1
|
Xie L, Zhong Y, Chen Y, Wang Y, Xian P, Liu S, Xin X, Chen Y, Guan Y, Li K. Cryptotanshinone alleviates immunosuppression in endometriosis by targeting MDSCs through JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156227. [PMID: 39580997 DOI: 10.1016/j.phymed.2024.156227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Endometriosis (EMS), a well-recognized chronic inflammatory disorder, characterized by significant immune dysregulation, in which myeloid-derived suppressor cells (MDSCs) are essential for facilitating immunosuppression and driving to disease progression. Cryptotanshinone (CTS) is an active compound capable of modulating MDSC-mediated immunosuppression; however, its therapeutic effects and mechanisms in the treatment of EMS remain unclear. PURPOSE This study aims to investigate the therapeutic potential of CTS in modulating MDSCs through JAK2/STAT3 signaling pathway and to evaluate its effects on immune microenvironment and endometriotic lesion growth in EMS. METHODS Transcriptomic data (GSE141549) and single-cell RNA sequencing data (GSE213216) were analyzed to compare immune cell populations in control endometrium (CE), eutopic endometrium (EuE) and ectopic endometrium (EcE) of patients with EMS. Network pharmacology analysis, surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA) were utilized to explore the molecular mechanism of CTS's effects on MDSCs. A C57BL/6J EMS mice model was established to evaluate CTS's influence on MDSC-mediated immune response in vivo. Flow cytometry and immunofluorescence were used to analyze the immune cell populations, particularly MDSCs and CD8+ T cells. Ex vivo bone marrow (BM)-derived MDSCs were prepared to investigate the modulatory activities of CTS on the frequency and function of MDSCs. The impacts of CTS on JAK2/STAT3 pathway were further examined by western blot. RESULTS Bioinformatic analysis revealed that, among the three progression stages (CE, EuE, and EcE), the EcE stage exhibited a relatively elevated level of MDSCs and a reduced level of CD8+ T cells. Network pharmacological analysis, along with SPR and CETSA identified that CTS potentially modulates MDSCs in EMS by targeting the JAK2/STAT3 pathway. In vivo studies demonstrated that a relatively high dose of CTS treatment (60mg/kg) effectively inhibited lesion growth, reduced the population of MDSCs, and enhanced CD8+ T cell infiltration. Ex vivo experiments showed that CTS decreased the BM-derived MDSC frequency and rescued the suppressive ability of MDSC upon CD8+ T cells in a dose-dependent manner. Further mechanism analysis confirmed that CTS modulates the expression of immunosuppressive genes and proteins associated with MDSCs through JAK2/STAT3 pathway. CONCLUSION This study is the first to demonstrate that CTS is a promising natural compound for EMS treatment by inhibiting MDSC accumulation and modulating MDSC-mediated immune responses. Its therapeutic efficacy is linked to the modulation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Linling Xie
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhong
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yishu Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiyi Xian
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanjia Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Xin
- Foshan Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanfen Chen
- Foshan Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongge Guan
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Kunyin Li
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Pan L, Chen Y, Zhou Z, Ma S, Cao Y, Ma Y. The correlation between immune cells and endometriosis: a bidirectional two-sample mendelian randomization study. BMC Womens Health 2024; 24:641. [PMID: 39702192 DOI: 10.1186/s12905-024-03493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Endometriosis (EM), a prevalent estrogen-dependent inflammatory disorder affecting women of reproductive age, is characterized by the presence of endometrial-like tissue outside the uterus, resulting in pelvic scarring, pain, and infertility. Although the pathogenesis of EM remains poorly understood, there is growing evidence suggesting the involvement of the immune system in its etiology, pathophysiology, and associated morbidities such as pain, infertility, and adverse pregnancy outcomes. While previous studies have indicated a close relationship between the immune system and EM, the specific underlying mechanism remains incompletely elucidated. METHODS Through the utilization of publicly available genetic data, a two-sample Mendelian randomization (MR) analysis was conducted to establish an association between 731 immune cell phenotypes and EM. Comprehensive sensitivity analyses were performed to validate the robustness, heterogeneity, and potential horizontal pleiotropy of the findings. RESULTS The MR analysis revealed potential associations between 22 immune cell phenotypes and EM. Conversely, reverse MR analysis identified 11 immune phenotypes demonstrating potential associations between genetic liability in the immune phenotypes and EM. CONCLUSION This study provides evidence of a potential correlation between immune cell phenotypes and EM, including the existence of reverse causation. These findings open up new avenues for investigating the underlying mechanisms of EM.
Collapse
Affiliation(s)
- Lele Pan
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuying Chen
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziwei Zhou
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhen Cao
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Peng D, Zhong W, Wang Y, Fu Y, Shang W. The Causal Relationship Between Immune Cells and Infertility: A Mendelian Randomisation Study. Am J Reprod Immunol 2024; 92:e13932. [PMID: 39320012 DOI: 10.1111/aji.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE Infertility has emerged as a significant global public health concern, with a multitude of complex underlying causes. Epidemiological evidence indicates that immunological factors are significant contributors to the aetiology of infertility. However, previous studies on the relationship between immune inflammation and infertility have yielded inconclusive results. METHODS Mendelian randomisation (MR) is an emerging statistical method that employs exposure-related genetic variation as an instrumental variable (IV) to infer causal relationships between immune cells and infertility by modelling the principle of random assignment in Mendelian genetics. In this study, MR was employed to assess the causal relationship between 731 immune cell signatures and infertility. The data utilized in this study were obtained from publicly available genome-wide association studies (GWAS) and validated IVs, which were employed to fulfil the essential assumptions of MR analysis. RESULTS The Mendelian randomisation analysis revealed a total of 27 statistically significant immune cell phenotypes out of 731. The risk factor with the largest odds ratio (OR) was CD28- CD25++ CD8+ %T cell [OR, 1.21; 95% confidence interval (CI), 1.04-1.42], while the protective factor with the largest OR was activated and resting Treg AC (OR, 0.89; 95% CI, 0.82-0.97). CONCLUSION The present study has demonstrated a correlation between certain characteristics of immune cells and female infertility. These results provide clues for further research into the immune mechanisms of infertility and may inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Dingchuan Peng
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Zhong
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yiyao Fu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Wei Shang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Marin NSI, Fuente-Muñoz EDL, Gil-Laborda R, Villegas Á, Alonso-Arenilla B, Cristóbal I, Pilar-Suárez L, Jiménez-Huete A, Calvo M, Sarria B, Mansilla-Ruiz M, Ochoa J, Fernández-Arquero M, Sánchez-Ramón S. Myeloid-derived suppressor cells as a potential biomarker for recurrent pregnancy loss and recurrent implantation failure: Increased levels of MDSCs in recurrent reproductive failure. Am J Reprod Immunol 2023; 90:e13783. [PMID: 37881123 DOI: 10.1111/aji.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) represent distinct clinical conditions with established definitions, both of which have been linked to an underlying pro-inflammatory state. This study aimed to explore the levels of monocytic-myeloid-derived suppressor cells (M-MDSCs) and regulatory T cells (TReg ) in a cohort of RPL and RIF women and their potential contribution to RPL and RIF. METHOD OF STUDY One hundred and eight non-pregnant women were evaluated: 40 RPL, 41 RIF, and 27 fertile healthy controls (HC). A multiparametric flow cytometry approach was utilized to measure and quantify the frequency of M-MDSCs and TReg cells. Cytokine levels in plasma samples were evaluated through a multiplex assay. M-MDSCs levels were significantly higher in RPL and RIF patients compared to HC. RESULTS M-MDSCs levels were significantly higher in RPL (9.4% [7-11.6]) and RIF (8.1% [5.9-11.6]) patients compared to HC (6% [4.2-7.6]). An optimal cut-off of 6.1% for M-MDSCs disclosed a sensitivity of 75.6% and 89.7% and a specificity of 57.7% and 57.7% in RIF and RPL groups, respectively. A significant negative correlation was observed between M-MDSCs and TReg (p = .002, r = -.51). CONCLUSIONS Our preliminary data allowed us to build a predictive model that may aid as a potential diagnostic tool in the clinic. These findings could provide a better understanding of these pathologies and a better definition of patients that could benefit from personalized treatments to promote pregnancy. Additional exploration and confirmation in distinct study groups are needed to fully assess the diagnostic capabilities of this biomarker.
Collapse
Affiliation(s)
- Nabil Subhi-Issa Marin
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| | | | - Raquel Gil-Laborda
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Ángela Villegas
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Ignacio Cristóbal
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
| | - Lydia Pilar-Suárez
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Marta Calvo
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
| | - Beatriz Sarria
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mariló Mansilla-Ruiz
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Juliana Ochoa
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
5
|
Song Y, Liu Y, Xu Q, Leung KT, Chan LKY, Chung JPW, Wang CC, Chen X, Zhang T, Man GCW. Isolation of myeloid-derived suppressor cells (MDSC) from endometriotic mice model and their immunomodulatory functions. Methods Cell Biol 2023; 184:33-57. [PMID: 38555157 DOI: 10.1016/bs.mcb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Endometriosis is a chronic, painful disease whose etiology remains unknown. The development of novel therapies and diagnostic tools for endometriosis has been limited due in part to challenges in studying the disease. Recently, a few reports have shown that immunosuppressive cells, such as myeloid-derived suppressor cell (MDSC), may promote the progression of endometriosis. MDSCs are a heterogeneous group of myeloid cells with potent immunosuppressive and angiogenic properties. Here, in this chapter, we provide a detailed protocol to phenotype MDSC as well as to isolate and assess the functionality from the peritoneal cavity of a mouse model of surgically induced endometriosis. Importantly, the current mouse model has been widely used to study how the immune system, hormones, and environmental factors affect endometriosis as well as the effects of endometriosis on fertility and pain.
Collapse
Affiliation(s)
- Yi Song
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yingyu Liu
- Maternal-Fetal Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Qianhan Xu
- Department of Pediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Loucia Kit Ying Chan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Maternal-Fetal Institute, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China.
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Gene Chi Wai Man
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
6
|
Fan D, Wang X, Shi Z, Jiang Y, Zheng B, Xu L, Zhou S. Understanding endometriosis from an immunomicroenvironmental perspective. Chin Med J (Engl) 2023; 136:1897-1909. [PMID: 37439327 PMCID: PMC10431529 DOI: 10.1097/cm9.0000000000002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 07/14/2023] Open
Abstract
ABSTRACT Endometriosis, a heterogeneous, inflammatory, and estrogen-dependent gynecological disease defined by the presence and growth of endometrial tissues outside the lining of the uterus, affects approximately 5-10% of reproductive-age women, causing chronic pelvic pain and reduced fertility. Although the etiology of endometriosis is still elusive, emerging evidence supports the idea that immune dysregulation can promote the survival and growth of retrograde endometrial debris. Peritoneal macrophages and natural killer (NK) cells exhibit deficient cytotoxicity in the endometriotic microenvironment, leading to inefficient eradication of refluxed endometrial fragments. In addition, the imbalance of T-cell subtypes results in aberrant cytokine production and chronic inflammation, which contribute to endometriosis development. Although it remains uncertain whether immune dysregulation represents an initial cause or merely a secondary enhancer of endometriosis, therapies targeting altered immune pathways exhibit satisfactory effects in preventing disease onset and progression. Here, we summarize the phenotypic and functional alterations of immune cells in the endometriotic microenvironment, focusing on their interactions with microbiota and endocrine and nervous systems, and how these interactions contribute to the etiology and symptomology of endometriosis.
Collapse
Affiliation(s)
- Dian Fan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhixian Shi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | | | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lian Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Lu Z, Wang H, Gong Z, Guo P, Li C, Bi K, Li X, Chen Y, Pan A, Xu Y, Zhou P, Wei Z, Jiang H, Cao Y. The enrichment of Arg1 +ILC2s and ILCregs facilitates the progression of endometriosis: A preliminary study. Int Immunopharmacol 2023; 121:110421. [PMID: 37302364 DOI: 10.1016/j.intimp.2023.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Innate lymphoid cells (ILCs) are a kind of lymphocytes that reside in the tissue and have an essential function in the immune microenvironment. However, the relationship between endometriosis (EMS) and ILCs is complex and not fully understood. This study examines several groups of ILCs in the peripheral blood (PB), peritoneal fluid (PF) and endometrium of patients with EMS via flow cytometry. The study observed an increase in PB ILCs, particularly ILC2s and ILCregs subsets and Arg1+ILC2s in the EMS patients were highly activated. EMS patients had significantly higher levels of serum interleukin (IL)-10/33/25 compared to controls. We also found an elevation of Arg1+ILC2s in the PF and higher levels of ILC2s and ILCregs in ectopic endometrium compared with eutopic. Importantly, a positive correlation was observed between the enrichment of Arg1+ILC2s and ILCregs in the PB of EMS patients. The findings indicate that the involvement of Arg1+ILC2s and ILCregs fosters potentially endometriosis progression.
Collapse
Affiliation(s)
- Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhangyun Gong
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuqing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ya Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Anan Pan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road No.120, Hefei 230000, China; NHC Key Laboratory of Study on ABNORMAL gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
Myeloid-derived suppressor cells: A new emerging player in endometriosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:191-220. [PMID: 36967153 DOI: 10.1016/bs.ircmb.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endometriosis is a common gynecological disorder defined by the presence of endometrial tissue outside the uterus. This is commonly associated with chronic pelvic pain, infertility, and dysmenorrhea, which occurs in approximately 10% of women of reproductive age. Although the exact mechanism remains uncertain, it has been widely accepted to be an estrogen-dependent and inflammatory disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immune cells with immunosuppressive capacity and non-immunological functions. They have been found to be aggressively involved in the pathologies of various disorders. In regards to tumors, the functions of MDSCs have been profoundly shown to inhibit tumor immune response and to promote angiogenesis, tumor metastasis, fibrosis, and epithelial-mesenchymal transition (EMT). In recent years, the elevation of MDSCs in endometriosis was reported by several studies that provoke the assumption that MDSCs might exert similar roles to promote the development of endometriosis. Such that, precision treatments targeting MDSCs might be a promising direction for future study. Herein, we will review the research progress of MDSCs in endometriosis and its potential relevance to the pathogenesis, progression, and therapeutics strategy of endometriosis.
Collapse
|
9
|
Suszczyk D, Skiba W, Zardzewiały W, Pawłowska A, Włodarczyk K, Polak G, Tarkowski R, Wertel I. Clinical Value of the PD-1/PD-L1/PD-L2 Pathway in Patients Suffering from Endometriosis. Int J Mol Sci 2022; 23:ijms231911607. [PMID: 36232911 PMCID: PMC9570092 DOI: 10.3390/ijms231911607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The interaction between dendritic cells (DCs) and T cells mediated by the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1)/programmed cell death ligand 2 (PD-L2) pathway is the most important point in regulating immunological tolerance and autoimmunity. Disturbances in the quantity, maturity, and activity of DCs may be involved in the implantation and growth of endometrial tissue outside the uterus in endometriosis (EMS). However, little is known about the role of the immune checkpoint pathways in EMS. In our study, we examined the expression of PD-L1/PD-L2 on myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in the peripheral blood (PB) and peritoneal fluid (PF) of both EMS patients (n = 72) and healthy subjects (n = 20) via flow cytometry. The concentration of soluble PD-L1 and PD-L2 in the plasma and PF of EMS patients and the control group were determined using ELISA. We demonstrated an elevated percentage of mDCs, mDCs and pDCs with the PD-L1or PD-L2 expression, and a higher concentration of the soluble forms of PD-L1 and PD-L2 in the PF than in the plasma of EMS patients. We conclude that the peritoneal cavity environment and the PD-1/PD-L1/PD-L2 axis may play an important role in the modulation of immune response and the development and/or progression of EMS.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence:
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Witold Zardzewiały
- Students’ Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Karolina Włodarczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Grzegorz Polak
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Rafał Tarkowski
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
11
|
Xiao G, Gao X, Li L, Liu C, Liu Z, Peng H, Xia X, Yi X, Zhou R. An Immune-Related Prognostic Signature for Predicting Clinical Outcomes and Immune Landscape in IDH-Mutant Lower-Grade Gliomas. JOURNAL OF ONCOLOGY 2021; 2021:3766685. [PMID: 34961815 PMCID: PMC8710162 DOI: 10.1155/2021/3766685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND IDH mutation is the most common in diffuse LGGs, correlated with a favorable prognosis. However, the IDH-mutant LGGs patients with poor prognoses need to be identified, and the potential mechanism leading to a worse outcome and treatment options needs to be investigated. METHODS A six-gene immune-related prognostic signature in IDH-mutant LGGs was constructed based on two public datasets and univariate, multivariate, and LASSO Cox regression analysis. Patients were divided into low- and high-risk groups based on the median risk score in the training and validation sets. We analyzed enriched pathways and immune cell infiltration, applying the GSEA and the immune evaluation algorithms. RESULTS Stratification and multivariate Cox analysis unveiled that the six-gene signature was an independent prognostic factor. The signature (0.806/0.795/0.822) showed a remarkable prognostic performance, with 1-, 3-, and 5-year time-dependent AUC, higher than for grade (0.612/0.638/0.649) and 1p19q codeletion status (0.606/0.658/0.676). High-risk patients had higher infiltrating immune cells. However, the specific immune escape was observed in the high-risk group after immune activation, owing to increasing immunosuppressive cells, inhibitory cytokines, and immune checkpoint molecules. Moreover, a novel nomogram model was developed to evaluate the survival in IDH-mutant LGGs patients. CONCLUSION The six-gene signature could be a promising prognostic biomarker, which is promising to promote individual therapy and improve the clinical outcomes of IDH-mutant gliomas. The study also refined the current classification system of IDH-mutant gliomas, classifying patients into two subtypes with distinct immunophenotypes and overall survival.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen 518122, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102205, China
| | - Chao Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhiyuan Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiqin Peng
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102205, China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Xiao T, Zhang P, Feng T, Lu K, Wang X, Zhou S, Qiang Y. Butyrate functions in concert with myeloid-derived suppressor cells recruited by CCR9 to alleviate DSS-induced murine colitis. Int Immunopharmacol 2021; 99:108034. [PMID: 34426112 DOI: 10.1016/j.intimp.2021.108034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is a precancerous disease caused mainly by a combination of genetic susceptibility, environmental factors and microbiota dysbiosis. As a kind of short-chain fatty acid (SCFA), butyrate has been shown to be closely related to the progression of colitis. However, the exact regulatory mechanism of butyrate in colitis needs to be further elucidated. In our current research, the effects of butyrate were examined in a dextran sulfate sodium (DSS)-induced murine colitis model, which simulates human UC. The administration of butyrate significantly reversed the signs of colitis and alleviated colonic histological damage in DSS‑induced colitis. The transcription levels of the main proinflammatory mediators, including tumor necrosis factor-α, interleukin-6 and interleukin-12, were also reduced, as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). This indicates that butyrate could alleviate DSS-induced colitis by inhibiting proinflammatory mediators. In addition, we found that myeloid-derived suppressor cells (MDSCs), which have an inflammation-relieving effect, did not effectively alleviate DSS‑induced colitis but showed a compensatory increase in the DSS group. However, the compensatory increase in MDSCs in the DSS group significantly decreased after butyrate treatment. Moreover, the chemokine receptor CCR9, which mediates the homing of intestinal immune cells, also showed consistent changes similar to MDSCs. Butyrate alone did not have the aforementioned effects on mice. Thus, butyrate may effectively relieve DSS‑induced colitis by synergistic regulatory effects with MDSCs, which migrate and gather through CCR9 recruitment.
Collapse
Affiliation(s)
- Tengfei Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Tongbao Feng
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Kefeng Lu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xiaoyan Wang
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Siyuan Zhou
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Yetao Qiang
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
| |
Collapse
|
13
|
Nagatani Y, Funakoshi Y, Suto H, Imamura Y, Toyoda M, Kiyota N, Yamashita K, Minami H. Immunosuppressive effects and mechanisms of three myeloid-derived suppressor cells subsets including monocytic-myeloid-derived suppressor cells, granulocytic-myeloid-derived suppressor cells, and immature-myeloid-derived suppressor cells. J Cancer Res Ther 2021; 17:1093-1100. [PMID: 34528569 DOI: 10.4103/jcrt.jcrt_1222_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immune cells of myeloid lineage. Recent reports have suggested that human MDSC are divided into three subsets: monocytic MDSC (M-MDSC), granulocytic MDSC (G-MDSC), and immature MDSC (I-MDSC). However, the characteristics of each human MDSC subset still remain unclear. Materials and Methods To evaluate the immunosuppressive effects and mechanisms, we first performed a T-cell suppression assay using cells obtained from healthy donor peripheral blood samples. The levels of immune inhibitory molecules in the culture supernatant of each MDSC subset were measured to reveal the T-cell suppressive mechanisms. Then, we compared these results with the results from cells obtained from cancer patient blood samples. Finally, we investigated the difference in the frequency of each MDSC subset between the healthy donors and the cancer patients. Results Although M-MDSC and G-MDSC suppressed T-cell activation, I-MDSC had no T-cell suppressive effect. We found that the culture supernatant of M-MDSC and G-MDSC contained high levels of interleukin-1 receptor antagonist (IL-1RA) and arginase, respectively, in both healthy donors and cancer patients. No inhibitory molecules were detected in the culture supernatant of I-MDSC. The population of functional MDSC (M-MDSC and G-MDSC) in the total MDSC was significantly increased in cancer patients compared with that in healthy donors. Conclusions Although M-MDSC and G-MDSC, which released IL-1RA and arginase, respectively, suppressed T-cell activation, I-MDSC did not have an immunosuppressive effect. The population of functional MDSC was increased in cancer patients compared with that in healthy donors.
Collapse
Affiliation(s)
- Yoshiaki Nagatani
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yohei Funakoshi
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hirotaka Suto
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoshinori Imamura
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Masanori Toyoda
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Naomi Kiyota
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine; Cancer Center, Kobe University Hospital, Chuo-ku, Kobe, Japan
| | - Kimihiro Yamashita
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hironobu Minami
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine; Cancer Center, Kobe University Hospital, Chuo-ku, Kobe, Japan
| |
Collapse
|
14
|
Satake E, Koga K, Takamura M, Izumi G, Elsherbini M, Taguchi A, Makabe T, Takeuchi A, Harada M, Hirata T, Hirota Y, Wada-Hiraike O, Osuga Y. The roles of polymorphonuclear myeloid-derived suppressor cells in endometriosis. J Reprod Immunol 2021; 148:103371. [PMID: 34517223 DOI: 10.1016/j.jri.2021.103371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This study aimed to determine the systemic and local proportions, focal localization, and characteristics of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in endometriosis. STUDY DESIGN Peripheral blood and peritoneal fluid were obtained from patients with a benign gynecologic condition (controls) or endometriosis. PMN-MDSCs were defined as CD33+HLA-DRlow/-CD14-CD15+ and monocytic (M)-MDSCs were defined as CD33+HLA-DRlow/-CD14+CD15-, and were identified using flowcytometry. Ovarian endometriotic tissues were obtained, and the expression of lectin-type oxidized low density lipoprotein receptor-1 (LOX1) as a marker of PMN-MDSCs, arginine 1 (Arg1), and matrix metalloproteinase 9 (MMP9) were detected using immunohistochemistry. Anti-Ly6G antibody was administered to endometriosis model mice, and the number and weight of the lesions were measured, and cell proliferations and apoptosis in the lesions were analyzed using Ki67 immunohistochemistry and TUNEL assay. RESULTS In the peripheral blood, the proportion of PMN-MDSCs was significantly higher in endometriosis (3.20 vs 1.63 %, p < 0.05), but the proportion of M-MDSCs did not differ between the groups. In the peritoneal fluid, the proportion of PMN-MDSCs was significantly higher in endometriosis (7.82 × 10-1% vs 6.48 × 10-2%, p < 0.05), whereas the proportion of M-MDSCs did not differ between the groups. PMN-MDSCs were detected in the stromal cell layer of the endometriotic cyst wall. Double staining for LOX1 and Arg1, and LOX1 and MMP9 was confirmed. Administration of Ly6G antibody did not change the number or weight of endometriosis lesions, but significantly decreased Ki67-positive cells and increased TUNEL-positive cells in the lesions. CONCLUSIONS PMN-MDSCs may contribute to the pathogenesis of endometriosis via Arg1 and MMP9 expression.
Collapse
Affiliation(s)
- Erina Satake
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan.
| | - Masashi Takamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan; Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Gentaro Izumi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Mohammed Elsherbini
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tomoko Makabe
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Arisa Takeuchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| |
Collapse
|
15
|
Gu C, Meng Y, Meng Q, Fan W, Ye M, Zhang Q, Zhang N, Li L. Exploring the Potential Key IncRNAs with Endometriosis by Construction of a ceRNA Network. Int J Gen Med 2021; 14:4161-4170. [PMID: 34385836 PMCID: PMC8352637 DOI: 10.2147/ijgm.s321648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose The etiology and pathophysiology of endometriosis remain unclear. Current research indicates long noncoding RNA (lncRNA) may play an important role in the pathogenesis and development of endometriosis. However, the molecular mechanism of lncRNA in endometriosis is far from clear. Patients and Methods The lncRNA and mRNA expression of 8 patients with ovarian endometriosis were determined by high-throughput RNA sequencing (8 ectopic endometria samples vs 8 eutopic endometria samples), and miRNA expression profiles were obtained from our previous study. Then a lncRNA-associated competing endogenous RNA (ceRNA) network was constructed by combining the regulatory interaction and negative co-expression interaction between the differentially expressed lncRNAs/mRNAs and miRNAs by different rules. Results The constructed lncRNA-related ceRNA network was composed of two separate networks, network 1 including 14,137 dysregulated lncRNA–mRNA interactions, referring to 242 lncRNAs, 55 miRNAs and 1600 mRNAs, network 2 including 4459 dysregulated lncRNA–mRNA interactions, referring to 111 lncRNAs, 39 miRNAs and 1151 mRNAs. The top six hub lncRNAs (LINC01140, MSC-AS1, HAGLR, CKMT2-AS1, JAKMIP2-AS1, AL365361.1) in the significant ternary relationship of mRNA–miRNA–lncRNA in network 1, and the top six hub lncRNAs (PAX8-AS1, MIR17HC, PART1, HOXA-AS3, PLAC4, LINC00511) in the significant ternary relationship of mRNA–miRNA–lncRNA in network 2 were selected. Functional enrichment analysis of these lncRNA-related mRNAs indicated that the lncRNAs in network 1 mainly take part in positive regulation of phagocytosis, myeloid leukocyte activation, and tissue remodeling, while the lncRNAs in network 2 mainly take part in negative regulation of cell proliferation, blood vessel development and regulation of epithelial cell differentiation, which is consistent with the results obtained from the different rules to construct the networks. Conclusion lncRNA-related ceRNA network analysis recognized key lncRNAs related to the development of endometriosis.
Collapse
Affiliation(s)
- Chenglei Gu
- Department of Obstetrics and Gynecology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qingqing Meng
- Health Care Office, Agency for Offices Administration of Central Military Commission of People's Republic of China, Beijing, People's Republic of China
| | - Wensheng Fan
- Department of Obstetrics and Gynecology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Mingxia Ye
- Department of Obstetrics and Gynecology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Nina Zhang
- Department of Obstetrics and Gynecology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lian Li
- Department of Obstetrics and Gynecology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
16
|
Greenbaum H, Galper BEL, Decter DH, Eisenberg VH. Endometriosis and autoimmunity: Can autoantibodies be used as a non-invasive early diagnostic tool? Autoimmun Rev 2021; 20:102795. [DOI: 10.1016/j.autrev.2021.102795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
|
17
|
Li J, Chen J, Zhang M, Zhang C, Wu R, Yang T, Qiu Y, Liu J, Zhu T, Zhang Y, Rong R. The mTOR Deficiency in Monocytic Myeloid-Derived Suppressor Cells Protects Mouse Cardiac Allografts by Inducing Allograft Tolerance. Front Immunol 2021; 12:661338. [PMID: 33897705 PMCID: PMC8062712 DOI: 10.3389/fimmu.2021.661338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/12/2021] [Indexed: 12/01/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) can prevent allograft rejection and induce immune tolerance in transplantation models. Previous studies have demonstrated that inhibition of mTOR signaling can enhance the MDSC protective effect in heart transplantation (HTx) by promoting MDSC expansion. In addition, mTOR inhibition is related to autophagy. The present study investigated the protective mechanism of mTOR-deficient monocytic MDSCs (M-MDSCs) in mouse HTx. Methods Myeloid-specific mTOR conditional knockout mice were generated to obtain mTOR-/- M-MDSCs. The proliferation and immunosuppressive function of mTOR-/- M-MDSCs were determined by flow cytometry and T cell proliferation assays. The mTOR-/- M-MDSC intracellular autophagy levels were determined using western blotting and electron microscopy. RNAseq analysis was performed for wild-type (WT) and mTOR-/- M-MDSCs. Allogeneic HTx mouse model was established and treated with WT or mTOR-/- M-MDSCs. Enzyme-linked immunosorbent assay, flow cytometry, and immunohistochemistry assays were performed to determine WT and mTOR-/- M-MDSC-induced immune tolerance. Results The mTOR deficiency promoted M-MDSC differentiation and enhanced intracellular autophagy levels in vivo and in vitro. mTOR deficiency also enhanced the immunosuppressive function of M-MDSCs. In addition, infusing with WT and mTOR-/- M-MDSCs prolonged cardiac allograft survival and established immune tolerance in recipient mice by inhibiting T cell activation and inducing regulatory T cells. Conclusion mTOR deficiency enhances the immunosuppressive function of M-MDSCs and prolongs mouse cardiac allograft survival.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Mingnan Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Renyan Wu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianying Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Liu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
18
|
Suszczyk D, Skiba W, Jakubowicz-Gil J, Kotarski J, Wertel I. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells 2021; 10:cells10030677. [PMID: 33803806 PMCID: PMC8003224 DOI: 10.3390/cells10030677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis (EMS) is a common gynecological disease characterized by the presence of endometrial tissue outside the uterus. Approximately 10% of women around the world suffer from this disease. Recent studies suggest that endometriosis has potential to transform into endometriosis-associated ovarian cancer (EAOC). Endometriosis is connected with chronic inflammation and changes in the phenotype, activity, and function of immune cells. The underlying mechanisms include quantitative and functional disturbances of neutrophils, monocytes/macrophages (MO/MA), natural killer cells (NK), and T cells. A few reports have shown that immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) may promote the progression of endometriosis. MDSCs are a heterogeneous population of immature myeloid cells (dendritic cells, granulocytes, and MO/MA precursors), which play an important role in the development of immunological diseases such as chronic inflammation and cancer. The presence of MDSCs in pathological conditions correlates with immunosuppression, angiogenesis, or release of growth factors and cytokines, which promote progression of these diseases. In this paper, we review the impact of MDSCs on different populations of immune cells, focusing on their immunosuppressive role in the immune system, which may be related with the pathogenesis and/or progression of endometriosis and its transformation into ovarian cancer.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Jan Kotarski
- Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
- Correspondence:
| |
Collapse
|
19
|
CCL25 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:99-111. [PMID: 34286444 DOI: 10.1007/978-3-030-62658-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple checkpoint mechanisms are overridden by cancer cells in order to develop into a tumor. Neoplastic cells, while constantly changing during the course of cancer progression, also craft their surroundings to meet their growing needs. This crafting involves changing cell surface receptors, affecting response to extracellular signals and secretion of signals that affect the nearby cells and extracellular matrix architecture. This chapter briefly comprehends the non-cancer cells facilitating the cancer growth and elaborates on the notable role of the CCR9-CCL25 chemokine axis in shaping the tumor microenvironment (TME), directly and via immune cells. Association of increased CCR9 and CCL25 levels in various tumors has demonstrated the significance of this axis as a tool commonly used by cancer to flourish. It is involved in attracting immune cells in the tumor and determining their fate via various direct and indirect mechanisms and, leaning the TME toward immunosuppressive state. Besides, elevated CCR9-CCL25 signaling allows survival and rapid proliferation of cancer cells in an otherwise repressive environment. It modulates the intra- and extracellular protein matrix to instigate tumor dissemination and creates a supportive metastatic niche at the secondary sites. Lastly, this chapter abridges the latest research efforts and challenges in using the CCR9-CCL25 axis as a cancer-specific target.
Collapse
|
20
|
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020; 21:ijms21207619. [PMID: 33076281 PMCID: PMC7590012 DOI: 10.3390/ijms21207619] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
CC chemokines (or β-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
21
|
Zheng ZM, Yang HL, Lai ZZ, Wang CJ, Yang SL, Li MQ, Shao J. Myeloid-derived suppressor cells in obstetrical and gynecological diseases. Am J Reprod Immunol 2020; 84:e13266. [PMID: 32418253 DOI: 10.1111/aji.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid-origin cells which have immunosuppressive activities in several conditions, such as cancer and inflammation. Recent research has also associated MDSCs with numerous obstetrical and gynecological diseases. During pregnancy, MDSCs accumulate to ensure maternal-fetal immune tolerance, whereas they are decreased in patients who suffer from early miscarriage or pre-eclampsia. While the etiology of endometriosis is still unknown, abnormal accumulation of MDSCs in the peripheral blood and peritoneal fluid, alongside an increased level of reactive oxygen species (ROS), has been observed in these patients, which is central to the cellular immune regulations by MDSCs. Additionally, the regulation of MDSCs observed in tumours is also applicable to gynecologic neoplasms, including ovarian cancer and cervical cancer. More recently, emerging evidence has shown that there are high levels of MDSCs in premature ovarian failure (POF) and in vitro fertilization (IVF), but the underlying mechanisms are unknown. In this review, the generation and mechanisms of MDSCs are summarized. In particular, the modulation of these cells in immune-related obstetrical and gynecological diseases is discussed, including potential treatment options targeting MDSCs.
Collapse
Affiliation(s)
- Zi-Meng Zheng
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Cheng-Jie Wang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jun Shao
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Jiang H, Bi K, Wang K, Lu Z, Xu Y, Guo P, Li C, Wei Z, Chen Y, Cao Y. Reduction of myeloid derived suppressor cells by inhibiting Notch pathway prevents the progression of endometriosis in mice model. Int Immunopharmacol 2020; 82:106352. [PMID: 32143006 DOI: 10.1016/j.intimp.2020.106352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022]
Abstract
Growing evidence suggested that immune dysregulation is one of the crucial drivers to the development of endometriosis (EMS). Myeloid derived suppressor cells (MDSCs) represent a heterogeneous subset of immature myeloid cells, and have been reported to promote the onset and progression of EMS. Notch signaling pathway played a major role in immunological reactions. Studies have found Notch signaling pathway could regulate MDSCs. However, how the biological effects of Notch signaling pathway on MDSCs may work in EMS is still unknown. In our study, we first built an endometriosis induced mice model. Then we treated mice with DAPT, a Notch signaling pathway inhibitor, or saline. We found that the DAPT could prevent the progression of EMS. The ADAM17, Notch1, Jagged1 and Hes1 were overexpressed in EMS mice, however, when mice were treated with DAPT, the overexpression was reduced. Meanwhile, we found a lower level of MDSCs in the DAPT treated EMS mice as compared to EMS mice without DAPT, accompanied by an increase of T helper (TH) 17 cells and a decrease of regulatory T cells (Tregs). We also investigated the reactive oxygen species (ROS) in peritoneal and endometriotic cells. Our results showed that ROS level decreased in both peritoneal and endometriotic cells in the study group treated with DAPT. Overall, our study indicates for the first time that blockage of Notch signaling could lessen MDSCs and ROS, and therefore preventing the development of endometriosis.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kangxia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ya Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
23
|
Toullec L, Batteux F, Santulli P, Chouzenoux S, Jeljeli M, Belmondo T, Hue S, Chapron C. High Levels of Anti-GM-CSF Antibodies in Deep Infiltrating Endometriosis. Reprod Sci 2020; 27:211-217. [PMID: 32046390 DOI: 10.1007/s43032-019-00021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Endometriosis is a chronic hormono-dependent inflammatory gynecological disease. Endometriosis can be subdivided into three forms: superficial peritoneal implants, endometrioma, and deep infiltrating endometriosis (DIE). Inflammation is a typical feature of endometriosis with overproduction of prostaglandins, chemokines, and cytokines, like granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF is a hematopoietic growth factor and immune modulator which belongs to the group of cytokines that actively participate in inflammatory reactions. GM-CSF autoantibodies (Ab) are described in inflammatory diseases such as Crohn disease and ulcerative colitis where high concentrations of anti-GM-CSF Ab are correlated with severity, complications, and relapses. We have evaluated the presence of anti-GM-CSF Ab in the serum of 106 patients with endometriosis and 92 controls using a home-made enzyme-linked immunosorbent assay (ELISA) and correlated the results with the form and severity of the disease. We found that anti-GM-CSF Ab level is significantly increased in the sera of patients with endometriosis compared to controls and is associated with the severity of the disease especially in patients with deep endometriosis (p < 0.0001) with the highest number of lesions (p = 0.0034), including digestive involvement (p = 0.0041). We also found a correlation between these levels of anti-GM-CSF Ab and the number of lesions in DIE patients (r = 0.913). In this way, searching anti-GM-CSF Ab in endometriosis patient sera could be of value for patient follow-up and put further insight into the role of inflammation and of GM-CSF in endometriosis pathogenesis.
Collapse
Affiliation(s)
- Laurie Toullec
- Department of Immunology, Cochin University Hospital, APHP, Paris, France.,Department of Immuno-hematology, Henri Mondor University Hospital, APHP, Créteil, France
| | - Frédéric Batteux
- Department of Immunology, Cochin University Hospital, APHP, Paris, France. .,INSERM U1016, Institut Cochin, Paris, France.
| | - Pietro Santulli
- Department of Gynecology Obstetrics II and Reproductive Medicine, Cochin University Hospital, Paris, France.,INSERM U1016, Institut Cochin, Paris, France
| | | | - Mohamed Jeljeli
- Department of Immunology, Cochin University Hospital, APHP, Paris, France.,INSERM U1016, Institut Cochin, Paris, France
| | - Thibaut Belmondo
- Department of Immuno-hematology, Henri Mondor University Hospital, APHP, Créteil, France
| | - Sophie Hue
- Department of Immuno-hematology, Henri Mondor University Hospital, APHP, Créteil, France.
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Cochin University Hospital, Paris, France. .,INSERM U1016, Institut Cochin, Paris, France.
| |
Collapse
|
24
|
Li C, Lu Z, Bi K, Wang K, Xu Y, Guo P, Chen Y, Zhou P, Wei Z, Jiang H, Cao Y. CD4 +/CD8 + mucosa-associated invariant T cells foster the development of endometriosis: a pilot study. Reprod Biol Endocrinol 2019; 17:78. [PMID: 31615517 PMCID: PMC6794756 DOI: 10.1186/s12958-019-0524-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Immune dysregulation is one of the mechanisms to promote endometriosis (EMS). Various T cell subpopulations have been reported to play different roles in the development of EMS. The mucosa-associated invariant T cell (MAIT) is an important T cell subset in the pathogenesis of various autoimmune diseases. Evidence has indicated that there are three functionally distinct MAIT subsets: CD4+, CD8+ and CD4/CD8-/- (double negative, DN) MAIT cells. Till now, the associations between endometriosis and MAIT have not been studied. Our research investigates different MAIT subpopulations in peripheral blood (PB) and peritoneal fluid (PF) from EMS patients. METHODS Thirty-two EMS patients and eighteen controls were included. PB and PF were collected. Tests of cytokines in plasma and PF were performed by ELISA kit. Characterisations of MAIT were done by flow cytometry. MAIT cells have been defined as CD3 + CD161 + Vα7.2+ cells. Based on CD4 and CD8 expression, they were divided into CD8+MAIT, CD4+MAIT and DN MAIT. RESULTS Enrichments of MAIT cells, especially CD4 and CD8 MAIT subsets were found. Moreover, CD8 MAIT cells had a high activation in the EMS group. EMS patients produced higher level of IL-8/12/17 as compared to these from controls. On the contrary, control patients exhibited an impressive upregulation of DN MAIT cells, however, these DN MAIT cells from controls showed a higher expression of PD-1. Lastly, we performed the relevance analysis, and discovered that the accumulation of PB MAIT cells positively correlated with an elevated level of serum CA125 production in EMS group. CONCLUSION These results suggest that different MAIT subsets play distinct roles in the progression of endometriosis.
Collapse
Affiliation(s)
- Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Kangxia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Ya Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China.
| |
Collapse
|
25
|
Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ. Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 2019; 76:2111-2132. [PMID: 30826860 PMCID: PMC11105498 DOI: 10.1007/s00018-019-03056-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endometriosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
| | - Jun Shao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Reproductive Medicine Center, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, 215008, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
26
|
Guo P, Bi K, Lu Z, Wang K, Xu Y, Wu H, Cao Y, Jiang H. CCR5/CCR5 ligand-induced myeloid-derived suppressor cells are related to the progression of endometriosis. Reprod Biomed Online 2019; 39:704-711. [PMID: 31427176 DOI: 10.1016/j.rbmo.2019.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 11/19/2022]
Abstract
RESEARCH QUESTION Immunological disorders have been reported to promote the progression of endometriosis. Several recent studies have shown that myeloid-derived suppressor cells (MDSC) drive the progression of endometriosis. The aim of this case-control study was to test whether CCR5 and its ligands drive MDSC accumulation and play a role in the progression of endometriosis. DESIGN Thirty-six endometriosis patients and 20 controls were recruited. All subjects underwent laparoscopy. An ELISA kit was used to define CCR5 ligands in plasma and peritoneal fluid from endometriosis patients; flow cytometry was then used to characterize CCR5+MDSC in peripheral blood and peritoneal fluid. RESULTS Data showed that endometriosis patients displayed a significantly higher production of plasma CCL3 (P = 0.046) and peritoneal fluid CCL3/5 (P = 0.042/0.036) compared with those from the uterine leiomyoma group. Furthermore, the concentrations of peritoneal fluid CCL5 were elevated in late stage patients compared with those from the uterine leiomyoma group. Accumulation of blood CCR5+Mo-MDSC was detected in endometriosis patients compared with those from both the ovarian dermoid cysts and uterine leiomyoma groups. Endometriosis patients also showed an elevation of CCR5+MDSC and CCR5+Mo-MDSC in peritoneal fluid samples compared with uterine leiomyoma samples. It was also found that enrichment of CCR5+MDSC (r = 0.6807; P < 0.0001) and CCR5+Mo-MDSC (r = 0.6893; P < 0.0001) were correlated with enhanced production of CCL5 in peritoneal fluid from endometriosis patients. CONCLUSIONS This study showed that CCR5 and its ligands could drive the progression of endometriosis by enhancing the accumulation of MDSC. These findings might produce a promising treatment that targets CCR5+MDSC for endometriosis patients.
Collapse
Affiliation(s)
- Peipei Guo
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, PR China
| | - Kaihuan Bi
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Zhimin Lu
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Centre, Anhui Medical University, Hefei, PR China
| | - Kangxia Wang
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, PR China
| | - Yuping Xu
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Centre, Anhui Medical University, Hefei, PR China
| | - Huan Wu
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Centre, Anhui Medical University, Hefei, PR China
| | - Yunxia Cao
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, PR China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Centre, Anhui Medical University, Hefei, PR China.
| | - Huanhuan Jiang
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, PR China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Centre, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
27
|
Barra F, Ferrero S. The role of monocytic myeloid‐derived suppressor cells in the pathogenesis of endometriosis. Am J Reprod Immunol 2019; 81:e13094. [DOI: 10.1111/aji.13094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynecology IRCCS Ospedale Policlinico San Martino Genoa Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) University of Genoa Genoa Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology IRCCS Ospedale Policlinico San Martino Genoa Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) University of Genoa Genoa Italy
| |
Collapse
|