1
|
Wang X, Li X, Yuan S, Gu Z, An Z, Xu Q, Cao B, Song Y, Tang C. Regulation of placental development and function by ubiquitination. Mol Med 2025; 31:202. [PMID: 40410732 PMCID: PMC12101010 DOI: 10.1186/s10020-025-01268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
The proper distribution of nutrients and metabolites between the mother and fetus is one important factor for successful pregnancy. As a bridge, the placenta plays a key role in sensing the nutritional needs of the fetus, coordinating the maternal nutrition supply, and enhancing its nutritional transport capabilities. Imperfect placental development can lead to pregnancy-related disorders such as preeclampsia, recurrent miscarriage, and/or fetal growth restriction, posing risks to both mother and child in the short and long term. However, current understanding of the human placenta remains as a "black box", and its developmental control mechanisms for adaptive pregnant regulation still needs to be elucidated. As one form of post-translational modification (PTM), ubiquitination plays an important role in regulating cellular functions and is regarded as a valuable drug target. Particularly, ubiquitination related to placenta development has been discovered in recent years. Placental development processes closely associated with pregnant complications, such as blastocyst implantation, syncytiotrophoblast cell differentiation, and immune barrier maintenance, have been reported to be affected by ubiquitination. However, the diagnosis and intervention of pregnancy diseases also urgently need to be improved. Thus, aiming to comprehensive summarize and further exploring the molecular mechanism, target and regulatory mechanism of pregnancy complications, we have herein reviewed genes and pathways regulating pregnancy progress and diseases and focusing on ubiquitin-related physiological process in placenta.
Collapse
Affiliation(s)
- Xue Wang
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Xiaoqing Li
- Department of Pathophysiology, Medical School of Nantong University, Nantong, 226001, China
| | - Shanshan Yuan
- Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhiju Gu
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Zihao An
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Xu
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Huang Y, Yan P, Zhu J, Gong Y, Liu M, Cheng H, Yi T, Zhang F, Yang X, Su Y, Guo L. From Genes to Healing: The Protective Mechanisms of Poria cocos Polysaccharide in Endometrial Health. Curr Issues Mol Biol 2025; 47:139. [PMID: 40136393 PMCID: PMC11940905 DOI: 10.3390/cimb47030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
The aim of this study is to investigate the therapeutic effect of Poria cocos polysaccharide (PCP) on bovine endometritis. Initially, an inflammation model was induced using LPS-treated bovine endometrial epithelial cells (BEND) to identify the differentially expressed genes (DEGs) between the control and LPS groups by transcriptome sequencing, and GO functional annotation and KEGG enrichment analysis were performed. Subsequently, the mechanism of PCP treatment for endometritis was further evaluated using protein immunoblotting and real-time fluorescence quantitative analysis. Finally, the efficacy of PCP in treating endometritis was evaluated using a rat model of endometritis established with a mixed bacterial infection. The results show that transcriptome sequencing identified 4367 DEGs, with enrichment analysis highlighting the primary influences on the cell cycle and apoptosis signaling pathways. Following treatment of BEND with LPS resulted in cell apoptosis and inflammatory response. However, the introduction of PCP intervention significantly inhibited the progression of apoptosis and inflammation. Animal test results indicate that PCP significantly decreases the levels of serum inflammatory in rats suffering from endometritis and enhances antioxidant capacity. Furthermore, it effectively improved uterine swelling and tissue vacuolization caused by bacterial infection. These findings suggest that PCP could alleviate endometritis by modulating the inflammatory response and suppressing cell apoptosis. Poria cocos polysaccharides demonstrate significant potential for applications in immune modulation, anti-inflammatory responses, and antioxidant activities. Their high safety profile makes them suitable candidates as alternative therapeutic agents for the treatment of endometritis in the veterinary field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liwei Guo
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China; (Y.H.); (P.Y.); (J.Z.); (Y.G.); (M.L.); (H.C.); (T.Y.); (F.Z.); (X.Y.); (Y.S.)
| |
Collapse
|
3
|
Kasimanickam V, Kastelic J, Kasimanickam R. Transcriptomics of bovine sperm and oocytes. Anim Reprod Sci 2024; 271:107630. [PMID: 39500235 DOI: 10.1016/j.anireprosci.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Traditionally, sperm and embryos were studied using microscopy to assess morphology and motility. However, OMICS technologies, especially transcriptomic analysis, are now being used to screen the molecular dynamics of fertility markers at cellular and molecular levels, with high sensitivity. Transcriptomics is the study of the transcriptome - RNA transcripts produced by the genome - using high-throughput methods to understand how the RNAs are expressed. In this review, we have discussed gene contributions to sperm structure and function and their role in fertilization and early embryo development. Further, we identified miRNAs shared by sperm, oocytes, and early embryos and their roles in fertilization and early embryo development.
Collapse
Affiliation(s)
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
4
|
He J, Liu A, Shen H, Jiang Y, Gao M, Yu L, Du W, Zhang X, Fu F. Shared diagnostic genes and potential mechanisms between polycystic ovary syndrome and recurrent miscarriage revealed by integrated transcriptomics analysis and machine learning. Front Endocrinol (Lausanne) 2024; 15:1335106. [PMID: 39398336 PMCID: PMC11466764 DOI: 10.3389/fendo.2024.1335106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Objective More and more studies have found that polycystic ovary syndrome (PCOS) is significantly associated with recurrent spontaneous abortion (RSA), but the specific mechanism is not yet clear. Methods Based on the GEO database, we downloaded the PCOS (GSE10946, GSE6798 and GSE137684) and RSA (GSE165004, GSE26787 and GSE22490) datasets and performed differential analysis, weighted gene co-expression network (WGCNA), functional enrichment, and machine learning, respectively, on the datasets of the two diseases, Nomogram and integrated bioinformatics analysis such as immune infiltration analysis. Finally, the reliability of the diagnostic gene was verified by external verification and collection of human specimens. Results In this study, PCOS and RSA datasets were obtained from Gene Expression Omnibus (GEO) database, and a total of 23 shared genes were obtained by differential analysis and WGCNA analysis. GO results showed that the shared genes were mainly enriched in the functions of lipid catabolism and cell cycle transition (G1/S). DO enrichment revealed that shared genes are mainly involved in ovarian diseases, lipid metabolism disorders and psychological disorders. KEGG analysis showed significant enrichment of Regulation of lipolysis in adipocytes, Prolactin signaling pathway, FoxO signaling pathway, Hippo signaling pathway and other pathways. A diagnostic gene FAM166 B was obtained by machine learning and Nomogram screening, which mainly played an important role in Cellular component. GSEA analysis revealed that FAM166B may be involved in the development of PCOS and RSA by regulating the cell cycle, amino acid metabolism, lipid metabolism, and carbohydrate metabolism. CIBERSORT analysis showed that the high expression of FAM166 B was closely related to the imbalance of multiple immune cells. Further verification by qPCR suggested that FAM166 B could be used as a common marker of PCOS and RSA. Conclusions In summary, this study identified FAM166B as a common biomarker for PCOS and RSA, and conducted in-depth research and analysis of this gene, providing new data for basic experimental research and early prognosis, diagnosis and treatment of clinical diseases.
Collapse
Affiliation(s)
- Juanjuan He
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Ahui Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Min Gao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liulin Yu
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjing Du
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuehong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Zhang J, Di Y, Zhang B, Li T, Li D, Zhang H. CDK1 and CCNA2 play important roles in oral squamous cell carcinoma. Medicine (Baltimore) 2024; 103:e37831. [PMID: 38640322 PMCID: PMC11029925 DOI: 10.1097/md.0000000000037831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant tumor that occurs in oral cavity and is dominated by squamous cells. The relationship between CDK1, CCNA2, and OSCC is still unclear. The OSCC datasets GSE74530 and GSE85195 configuration files were downloaded from the Gene Expression Omnibus (GEO) database and were derived from platforms GPL570 and GPL6480. Differentially expressed genes (DEGs) were screened. The weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, Comparative Toxicogenomics Database analysis were performed. Gene expression heatmap was drawn. TargetScan was used to screen miRNAs that regulate central DEGs. A total of 1756 DEGs were identified. According to Gene Ontology (GO) analysis, they were predominantly enriched in processes related to organic acid catabolic metabolism, centromeric, and chromosomal region condensation, and oxidoreductase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were mainly concentrated in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. Weighted gene co-expression network analysis was performed with a soft-thresholding power set at 9, leading to the identification of 6 core genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1). The gene expression heatmap revealed that core genes (CDK1, CCNA2) were highly expressed in OSCC samples. Comparative Toxicogenomics Database analysis demonstrated associations between the 6 genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1) and oral tumors, precancerous lesions, inflammation, immune system disorders, and tongue tumors. The associated miRNAs for CDK1 gene were hsa-miR-203a-3p.2, while for CCNA2 gene, they were hsa-miR-6766-3p, hsa-miR-4782-3p, and hsa-miR-219a-5p. CDK1 and CCNA2 are highly expressed in OSCC. The higher the expression of CDK1 and CCNA2, the worse the prognosis.
Collapse
Affiliation(s)
- Junbo Zhang
- Department of Stomatology, Tangshan Gongren Hospital, Tangshan City, China
| | - Yongbin Di
- Department of Stomatology, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Bohao Zhang
- Department of Otolaryngology and Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Tianke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Dan Li
- Department of Otolaryngology and Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Haolei Zhang
- Department of Otolaryngology and Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| |
Collapse
|
6
|
Di Y, Zhang H, Zhang B, Li T, Li D. CCNA2 and KIF23 are molecular targets for the prognosis of adenoid cystic carcinoma. Aging (Albany NY) 2024; 16:205703. [PMID: 38568110 DOI: 10.18632/aging.205703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Adenoid cystic carcinoma (ACC) is a tumor type derived from glands. However, relationship between CCNA2 and KIF23, and adenoid cystic carcinoma remains unclear. METHODS GSE36820 and GSE88804 profiles for ACC were obtained from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified, and Weighted Gene Co-expression Network Analysis (WGCNA) was conducted. Subsequently, the construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were performed. A gene expression heat map was generated to visually depict the expression difference of core genes between adenoid cystic carcinoma and normal samples. TargetScan was employed to identify miRNAs that regulated central DEGs. Western blotting (WB) was conducted for cell verification. RESULTS A total of 885 DEGs were identified. GO and KEGG analyses revealed their main enrichment in responses to chemical stimuli, cell proliferation, tissue development, and regulation of cell proliferation. The GO and KEGG results indicated significant enrichment in aldosterone-regulated sodium reabsorption, the cell cycle, and the PPAR signaling pathway. Notably, core genes (CCNA2 and KIF23) were found to be highly expressed in Adenoid Cystic Carcinoma samples and expressed at low levels in normal samples. WB validated the overexpression of CCNA2 and KIF23 in the Adenoid Cystic Carcinoma group, confirming the protein-level changes associated with cell cycle, metastasis, apoptosis, and inflammatory factors in Adenoid Cystic Carcinoma groups with gene overexpression and knockout. CONCLUSIONS CCNA2 and KIF23 exhibit high expression levels in ACC, suggesting their potential role as molecular targets for this malignancy.
Collapse
Affiliation(s)
- Yongbin Di
- Department of Stomatology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
| | - Haolei Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
| | - Bohao Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
| | - Tianke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Dan Li
- Department of Otolaryngology, Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, P.R. China
| |
Collapse
|
7
|
Chen Z, Zeng L, Chen Z, Xu J, Zhang X, Ying H, Zeng Y, Yu F. Combined OLA1 and CLEC3B Gene Is a Prognostic Signature for Hepatocellular Carcinoma and Impact Tumor Progression. Technol Cancer Res Treat 2024; 23:15330338241241935. [PMID: 38564315 PMCID: PMC11007312 DOI: 10.1177/15330338241241935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC), partly because of its complexity and high heterogeneity, has a poor prognosis and an extremely high mortality rate. In this study, mRNA sequencing expression profiles and relevant clinical data of HCC patients were gathered from different public databases. Kaplan-Meier survival curves as well as ROC curves validated that OLA1|CLEC3B was an independent predictor with better predictive capability of HCC prognosis compared to OLA1 and CLEC3B separately. Further, the cell transfection experiment verified that knockdown of OLA1 inhibited cell proliferation, facilitated apoptosis, and improved sensitivity of HCC cells to gemcitabine. In this study, the prognostic model of HCC composed of OLA1/CLEC3B genes was constructed and verified, and the prediction ability was favorable. A higher level of OLA1 along with a lower level of CEC3B is a sign of poor prognosis in HCC. We revealed a novel gene pair OLA1|CLEC3B overexpressed in HCC patients, which may serve as a promising independent predictor of HCC survival and an approach for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhoufeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Huang R, Lu TL, Zhou R. Identification and immune landscape analysis of fatty acid metabolism genes related subtypes of gastric cancer. Sci Rep 2023; 13:20443. [PMID: 37993654 PMCID: PMC10665388 DOI: 10.1038/s41598-023-47631-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
Fatty acid metabolism (FAM) is associated with prognosis and immune microenvironment remodeling in many tumors. It is currently unknown how FAM affects the immunological microenvironment and prognosis of Gastric cancer (GC). Therefore, the current work aims to categorize GC samples based on the expression status of genes involved in FAM and to identify populations that might benefit from immunotherapy. In total, 50 FAM genes associated with overall survival (OS) were determined through univariate Cox proportional hazard regression analysis by mining the public TCGA and GEO databases. The GSE84437 and TCGA-STAD cohort samples were divided into two clusters using the "NMF" R package. According to the survival curve, patients in Cluster-1 showed considerably longer OS than those in Cluster-2. Patients in Cluster-1 exhibited earlier T stages, more intestinal GCs, and were older. MSI molecular subtypes were mainly distributed in Cluster-1, while GS molecular subtypes were distributed primarily in Cluster-2. There were 227 upregulated and 22 down-regulated genes (logFC > 1 or logFC < - 1, FDR < 0.05) in Cluster-2 compared with Cluster-1. One hub module (edges = 64, nodes = 12) was identified with a module score of 11.636 through Cytoscape plug-in MCODE. KEGG and GO analysis showed that the hub genes were associated with the cell cycle and cell division. Different immune cell infiltrates profile, and immune pathway enrichment existed between the subtypes. In conclusion, the current findings showed that practically all immunological checkpoint and immunoregulatory genes were elevated in patients with Cluster-2 GC, indicating that FAM subtypes may be crucial in GC immunotherapy.
Collapse
Affiliation(s)
- Rong Huang
- Department of Laboratory, Hexian Memorial Hospital of Panyu District, No. 2, Qinghe East Road, Panyu District, Guangzhou, 511400, China
| | - Tai-Liang Lu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Rui Zhou
- Department of Laboratory, Hexian Memorial Hospital of Panyu District, No. 2, Qinghe East Road, Panyu District, Guangzhou, 511400, China.
| |
Collapse
|
9
|
Zhang D, Yu Y, Ding C, Zhang R, Duan T, Zhou Q. Decreased B7-H3 promotes unexplained recurrent miscarriage via RhoA/ROCK2 signaling pathway and regulates the secretion of decidual NK cells†. Biol Reprod 2023; 108:504-518. [PMID: 36504380 DOI: 10.1093/biolre/ioac220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The cause for at least 50% of recurrent miscarriages is unclear, which is defined as unexplained recurrent miscarriages. The B7-H1 (PD-L1), a molecule of the B7 family, promotes tumor development by modulating immune evasion, and recent researchers have also attached importance to the role of B7-H3, another molecule of B7 family, in tumor. Based on the similarity between growth and immune response in tumors and pregnancy, we first explored the role of B7-H3 in unexplained recurrent miscarriages. We found reduced levels of B7-H3 in the villus tissue of unexplained recurrent miscarriage patients, and it was mainly expressed on the cell membrane of extravillous trophoblasts. Further, the HTR-8/SVneo and JEG-3 cells were selected to explore the role of B7-H3 in proliferation, apoptosis, tube formation, migration, and invasion. We found that B7-H3 regulated trophoblast migration and invasion via RhoA/ROCK2 signaling pathway. Inflammatory cytokines were detected through enzyme-linked immunosorbent assay after co-culturing with decidual natural killer cells and B7-H3-knockout JEG-3. Results showed that B7-H3 inhibited IL-8 and IP-10 secretion from the decidual natural killer cells. In a CBA/J × DBA/2 abortion-prone mice model, treatment with B7-H3-Fc protein successfully reduced the rate of embryo resorption. In conclusion, our results revealed a possible mechanism by which decreased B7-H3 on trophoblasts of unexplained recurrent miscarriages inhibited trophoblast migration and invasion and increased IL-8 and IP-10 secretion from the decidual natural killer cells. Furthermore, B7-H3 may be a promising new therapeutic target in unexplained recurrent miscarriage patients.
Collapse
Affiliation(s)
- Donghai Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences; Chongqing school, University of Chinese Academy of Sciences, Chongqing, China
| | - Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Ruonan Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Tao Duan
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Zhu Y, Wu F, Hu J, Xu Y, Zhang J, Li Y, Lin Y, Liu X. LDHA deficiency inhibits trophoblast proliferation via the PI3K/AKT/FOXO1/CyclinD1 signaling pathway in unexplained recurrent spontaneous abortion. FASEB J 2023; 37:e22744. [PMID: 36583693 DOI: 10.1096/fj.202201219rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Dysregulated trophoblast proliferation, invasion, and apoptosis may cause several pregnancy-associated complications, such as unexplained recurrent spontaneous abortion (URSA). Recent studies have shown that metabolic abnormalities, including glycolysis inhibition, may dysregulate trophoblast function, leading to URSA. However, the underlying mechanisms remain unclear. Herein, we found that lactate dehydrogenase A (LDHA), a key enzyme in glycolysis, was significantly reduced in the placental villus of URSA patients. The human trophoblast cell line HTR-8/SVneo was used to investigate the possible LDHA-mediated regulation of trophoblast function. LDHA knockdown in HTR-8/SVneo cells induced G0/G1 phase arrest and increased apoptosis, whereas LDHA overexpression reversed these effects. Next, RNA sequencing combined with Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the PI3K/AKT signaling pathway is potentially affected by downstream genes of LDHA. Especially, we found that LDHA knockdown decreased the phosphorylation levels of PI3K, AKT, and FOXO1, resulting in a significant downregulation of CyclinD1. In addition, treatment with an AKT inhibitor or FOXO1 inhibitor also verified that the PI3K/AKT/FOXO1 signaling pathway influenced the gene expression of CyclinD1 in trophoblast. Moreover, p-AKT expression correlated positively with LDHA expression in syncytiotrophoblasts and extravillous trophoblasts in first-trimester villus. Collectively, this study revealed a new regulatory pathway for LDHA/PI3K/AKT/FOXO1/CyclinD1 in the trophoblast cell cycle and proliferation.
Collapse
Affiliation(s)
- Yueyue Zhu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinwen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Yi Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Li J, Liu X, Li J, Han D, Li Y, Ge P. Mechanism of andrographis paniculata on lung cancer by network pharmacology and molecular docking. Technol Health Care 2023:THC220698. [PMID: 36641698 DOI: 10.3233/thc-220698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been widely recognized and accepted worldwide to provide favorable therapeutic effects for cancer patients. As Andrographis paniculata has an anti-tumor effect, it might inhibit lung cancer. OBJECTIVE The drug targets and related pathways involved in the action of Andrographis paniculata against lung cancer were predicted using network pharmacology, and its mechanism was further explored at the molecular level. METHODS This work selected the effective components and targets of Andrographis paniculata against the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Targets related to lung cancer were searched for in the GEO database (accession number GSE136043). The volcanic and thermal maps of differential expression genes were produced using the software R. Then, the target genes were analyzed by GO and KEGG analysis using the software R. This also utilized the AutoDock tool to study the molecular docking of the active component structures downloaded from the PubChem database and the key target structures downloaded from the PDB database, and the docking results were visualized using the software PyMol. RESULTS The results of molecular docking show that wogonin, Mono-O-methylwightin, Deoxycamptothecine, andrographidine F_qt, Quercetin tetramethyl (3',4',5,7) ether, 14-deoxyandrographolide, andrographolide-19-β-D-glucoside_qt and 14-deoxy-11-oxo-andrographolide were potential active components, while AKT1, MAPK14, RELA and NCOA1 were key targets. CONCLUSION This study showed the main candidate components, targets, and pathways involved in the action of Andrographis paniculata against lung cancer.
Collapse
Affiliation(s)
- Jiaxin Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaonan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiaxin Li
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Dongwei Han
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Li
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pengling Ge
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Wu F, Tian F, Qin C, Qin X, Zeng W, Liu X, Chen C, Lin Y. Peroxiredoxin2 regulates trophoblast proliferation and migration through SPIB-HDAC2 pathway. Exp Cell Res 2023; 422:113428. [PMID: 36400181 DOI: 10.1016/j.yexcr.2022.113428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Adequate proliferation and migration of placental trophoblasts is the prerequisite of a successful pregnancy. Peroxiredoxin2 (Prdx2) is a multi-functional gene involved in various signal events to maintain essential biological functions and normal cellular homeostasis. In this study, substantially lower Prdx2 levels were found in the first trimester cytotrophoblasts of women who suffered from recurrent miscarriage (RM). Prdx2 downregulation inhibited trophoblast proliferation and migration. We demonstrated that histone deacetylase2 (HDAC2) acts downstream of Prdx2 in regulating trophoblast proliferation and migration. HDAC2 deacetylates histone-3-lysine-9 in E-cadherin (E-cad) promoter and reduces the transcription of E-cad epigenetically, whereas it promotes the expression of Slug and Snail genes. These molecular changes may contribute to the trophoblast epithelial-mesenchymal transition. We further verified whether Prdx2 modulated the expression of HDAC2 through SPIB. SPIB could bind to the HDAC2 promoter PU-box region and induce HDAC2 expression. In RM, down-regulated Prdx2 suppresses SPIB-HDAC2 pathway, leading to increased E-cad and decreased Slug and Snail, and eventually restrains trophoblast proliferation and migration. Our study unveils the role of Prdx2-regulated SPIB-HDAC2 pathway in the pathology of RM and provides diagnostic and therapeutic targets for RM as well as other "great obstetrical syndromes" including preeclampsia and intrauterine growth restriction.
Collapse
Affiliation(s)
- Fan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Fuju Tian
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Chuanmei Qin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Xiaoli Qin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Weihong Zeng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, PR China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| |
Collapse
|
13
|
Xiao M, Zheng Y, Wang MX, Sun YH, Chen J, Zhu KY, Zhang F, Tang YH, Yang F, Zhou T, Zhang YP, Lei CX, Sun XX, Yu SH, Tian FJ. Elevated histone demethylase KDM5C increases recurrent miscarriage risk by preventing trophoblast proliferation and invasion. Cell Death Dis 2022; 8:495. [PMID: 36550096 PMCID: PMC9780362 DOI: 10.1038/s41420-022-01284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
KDM5C is a histone H3K4-specific demethylase, which has been shown to play a key role in biological disease and development. However, the role of KDM5C in trophoblasts at early pregnancy is currently unknown. Here, we showed that KDM5C was upregulated in placental trophoblasts from recurrent miscarriage (RM) patients compared with healthy controls (HCs). Trophoblast proliferation and invasion was inhibited by KDM5C overexpression and was promoted by KDM5C knockdown. Transcriptome sequencing revealed that elevated KDM5C exerted anti-proliferation and anti-invasion effects by repressing the expression of essential regulatory genes. The combination analysis of RNA-seq, ChIP-seq and CUT&Tag assay showed that KDM5C overexpression leads to the reduction of H3K4me3 on the promoters and the corresponding downregulation of expression of several regulatory genes in trophoblasts. Among these genes, TGFβ2 and RAGE are essential for the proliferation and invasion of trophoblasts. Importantly, overexpression of KDM5C by a systemically delivered KDM5C adenovirus vector (Ad-KDM5C) promoted embryo resorption rate in mouse. Our results support that KDM5C is an important regulator of the trophoblast function during early pregnancy, and suggesting that KDM5C activity could be responsible for epigenetic alterations seen RM disease.
Collapse
Affiliation(s)
- Min Xiao
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Yan Zheng
- grid.16821.3c0000 0004 0368 8293Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 China
| | - Meng-Xi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Yi-Hua Sun
- grid.412312.70000 0004 1755 1415Department of Pathology, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Juan Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Kang-Yong Zhu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Fan Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Yun-Hui Tang
- grid.412312.70000 0004 1755 1415Department of Family Planning, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Fan Yang
- grid.412312.70000 0004 1755 1415Department of Pathology, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Ting Zhou
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Yue-Ping Zhang
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Cai-Xia Lei
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Xiao-Xi Sun
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Shan-He Yu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Fu-Ju Tian
- grid.16821.3c0000 0004 0368 8293The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030 China
| |
Collapse
|
14
|
Investigation of Sperm and Seminal Plasma Candidate MicroRNAs of Bulls with Differing Fertility and In Silico Prediction of miRNA-mRNA Interaction Network of Reproductive Function. Animals (Basel) 2022; 12:ani12182360. [PMID: 36139221 PMCID: PMC9495167 DOI: 10.3390/ani12182360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize target genes based on predicted biological processes. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥5 magnitudes). Interestingly, expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further in silico analysis revealed categorized genes may have a plausible association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies. Abstract Recent advances in high-throughput in silico techniques portray experimental data as exemplified biological networks and help us understand the role of individual proteins, interactions, and their biological functions. The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize the target genes based on biological process predictions. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥ 5 magnitudes). The expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further, analysis of the categorized genes showed association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies.
Collapse
|
15
|
Molecular Regulation of Yak Preadipocyte Differentiation and Proliferation by LncFAM200B and ceRNA Regulatory Network Analysis. Cells 2022; 11:cells11152366. [PMID: 35954210 PMCID: PMC9368248 DOI: 10.3390/cells11152366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
The positive regulatory role of lncFAM200B in differentiation and lipid deposition in yak intramuscular preadipocytes has been demonstrated in our previous study. However, the regulatory mechanisms remain unclear. In this study, we aimed to produce complete mRNA and microRNA (miRNA) profiles after adenovirus-mediated lncFAM200B overexpression in yak preadipocytes using high-throughput sequencing. We constructed a competing endogenous RNA (ceRNA) network with lncFAM200B as the core and identified the functions of the selected target miRNA during cell proliferation and differentiation. We obtained 118 differentially expressed genes (DEGs) after lncFAM200B overexpression, 76 of which were up-regulated, including Notch signaling members NOTCH3, DTX3L, and HES4, and 42 DEGs were down-regulated, including genes related to the cell cycle (CCNA2, BUB1, CDC20, TOP2A, and KIF20A). Additionally, many ubiquitin-mediated proteolysis pathway members were also significantly up-regulated (BUA7, PML, TRIM21, and TRIM25). MiRNA sequencing showed that 13 miRNAs were significantly up-regulated, and 12 miRNAs were down-regulated. Among them, 29 targets of 10 differentially expressed miRNAs (DEMs) were differentially expressed, including miR-152-FBXO33, miR-6529a-TRIM21, miR-148c-NOTCH3, and the miR-6529b-HES4 axis. We further verified that overexpression and inhibition of miR-6529a can inhibit and promote, respectively, the proliferation and differentiation of preadipocytes. Taken together, our study not only revealed the regulatory network of lncFAM200B during yak preadipocytes differentiation but also laid a foundation for elucidating the cause for lower intramuscular fat content in yaks at the molecular level.
Collapse
|
16
|
Wang Y, Yang D, Zhu R, Dai F, Yuan M, Zhang L, Zheng Y, Liu S, Yang X, Cheng Y. YY1/ITGA3 pathway may affect trophoblastic cells migration and invasion ability. J Reprod Immunol 2022; 153:103666. [DOI: 10.1016/j.jri.2022.103666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
|
17
|
Sharma A, Yadav D, Rao P, Sinha S, Goswami D, Rawal RM, Shrivastava N. Identification of potential therapeutic targets associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Comput Biol Med 2022; 146:105688. [DOI: 10.1016/j.compbiomed.2022.105688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023]
|
18
|
Xu Q, Xi Y, Ma S, Wang J, Li J, Han C, Li L, Wang J, Liu H. Transcriptome profiling of morphogenetic differences between contour and flight feathers in duck. Br Poult Sci 2022; 63:597-604. [PMID: 35000502 DOI: 10.1080/00071668.2022.2026292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study examined the transcriptomic profiles of contour and flight feather follicles from two duck breeds to determine the molecular network and the candidate genes associated with contour and flight feather morphogenesis.2. High-throughput RNA sequencing was performed to compare differences in feather follicles between contour and flight feathers in two duck breeds (Heiwu and Nonghua duck).3. Comparing the contour feather follicles with flight feather follicles, 4,757 and 4,820 differentially expressed genes (DEGs) were identified in Heiwu and Nonghua duck respectively. Weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network of all DEGs and identify the key modules and hub genes associated with feather morphogenesis.4. Two key modules were enriched in many pathways involved in feather morphogenesis, such as the Wnt signalling pathway, anatomical structure morphogenesis, and focal adhesion. The CCNA2, TTK, NUF2, ECT2 and INCENP (in one module), and PRSS23, LAMC1, IGFBP3, SHISA5, and APLP2 (in another module) may be essential candidate genes for influencing feather morphology. Moreover, seven transcription factors (TFs) (UBP1, MBD2, ZNF512B, SMAD1, CAPN15, JDP2, KLF10, and MEF2A) were predicted to regulate the essential genes that contribute to feather morphogenesis.5. This work demonstrated gene expression changes of contour and flight feather follicles and is beneficial for further understanding of the complex structure of feathers.
Collapse
Affiliation(s)
- Qian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Jianmei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | | |
Collapse
|
19
|
Cai Y, Yang W. PKMYT1 regulates the proliferation and epithelial‑mesenchymal transition of oral squamous cell carcinoma cells by targeting CCNA2. Oncol Lett 2021; 23:63. [PMID: 35069872 PMCID: PMC8756561 DOI: 10.3892/ol.2021.13181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has gradually become a global public health issue in recent years. Therefore, the current study aimed to explore the mechanism of OSCC development and to identify a potential target that may be used in its treatment. The expression of protein kinase, membrane-associated tyrosine/threonine 1 (PKMYT1) and cyclin A2 (CCNA2) in SCC-9 cells was determined prior to and following transfection with short hairpin RNA targeting PKMYT1. Cell proliferation, colony-forming ability, migration and invasion were determined using Cell Counting Kit-8, colony formation, wound healing and Transwell assays, respectively. Furthermore, the expression of epithelial-mesenchymal transition (EMT)- and migration-related proteins were evaluated using western blot analysis. Additionally, co-immunoprecipitation was used to verify the binding of PKMYT1 and CCNA2. The results revealed that PKMYT1 was highly expressed in OSCC cells and that PKMYT1 knockdown could inhibit proliferation, colony formation, migration, invasion, EMT and CCNA2 expression in SCC-9 cells. In addition, PKMYT1 was demonstrated to bind to CCNA2, and knocking down PKMYT1 resulted in inhibitory effects on cell proliferation, colony formation ability, migration, invasion and EMT by downregulating CCNA2 expression. PKMYT1 was observed to regulate the proliferation, migration and EMT of OSCC cells by targeting CCNA2, which may be used in the future to improve OSCC treatment.
Collapse
Affiliation(s)
- Ye Cai
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Weidong Yang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
20
|
Gong K, Zhou H, Liu H, Xie T, Luo Y, Guo H, Chen J, Tan Z, Yang Y, Xie L. Identification and Integrate Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer Based on Bioinformatics Analysis. Technol Cancer Res Treat 2021; 20:15330338211060202. [PMID: 34825846 PMCID: PMC8649439 DOI: 10.1177/15330338211060202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is the most common
type of lung cancer affecting humans. However, appropriate biomarkers for
diagnosis and prognosis have not yet been established. Here, we evaluated the
gene expression profiles of patients with NSCLC to identify novel biomarkers.
Methods: Three datasets were downloaded from the Gene
Expression Omnibus (GEO) database, and differentially expressed genes were
analyzed. Venn diagram software was applied to screen differentially expressed
genes, and gene ontology functional analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed. Cytoscape was used to analyze
protein-protein interactions (PPI) and Kaplan–Meier Plotter was used to evaluate
the survival rates. Oncomine database, Gene Expression Profiling Interactive
Analysis (GEPIA), and The Human Protein Atlas (THPA) were used to analyze
protein expression. Quantitative real-time polymerase (qPCR) chain reaction was
used to verify gene expression. Results: We identified 595
differentially expressed genes shared by the three datasets. The PPI network of
these differentially expressed genes had 202 nodes and 743 edges. Survival
analysis identified 10 hub genes with the highest connectivity, 9 of which
(CDC20, CCNB2, BUB1,
CCNB1, CCNA2, KIF11,
TOP2A, NDC80, and ASPM)
were related to poor overall survival in patients with NSCLC. In cell
experiments, CCNB1, CCNB2,
CCNA2, and TOP2A expression levels were
upregulated, and among different types of NSCLC, these four genes showed highest
expression in large cell lung cancer. The highest prognostic value was detected
for patients who had successfully undergone surgery and for those who had not
received chemotherapy. Notably, CCNB1 and
CCNA2 showed good prognostic value for patients who had not
received radiotherapy. Conclusion: CCNB1,
CCNB2, CCNA2, and TOP2A
expression levels were upregulated in patients with NSCLC. These genes may be
meaningful diagnostic biomarkers and could facilitate the development of
targeted therapies.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Haidan Liu
- The Clinical Center for Gene Diagnosis and Therapy of The State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, PR China
| | - Ting Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Yong Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Hui Guo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Jinlan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Zhiping Tan
- The Clinical Center for Gene Diagnosis and Therapy of The State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, PR China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| |
Collapse
|
21
|
Xie S, Jiang X, Qin R, Song S, Lu Y, Wang L, Chen Y, Lu D. miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway. iScience 2021; 24:103271. [PMID: 34761190 PMCID: PMC8567365 DOI: 10.1016/j.isci.2021.103271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
miR-1307 is highly expressed in liver cancer and inhibits methyltransferase protein8. Thereby, miR-1307 inhibits the expression of KDM3A and KDM3B and increases the methylation modification of histone H3 lysine 9, which enhances the expression of endoplasmic-reticulum-related gene CALR. Of note, miR-1307 weakens the binding ability of OSTC to CDK2, CDK4, CyclinD1, and cyclinE and enhances the binding ability of CALR to CDK2, CDK4, CyclinD1, and cyclinE, decreasing of p21WAF1/CIP1, GADD45, pRB, and p18, and decreasing of ppRB. Furthermore, miR-1307 increases the activity of H-Ras, PKM2, and PLK1. Strikingly, miR-1307 reduces the binding ability of OSTC to ATG4 and enhances the binding ability of CALR to ATG4. Therefore, miR-1307 reduces the occurrence of autophagy based on ATG4-LC3-ATG3-ATG7-ATG5-ATG16L1-ATG12-ATG9- Beclin1. In particular, miR-1307 enhances the expression of PAK2, PLK1, PRKAR2A, MYBL1, and Trim44 and inhibits the expression of Sash1 and Smad5 via autophagy. Our observations suggest that miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway.
Collapse
Affiliation(s)
- Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Rushi Qin
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Yanan Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Yingjie Chen
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| |
Collapse
|
22
|
Wang P, Wang S, Ji F, Zhang R. Muse Cells Have Higher Stress Tolerance than Adipose Stem Cells due to the Overexpression of the CCNA2 Gene. Stem Cells Dev 2021; 30:1056-1069. [PMID: 34486391 DOI: 10.1089/scd.2021.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study aimed to investigate the stress tolerance mechanism of multilineage-differentiating stress enduring (Muse) cells and elucidate the means to improve the stress tolerance of mesenchymal stem cells. Cell viability, apoptosis, and senescence-related protein expression were detected under H2O2 stress by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay, flow cytometry in combination with Annexin V-FITC/PI staining, and western blotting analysis, respectively. A significant increase in the CCNA2 gene level within Muse cells relative to adipose stem cells (ASCs) was observed. In the H2O2 stress environment in vitro, the survival rate of Muse cells remarkably increased compared with the survival rate of the ASCs. In addition, a reduced level of apoptosis and senescence-related protein expression of Muse cells relative to ASCs was documented. The miR-29b-3p-induced negative regulation of CCNA2 gene expression was confirmed by in vitro luciferase assay. A significant upregulation of CCNA2 gene expression in ASCs, transfected with antagomir-29b-3p, improved the survival rate of ASCs under H2O2 stress but dramatically reduced the apoptosis and expression of the senescence-related gene; agomir-29b-3p could partially reverse these effects. In conclusion, high expression of the CCNA2 gene is associated with an increased stress tolerance of Muse cells. Regulating the expression of CCNA2 by miR-29b-3p can alter the stress tolerance of ASCs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shengyi Wang
- The Dermal and Venereal Department, Xuzhou Central Hospital, Xuzhou, China.,The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruzhi Zhang
- The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| |
Collapse
|
23
|
Jiang F, Mao Y, Lu B, Zhou G, Wang J. A hypoxia risk signature for the tumor immune microenvironment evaluation and prognosis prediction in acute myeloid leukemia. Sci Rep 2021; 11:14657. [PMID: 34282207 PMCID: PMC8289869 DOI: 10.1038/s41598-021-94128-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia. Patients with AML often have poor clinical prognoses. Hypoxia can activate a series of immunosuppressive processes in tumors, resulting in diseases and poor clinical prognoses. However, how to evaluate the severity of hypoxia in tumor immune microenvironment remains unknown. In this study, we downloaded the profiles of RNA sequence and clinicopathological data of pediatric AML patients from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, as well as those of AML patients from Gene Expression Omnibus (GEO). In order to explore the immune microenvironment in AML, we established a risk signature to predict clinical prognosis. Our data showed that patients with high hypoxia risk score had shorter overall survival, indicating that higher hypoxia risk scores was significantly linked to immunosuppressive microenvironment in AML. Further analysis showed that the hypoxia could be used to serve as an independent prognostic indicator for AML patients. Moreover, we found gene sets enriched in high-risk AML group participated in the carcinogenesis. In summary, the established hypoxia-related risk model could act as an independent predictor for the clinical prognosis of AML, and also reflect the response intensity of the immune microenvironment in AML.
Collapse
Affiliation(s)
- Feng Jiang
- grid.8547.e0000 0001 0125 2443Department of Neonatology, Obstetrics and Gynecology Hospital, Fudan University, No. 419, Fangxie Road, Shanghai, 200011 China
| | - Yan Mao
- grid.412676.00000 0004 1799 0784Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Binbin Lu
- grid.412676.00000 0004 1799 0784Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Guoping Zhou
- grid.412676.00000 0004 1799 0784Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jimei Wang
- grid.8547.e0000 0001 0125 2443Department of Neonatology, Obstetrics and Gynecology Hospital, Fudan University, No. 419, Fangxie Road, Shanghai, 200011 China
| |
Collapse
|
24
|
Sun X, Tong X, Hao Y, Li C, Zhang Y, Pan Y, Dai Y, Liu L, Zhang T, Zhang S. Abnormal Cullin1 neddylation-mediated p21 accumulation participates in the pathogenesis of recurrent spontaneous abortion by regulating trophoblast cell proliferation and differentiation. Mol Hum Reprod 2021; 26:327-339. [PMID: 32186736 PMCID: PMC7227182 DOI: 10.1093/molehr/gaaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/29/2020] [Indexed: 01/07/2023] Open
Abstract
The study explores the role of neddylation in early trophoblast development and its alteration during the pathogenesis of recurrent spontaneous abortion (RSA). Immunofluorescence and western blot were conducted to evaluate the expression pattern of NEDD8 protein in the first-trimester placentas of healthy control and RSA patients. Neddylated-cullins, especially neddylated-cullin1, were downregulated and their substrate, p21, was accumulated in RSA samples. NEDD8 cytoplasmic recruitment was observed in extravillous trophoblast (EVT) progenitors of RSA placentas. Consistent with the results of clinical samples, neddylation inhibition using MLN4924 in trophoblast cell lines caused obvious p21 accumulation and free NEDD8 cytoplasmic recruitment. Further in vitro study demonstrated neddylation inhibition attenuated proliferation of Jeg-3 cells via p21 accumulation. Moreover, when trophoblast stem (TS) cells derived from first-trimester placentas were cultured for differentiation analyses. MLN4924 impaired the differentiation of TS cells towards EVTs by downregulating HLA-G and GATA3. p21 knockdown could partly rescue MLN4924-suppressed HLA-G and GATA3 expression. In conclusion, cullin1 neddylation-mediated p21 degradation is required for trophoblast proliferation and can affect trophoblast plasticity by affecting HLA-G and GATA3 expression. The results provide insights into the pathological mechanism of RSA and the biological regulation of trophoblast development.
Collapse
Affiliation(s)
- Xiaohe Sun
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yanqing Hao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Tai Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
25
|
Lamptey J, Li F, Adu-Gyamfi EA, Chen XM, Czika A, Otoo A, Liu TH, Wang YX, Ding YB. Downregulation of fascin in the first trimester placental villi is associated with early recurrent miscarriage. Exp Cell Res 2021; 403:112597. [PMID: 33862100 DOI: 10.1016/j.yexcr.2021.112597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Inadequate trophoblast proliferation, shallow invasion and exaggerated rate of trophoblast apoptosis are implicated in early recurrent miscarriage (ERM). However, the mechanistic bases of this association have not been fully established. We aimed at investigating the involvement of fascin, an actin-bundling protein, in trophoblast activities and ERM. We found that fascin was downregulated in the cytotrophoblasts (CTBs) and distal cytotrophoblasts (DCTs) of ERM placentae. Knockdown of fascin altered cellular and nucleolar morphology, and inhibited the proliferation but increased apoptosis of trophoblastic HTR8/SVneo cells. Furthermore, fascin knockdown decreased the expression of transcription factors such as Snail1/2, Twist and Zeb1/2, mesenchymal molecules such as Vimentin and N-cadherin, and the protein expression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylates signal transducer and activator of transcript 3 (STAT3). Exposure of HTR-8/SVneo cells to hypoxia reoxygenation (H/R) decreased fascin expression to affect the cells' invasion. Our results indicate for the first time that the downregulation of fascin is involved in the pathogenesis of early recurrent miscarriage; and hence a potential therapeutic target against the disease.
Collapse
Affiliation(s)
- Jones Lamptey
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fangfang Li
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xue-Mei Chen
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Armin Czika
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Antonia Otoo
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yu-Bin Ding
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
26
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
27
|
Lei X, Jing J, Zhang M, Guan B, Dong Z, Wang C. Bioinformatic Identification of Hub Genes and Analysis of Prognostic Values in Colorectal Cancer. Nutr Cancer 2020; 73:2568-2578. [PMID: 33153324 DOI: 10.1080/01635581.2020.1841249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
The purpose of this study is to discover novel hub genes which are helpful for diagnosis, prognosis, and targeted therapy in colorectal cancer (CRC) by using bioinformatics analysis. GSE74602, GSE110225, and GSE113513 were extracted from the gene expression omnibus (GEO). Differentially expressed genes (DEGs) in expression profiles were identified by GEO2R. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the DEGs were carried out in the Database for Annotation, Visualization, and Integrated Discovery (DAVID). String database and cytoscape were used for building protein-protein interaction (PPI) network and module analysis. The UALCAN was used for in-depth analysis of data of CRC patients from The Cancer Genome Atlas (TCGA) to identify expression levels and overall survival rates of hub genes. The DEGs included 107 up-regulation genes and 232 down-regulation genes. Twenty-nine (29) hub genes and two significant modules were screened from PPI network. The expression levels of hub genes in TCGA were verified. Survival analysis curve indicated high expression of CCNA2, CCNB1, DLGAP5, were related to high survival rates, and low expression of TIMP1 were associated with high survival rates. These results suggest that DEGs may be the hub genes of CRC, and CCNA2, CCNB1, DLGAP5, TIMP1 may be the potential prognostic markers of CRC.
Collapse
Affiliation(s)
- Xinyi Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing Jing
- Department of Endocrinology, Municipal Hospital, Qingdao, China
| | - Miao Zhang
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bingsheng Guan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Zhao A, Qi Y, Liu K. CLDN3 expression and function in pregnancy-induced hypertension. Exp Ther Med 2020; 20:3798-3806. [PMID: 32855729 PMCID: PMC7444375 DOI: 10.3892/etm.2020.9084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
This aim of the present study was to investigate the expression and function of claudin 3 (CLDN3) in pregnancy-induced hypertension. The mRNA expression levels of CLDN3 in the placental tissue and peripheral blood of patients with pregnancy-induced hypertension were measured using reverse transcription-quantitative PCR. Human trophoblast HTR8/SVneo cells overexpressing CLDN3 were generated using a lentiviral vector. Cell Counting kit-8 (CCK-8) assay, flow cytometry, Transwell chamber assays, confocal laser scanning microscopy and western blot analysis were performed to detect cell proliferation, invasion, migration and apoptosis, in addition to matrix metalloproteinase (MMP) expression and ERK1/2 phosphorylation. The mRNA expression levels of CLDN3 were significantly reduced in the placental tissues and peripheral blood samples of patients with pregnancy-induced hypertension compared with healthy pregnant controls. CLDN3 overexpression significantly increased HTR8/SVneo cell proliferation, invasion and migration whilst reducing apoptosis. HTR8/SVneo cells overexpressing CLDN3 also exhibited increased myofiber levels, increased MMP-2 and MMP-9 expression and increased ERK1/2 signaling activity. CLDN3 downregulation may be associated with the pathogenesis of pregnancy-induced hypertension. In conclusion, CLDN3 promotes the proliferative and invasive capabilities of human trophoblast cells, with the underlying mechanisms possibly involving upregulation of MMP expression via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Aixin Zhao
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| | - Yunfang Qi
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| | - Kun Liu
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| |
Collapse
|
29
|
Ma XL, Li X, Tian FJ, Zeng WH, Zhang J, Mo HQ, Qin S, Sun LQ, Zhang YC, Zhang Y, Lin Y. Upregulation of RND3 Affects Trophoblast Proliferation, Apoptosis, and Migration at the Maternal-Fetal Interface. Front Cell Dev Biol 2020; 8:153. [PMID: 32232044 PMCID: PMC7083256 DOI: 10.3389/fcell.2020.00153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Trophoblasts as the particular cells of the placenta play an important role in implantation and formation of the maternal-fetal interface. RND3 (also known as RhoE) is a unique member of the Rnd subfamily of small GTP-binding proteins. However, its function in cytotrophoblasts (CTBs) at the maternal-fetal interface is poorly understood. In the present study, we found that RND3 expression was significantly increased in trophoblasts from the villous tissues of patients with recurrent miscarriage (RM). RND3 inhibited proliferation and migration and promoted apoptosis in HTR-8/SVneo cells. Using dual-luciferase reporter and chromatin immunoprecipitation assays, we found that forkhead box D3 (FOXD3) is a key transcription factor that binds to the RND3 core promoter region and regulates RND3 expression. Here, the level of FOXD3 was upregulated in the first-trimester CTBs of patients with RM, which in turn mediated RND3 function, including inhibition of cell proliferation and migration and promotion of apoptosis. Further, we found that RND3 regulates trophoblast migration and proliferation via the RhoA-ROCK1 signaling pathway and inhibits apoptosis via ERK1/2 signaling. Taken together, our findings suggest that RND3 and FOXD3 may be involved in pathogenesis of RM and may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao-Ling Ma
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fu-Ju Tian
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Hong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui-Qin Mo
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Qin
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Qun Sun
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Chen Zhang
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, Yuan T, Yang P, Xiong F, Zhang S, Zhou Q, Chen Z, Li J, Mo BW, Zhang H, Xiong W, Wang CY. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif 2020; 53:e12742. [PMID: 31943454 PMCID: PMC7046303 DOI: 10.1111/cpr.12742] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/29/2022] Open
Abstract
Objectives Hypoxia is an important risk factor for pulmonary arterial remodelling in pulmonary arterial hypertension (PAH), and the Janus kinase 2 (JAK2) is believed to be involved in this process. In the present report, we aimed to investigate the role of JAK2 in vascular smooth muscle cells during the course of PAH. Methods Smooth muscle cell (SMC)‐specific Jak2 deficient mice and their littermate controls were subjected to normobaric normoxic or hypoxic (10% O2) challenges for 28 days to monitor the development of PAH, respectively. To further elucidate the potential mechanisms whereby JAK2 influences pulmonary vascular remodelling, a selective JAK2 inhibitor was applied to pre‐treat human pulmonary arterial smooth muscle cells (HPASMCs) for 1 hour followed by 24‐hour hypoxic exposure. Results Mice with hypoxia‐induced PAH were characterized by the altered JAK2/STAT3 activity in pulmonary artery smooth muscle cells. Therefore, induction of Jak2 deficiency in SMCs protected mice from hypoxia‐induced increase of right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular remodelling. Particularly, loss of Jak2 significantly attenuated chronic hypoxia‐induced PASMC proliferation in the lungs. Similarly, blockade of JAK2 by its inhibitor, TG‐101348, suppressed hypoxia‐induced human PASMC proliferation. Upon hypoxia‐induced activation, JAK2 phosphorylated signal transducer and activator of transcription 3 (STAT3), which then bound to the CCNA2 promoter to transcribe cyclin A2 expression, thereby promoting PASMC proliferation. Conclusions Our studies support that JAK2 could be a culprit contributing to the pulmonary vascular remodelling, and therefore, it could be a viable target for prevention and treatment of PAH in clinical settings.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorao Wu
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizong Rao
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yanqiu Wei
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Yue
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yuan
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ping Yang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiu Li
- Shenzhen Third People's Hospital, Shenzhen, China
| | - Bi-Wen Mo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huilan Zhang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weining Xiong
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cong-Yi Wang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Hsa-miRNA-125b may induce apoptosis of HTR8/SVneo cells by targeting MCL1. Reprod Biol 2019; 19:368-373. [DOI: 10.1016/j.repbio.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/22/2019] [Accepted: 09/06/2019] [Indexed: 01/05/2023]
|
32
|
Effect of Chlorpyrifos on human extravillous-like trophoblast cells. Reprod Toxicol 2019; 90:118-125. [PMID: 31509763 DOI: 10.1016/j.reprotox.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023]
Abstract
An increased risk of pregnancy disorders has been reported in women and animal models exposed to organophosphate pesticides. However, less information is available on impacts to human placental function. Here, we addressed the impact of chlorpyrifos (CPF) on extravillous cytotrophoblasts (evCTB) employing HTR8/SVneo cells as an in vitro model. Cell proliferation, migration and invasion were not affected by CPF under conditions where cell viability was not compromised; however, we observed reduced expression of genes for vascular endothelial growth factor receptor 1, hypoxia-inducible factor 1-alpha, peroxisome proliferator activated receptor gamma, and the β-subunit of human chorionic gonadotropin. These results are the first effects reported by organophosphate pesticide in evCTB cells and show altered expression of several genes important for placental development that could serve as potential biomarkers for future research.
Collapse
|