of villous explants from women with recurrent pregnancy loss (RPL), and reduced the cell immigration in Swan 71 trophoblasts, in a dose-dependent manner measured by transwell assays. Conclusions Our study results provide mechanistic insight to the effect of BPDE on trophoblast dysfunction through enhanced cell apoptosis and inhibited migration, providing further experimental evidence to the causative links between BaP exposure and PRL.
Collapse
|
12
|
Tian Y, Terkawi MA, Onodera T, Alhasan H, Matsumae G, Takahashi D, Hamasaki M, Ebata T, Aly MK, Kida H, Shimizu T, Uetsuki K, Kadoya K, Iwasaki N. Blockade of XCL1/Lymphotactin Ameliorates Severity of Periprosthetic Osteolysis Triggered by Polyethylene-Particles. Front Immunol 2020; 11:1720. [PMID: 32849609 PMCID: PMC7417302 DOI: 10.3389/fimmu.2020.01720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Periprosthetic osteolysis induced by orthopedic implant-wear particles continues to be the leading cause of arthroplasty failure in majority of patients. Release of the wear debris results in a chronic local inflammatory response typified by the recruitment of immune cells, including macrophages. The cellular mediators derived from activated macrophages favor the osteoclast-bone resorbing activity resulting in bone loss at the site of implant and loosening of the prosthetic components. Emerging evidence suggests that chemokines and their receptors are involved in the progression of periprosthetic osteolysis associated with aseptic implant loosening. In the current study, we investigated the potential role of chemokine C-motif-ligand-1 (XCL1) in the pathogenesis of inflammatory osteolysis induced by wear particles. Expressions of XCL1 and its receptor XCR1 were evident in synovial fluids and tissues surrounding hip-implants of patients undergoing revision total hip arthroplasty. Furthermore, murine calvarial osteolysis model induced by ultra-high molecular weight polyethylene (UHMWPE) particles was used to study the role of XCL1 in the development of inflammatory osteolysis. Mice received single injection of recombinant XCL1 onto the calvariae after implantation of particles exhibited significantly greater osteolytic lesions than the control mice. In contrast, blockade of XCL1 by neutralizing antibody significantly reduced bone erosion and the number of bone-resorbing mature osteoclasts induced by UHMWPE particles. In consistence with the results, transplantation of XCL1-soaked sponge onto calvariae caused osteolytic lesions coincident with excessive infiltration of inflammatory cells and osteoclasts. These results suggested that XCL1 might be involved in the development of periprosthetic osteolysis through promoting infiltration of inflammatory cells and bone resorbing-osteoclasts. Our further results demonstrated that supplementing recombinant XCL1 to cultured human monocytes stimulated with the receptor activator of nuclear factor kappa-B ligand (RANKL) promoted osteoclastogenesis and the osteoclast-bone resorbing activity. Moreover, recombinant XCL1 promoted the expression of inflammatory and osteoclastogenic factors, including IL-6, IL-8, and RANKL in human differentiated osteoblasts. Together, these results suggested the potential role of XCL1 in the pathogenesis of periprosthetic osteolysis and aseptic loosening. Our data broaden knowledge of the pathogenesis of aseptic prosthesis loosening and highlight a novel molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanari Hamasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahmoud Khamis Aly
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kida
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keita Uetsuki
- R&D Center, Teijin Nakashima Medical Co., Ltd., Okayama, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Tao J, Xia LZ, Chen JJ, Zeng JF, Meng J, Wu S, Wang Z. High glucose condition inhibits trophoblast proliferation, migration and invasion by downregulating placental growth factor expression. J Obstet Gynaecol Res 2020; 46:1690-1701. [PMID: 32512641 DOI: 10.1111/jog.14341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
AIM This study aimed to investigate the effect of high glucose (HG) level on the proliferation, migration and invasion of trophoblasts and determine the role of placental growth factor (PLGF) in the process. METHODS HTR8-S/Vneo was treated with different concentrations of d-glucose (0, 10, 15, 20, 25 and 30 μM) at different times (0, 6, 12 and 24 h). qRT-PCR and Western blot analyses were used to measure PLGF expression. The protein level of PLGF was measured by immunofluorescence. Cell proliferation was assessed with CCK-8 analysis. Wound healing and transwell assays were used to evaluate cell migration and invasion. Intercellular ROS was detected with DCFH-DA. RESULTS After d-glucose treatment, the viability decreased in 25 and 30 μM groups. The HG group (25 μM) showed inhibited cell migration and invasion ability. The mRNA and protein levels of PLGF decreased under HG condition. Elevated ROS production was also detected in the HG group. Knocked-down PLGF expression enhanced increased ROS production and decreased cell migration and invasion, which reverted to the original levels after PLGF was overexpressed. CONCLUSION High glucose treatment inhibited HTR8-S/Vneo viability, migration and invasion by downregulating PLGF expression.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Lin-Zhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jiao-Jiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun-Fa Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - ShiYuan Wu
- YueYang Maternal-Child Medicine Health Hospital, Hunan Province Innovative Training Base for Medical Postgraduates, Yueyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
14
|
Ewunkem AJ, Deve M, Harrison SH, Muganda PM. Diepoxybutane induces the expression of a novel p53-target gene XCL1 that mediates apoptosis in exposed human lymphoblasts. J Biochem Mol Toxicol 2020; 34:e22446. [PMID: 31953984 DOI: 10.1002/jbt.22446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
Diepoxybutane (DEB) is the most potent active metabolite of the environmental chemical 1,3-butadiene (BD). BD is a human carcinogen that exhibits multiorgan systems toxicity. Our previous studies demonstrated that the X-C motif chemokine ligand 1 (XCL1) gene expression was upregulated 3.3-fold in a p53-dependent manner in TK6 lymphoblasts undergoing DEB-induced apoptosis. The tumor-suppressor p53 protein is a transcription factor that regulates a wide variety of cellular processes, including apoptosis, through its various target genes. Thus, the objective of this study was to determine whether XCL1 is a novel direct p53 transcriptional target gene and deduce its role in DEB-induced toxicity in human lymphoblasts. We utilized the bioinformatics tool p53scan to search for known p53 consensus sequences within the XCL1 promoter region. The XCL1 gene promoter region was found to contain the p53 consensus sequences 5'-AGACATGCCTAGACATGCCT-3' at three positions relative to the transcription start site (TSS). Furthermore, the XCL1 promoter region was found, through reporter gene assays, to be transactivated at least threefold by wild-type p53 promoter in DEB-exposed human lymphoblasts. Inactivation of the XCL1 promoter p53-binding motif located at -2.579 kb relative to TSS reduced the transactivation function of p53 on this promoter in DEB-exposed cells by 97%. Finally, knockdown of XCL1 messenger RNA with specific small interfering RNA inhibited DEB-induced apoptosis in human lymphoblasts by 50%. These observations demonstrate, for the first time, that XCL1 is a novel DEB-induced direct p53 transcriptional target gene that mediates apoptosis in DEB-exposed human lymphoblasts.
Collapse
Affiliation(s)
- Akamu J Ewunkem
- Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina
| | - Maya Deve
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Scott H Harrison
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Perpetua M Muganda
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
15
|
Mei Z, Huang B, Zhang Y, Qian X, Mo Y, Deng N. Histone deacetylase 6 negatively regulated microRNA-199a-5p induces the occurrence of preeclampsia by targeting VEGFA in vitro. Biomed Pharmacother 2019; 114:108805. [PMID: 30947018 DOI: 10.1016/j.biopha.2019.108805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preeclampsia (PE) is a special complication during pregnancy, which can cause severe maternal complications and lead the cause of maternal and perinatal death. So far, the etiology and pathogenesis of the disease is still not very clear. Currently, microRNAs (miRNAs) are reported to be the key regulators in the development of PE. METHODS The miR-199a-5p expression was detected by qRT-PCR. The expression of vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF) and activating transcription factor 3 (ATF-3) were detected by qRT-PCR and Western blot. Transwell-invasion assay wasused to assess the effects of miR-199a-5p, PLGF and ATF-3 on the invasion of HTR-8/SVneo and TEV-1cell lines. Western blot and qRT-PCR were used to assess the related molecular mechanisms. Dual luciferase reporter assay was used to detect the interaction between miR-199a-5p and VEGFA. RESULTS Here, weinitially demonstrated that in PE tissues, miR-199a-5p expression was higher than that in normal tissues, while there was sharp reduction in VEGFA. In placental tissues of PE patients, miR-199a-5p exhibited a negatively correlation with VEGFA. The invasion of HTR-8/SVneo and TEV-1 cells was suppressed by miR-199a-5p through direct inhibition of VEGFA expression. In addition, PE tissues were associated with sharp reduction in the protein levels of PLGF, ATF-3 and histone deacetylase 6 (HDAC6) compared with the normal tissues. We further proved that over-expression of PLGF could also promote HTR-8/SVneo and TEV-1 cells invasion through up-regulating ATF-3 expression and down-regulating DNM3 opposite strand (DNM3os) and miR-199a-5p expression. Lastly, we also found that tubacin suppressed HTR-8/SVneo and TEV-1 cells invasion via regulation of miR-199a-5p and VEGFA expression. CONCLUSION Our data demonstrated the role of miR-199a-5p in the preeclampsia, and proved that miR-199a-5p could act as a potential therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Zhixiong Mei
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Baoqin Huang
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Yuan Zhang
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Xialiu Qian
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Ying Mo
- Reproductive Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, PR China
| | - Ni Deng
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|