1
|
Lorenger LE, Boly TJ, Hyland RM, Bermick JR. Longitudinal inflammatory biomarker profiling in intrauterine growth restricted preterm infants. Cytokine 2025; 190:156916. [PMID: 40138981 PMCID: PMC12021550 DOI: 10.1016/j.cyto.2025.156916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Intrauterine growth restriction (IUGR) places premature infants at an increased risk of multiple neonatal morbidities. Previous studies have found increased concentrations of pro-inflammatory biomarkers in IUGR infants at the time of birth and through the first postnatal month. This study aims to assess the longitudinal inflammatory profile of IUGR infants from birth to discharge from the neonatal intensive care unit. MATERIALS AND METHODS A case-control study was performed with 24 IUGR infants and 24 appropriate for gestational age (AGA) infants born prematurely at or before 32 6/7 weeks' gestational age included. Residual clinical serum samples were collected and serum concentrations of IL-1β, sIL2Rα, IL-6, IL-8, IL-10, IP-10, MCP-1, MIP-1α, and TNF-α were measured by multi-plex protein assay. Residual clinical whole blood samples were collected, peripheral mononuclear blood cells were isolated, and flow cytometry was performed to assess differences in populations of peripheral immune cells. RESULTS There were significant differences in the birth weight and birth weight percentile between the IUGR and AGA groups, but no further demographic differences. The was significant elevation of IL-8, IL-10, and MCP-1 in the IUGR population at various timepoints during admission. There were no differences in overall cell populations between the two groups, however there were significantly increased activated classical monocytes and cytotoxic T cells in the IUGR group one month post-delivery. CONCLUSION Intrauterine growth restriction contributes to a fetal and continued neonatal pro-inflammatory state, as evidenced by elevation in IL-8 and MCP-1. Though there are increased populations of activated classical monocytes and cytotoxic T cells in these infants, this pro-inflammatory state may also contribute to tissue-specific inflammation which contributes to worsened neonatal outcomes for premature IUGR infants.
Collapse
Affiliation(s)
- Laura E Lorenger
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA; Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Timothy J Boly
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA; Iowa Inflammation Program, University of Iowa, Iowa City, Iowa, USA.
| | - Rachael M Hyland
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Jennifer R Bermick
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA; Iowa Inflammation Program, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Moss CG, Dilworth MR, Harris LK, Freeman S, Heazell AEP. Understanding a Potential Role for the NLRP3 Inflammasome in Placenta-Mediated Pregnancy Complications. Am J Reprod Immunol 2025; 93:e70077. [PMID: 40260875 PMCID: PMC12013246 DOI: 10.1111/aji.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Stillbirth affects approximately 2 million pregnancies annually and is closely linked to placental dysfunction, which may also present clinically as foetal growth restriction (FGR) or pre-eclampsia (PE). Placental dysfunction can arise from a range of insults, including the inflammatory conditions villitis of unknown aetiology (VUE) and chronic histiocytic intervillositis (CHI). Despite ample research regarding the pathophysiology of placental dysfunction, the literature surrounding placental inflammation is more limited, with no currently established treatments. In the absence of infection, placental inflammation is hypothesised to be stimulated by damage-associated molecular patterns (DAMPs), known as sterile inflammation. The NLRP3 inflammasome, a protein scaffold that unites within the cytosol of cells, is a proposed contributor. The NLRP3 inflammasome is dysregulated in numerous diseases and has shown evidence of activation through the sterile inflammatory pathway via DAMPs. Studies have demonstrated the upregulation of the NLRP3 inflammasome and its components in placentally-mediated pregnancy pathologies. However, the link between placental dysfunction seen in these disorders and the NLRP3 inflammasome is not yet firmly established. This manuscript aims to review the evidence regarding placental inflammation seen with placental dysfunction, discuss its association with the NLRP3 inflammasome, and identify potential therapeutic interventions for this pathological inflammatory response.
Collapse
Affiliation(s)
- Chloe G. Moss
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| | - Mark R. Dilworth
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| | - Lynda K. Harris
- Department of Obstetrics and GynaecologyOlson Center for Women's HealthUniversity of Nebraska Medical CentreOmahaUSA
| | - Sally Freeman
- Division of Pharmacy and OptometryUniversity of ManchesterManchesterUK
| | - Alexander E. P. Heazell
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| |
Collapse
|
3
|
Schliefsteiner C, Wadsack C, Allerkamp HH. Exploring the Lifeline: Unpacking the Complexities of Placental Vascular Function in Normal and Preeclamptic Pregnancies. Compr Physiol 2024; 14:5763-5787. [PMID: 39699084 DOI: 10.1002/cphy.c230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The proper development and function of the placenta are essential for the success of pregnancy and the well-being of both the fetus and the mother. Placental vascular function facilitates efficient fetal development during pregnancy by ensuring adequate gas exchange with low vascular resistance. This review focuses on how placental vascular function can be compromised in the pregnancy pathology preeclampsia, and conversely, how placental vascular dysfunction might contribute to this condition. While the maternal endothelium is widely recognized as a key focus in preeclampsia research, this review emphasizes the importance of understanding how this condition affects the development and function of the fetal placental vasculature. The placental vascular bed, consisting of microvasculature and macrovasculature, is discussed in detail, as well as structural and functional changes associated with preeclampsia. The complexity of placental vascular reactivity and function, its mediators, its impact on placental exchange and blood distribution, and how these factors are most affected in early-onset preeclampsia are further explored. These factors include foremost lipoproteins and their cargo, oxygen levels and oxidative stress, biomechanics, and shear stress. Challenges in studying placental pathophysiology are discussed, highlighting the necessity of innovative research methodologies, including ex vivo experiments, in vivo imaging tools, and computational modeling. Finally, an outlook on the potential of drug interventions targeting the placental endothelium to improve placental vascular function in preeclampsia is provided. Overall, this review highlights the need for further research and the development of models and tools to better understand and address the challenges posed by preeclampsia and its effects on placental vascular function to improve short- and long-term outcomes for the offspring of preeclamptic pregnancies. © 2024 American Physiological Society. Compr Physiol 14:5763-5787, 2024.
Collapse
Affiliation(s)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Hanna H Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 PMCID: PMC12087260 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W. Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Awoniyi O. Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L. Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
5
|
Farladansky-Gershnabel S, Silber M, Biron-Shental T, Kovo M, Kidron D, Weisz A, Zitman-Gal T. Is the Transcription Factor NANOG Involved in Placental Aging? Am J Reprod Immunol 2024; 92:e13927. [PMID: 39302196 DOI: 10.1111/aji.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
PROBLEM Accelerated placental aging is linked to abnormal fetal growth, preeclampsia (PE), and preterm birth (PTB). NANOG, a transcription factor, is known for its role in cellular reprogramming, self-renewal, and clonogenic growth. Its expression is regulated by Kruppel-like factor 4 (KLF4), which functions as both a transcriptional activator and repressor. This study evaluated the KLF4-NANOG pathway in placental samples from normal pregnancies (NP) as well as those with PE, fetal growth restriction (FGR), and PTB. METHOD OF STUDY Placental samples from NP pregnancies and those with PE, FGR, and PTB were analyzed for NANOG and KLF4 expression using western blotting and immunohistochemistry. RESULTS NANOG protein expression was significantly increased in placentas from PE, FGR, and PTB compared to NP (fold changes vs. NP: PE 2.48 ± 0.3, p = 0.002; FGR 1.64 ± 0.16, p = 0.03; PTB 6.03 ± 3.35, p = 0.01). Similarly, KLF4 protein expression was elevated in PE, FGR, and PTB placentas compared to NP (fold changes vs. NP: PE 5.78 ± 0.73, p = 0.001; FGR 2.61 ± 0.43, p = 0.02; PTB 11.42 ± 2.76, p = 0.0006). Immunohistochemistry revealed strong NANOG staining in the syncytiotrophoblast tissue of PE, FGR, and PTB samples, especially in extravillous trophoblasts, compared to NP placentas. CONCLUSIONS The elevated expression of NANOG and KLF4 in abnormal placental tissues suggests their potential role as markers of enhanced placental aging and dysfunction. These findings underscore the importance of the KLF4-NANOG pathway in the pathology of PE, FGR, and PTB, providing a basis for future research into therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Sivan Farladansky-Gershnabel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Silber
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Kovo
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Debora Kidron
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Avivit Weisz
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Tali Zitman-Gal
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
6
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Differential effect of lead and cadmium on mitochondrial function and NLRP3 inflammasome activation in human trophoblast. J Physiol 2024. [PMID: 39197088 DOI: 10.1113/jp286755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
Heavy metals disrupt mitochondrial function and activate the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the effect of lead (Pb)/cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast under normoxic, hypoxic and pro-inflammatory conditions. JEG-3, BeWo and HTR-8/SVneo cells were exposed to Pb or Cd for 24 h in the absence or presence of hypoxia or pro-inflammatory lipopolysaccharide (LPS) or poly(I:C). Then, we evaluated cell viability, apoptosis, mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨ), NLRP3 inflammasome proteins and interleukin (IL)-1β secretion. Although our data showed that Pb, Cd, hypoxia, poly(I:C) and LPS decreased mtDNAcn in the three cell lines, the effects of these treatments on other biomarkers were different in the different cell lines. We found that hypoxia decreased ΔΨ and promoted apoptosis in JEG-3 cells, increased ΔΨ and prevented apoptosis in BeWo cells, and did not change ΔΨ and apoptosis in HTR-8/SVneo cells. Moreover, Pb under hypoxic conditions reduced ΔΨ and promoted apoptosis of BeWo cells. Exposure of BeWo and HTR-8/SVneo cells to hypoxia, Pb or Cd alone upregulated the expression of NLRP3 and pro-caspase 1 but did not activate the NLRP3 inflammasome since cleaved-caspase 1 and IL-1β were not increased. To conclude, Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines, but in a cell line-specific way. KEY POINTS: The objective of this work was an understanding of the effect of lead (Pb) and cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast cell lines under normoxic, hypoxic and pro-inflammatory conditions. Apoptosis of JEG-3 cells was increased by hypoxia, while in BeWo cells, apoptosis was decreased by hypoxia, and in HTR-8/SVneo, apoptosis was not affected by hypoxic treatment. Exposure to either Pb or Cd decreased mtDNAcn in three human placental trophoblast cell lines. However, Pb under hypoxia induced a decrease of ΔΨ and promoted apoptosis of BeWo cells, but Cd did not induce a reduction in ΔΨ in the three trophoblast cell lines under any conditions. Exposure to hypoxia, Pb or Cd increased NLRP3 and pro-caspase 1 in BeWo and HTR-8/SVneo cells. Our findings highlight that Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines but in a cell line-specific way.
Collapse
Affiliation(s)
- Yifeng Dai
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Research & Development, IQProducts, Groningen, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Kirkham MN, Cooper C, Broberg E, Robertson P, Clarke D, Pickett BE, Bikman B, Reynolds PR, Arroyo JA. Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms. Cells 2024; 13:1009. [PMID: 38920640 PMCID: PMC11201565 DOI: 10.3390/cells13121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Exposure to cigarette smoke is known to induce disease during pregnancy. Recent evidence showed that exposure to secondhand smoke (SHS) negatively impacts fetal and placental weights, leading to the development of intrauterine growth restriction (IUGR). Electronic cigarettes (eCigs) represent a phenomenon that has recently emerged, and their use is also steadily rising. Even so, the effects of SHS or eCigs during gestation remain limited. In the present study, we wanted to characterize the effects of SHS or eCig exposure at two different important gestational points during mouse pregnancy. C57/Bl6 mice were exposed to SHS or eCigs via a nose-only delivery system for 4 days (from 14.5 to 17.5 gestational days (dGA) or for 6 days (from 12.5 dGA to 17.5 dGA)). At the time of necropsy (18.5 dGA), placental and fetal weights were recorded, maternal blood pressure was determined, and a dipstick test to measure proteinuria was performed. Placental tissues were collected, and inflammatory molecules in the placenta were identified. Treatment with SHS showed the following: (1) a significant decrease in placental and fetal weights following four days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. Treatment with eCigs showed the following: (1) a significant decrease in placental weight and fetal weight following four or six days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. We also observed different inflammatory markers associated with the development of IUGR or PE. We conclude that the detrimental effects of SHS or eCig treatment coincide with the length of maternal exposure. These results could be beneficial in understanding the long-term effects of SHS or eCig exposure in the development of placental diseases.
Collapse
Affiliation(s)
- Madison N. Kirkham
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Christian Cooper
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Emily Broberg
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Peter Robertson
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Derek Clarke
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Benjamin Bikman
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| |
Collapse
|
8
|
Lee JJ, Kakuru A, Jacobson KB, Kamya MR, Kajubi R, Ranjit A, Gaw SL, Parsonnet J, Benjamin-Chung J, Dorsey G, Jagannathan P, Roh ME. Monthly Sulfadoxine-Pyrimethamine During Pregnancy Prevents Febrile Respiratory Illnesses: A Secondary Analysis of a Malaria Chemoprevention Trial in Uganda. Open Forum Infect Dis 2024; 11:ofae143. [PMID: 38585183 PMCID: PMC10995957 DOI: 10.1093/ofid/ofae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Background Trials evaluating antimalarials for intermittent preventive treatment in pregnancy (IPTp) have shown that dihydroartemisinin-piperaquine (DP) is a more efficacious antimalarial than sulfadoxine-pyrimethamine (SP); however, SP is associated with higher birthweight, suggesting that SP demonstrates "nonmalarial" effects. Chemoprevention of nonmalarial febrile illnesses (NMFIs) was explored as a possible mechanism. Methods In this secondary analysis, we leveraged data from 654 pregnant Ugandan women without HIV infection who participated in a randomized controlled trial comparing monthly IPTp-SP with IPTp-DP. Women were enrolled between 12 and 20 gestational weeks and followed through delivery. NMFIs were measured by active and passive surveillance and defined by the absence of malaria parasitemia. We quantified associations among IPTp regimens, incident NMFIs, antibiotic prescriptions, and birthweight. Results Mean "birthweight for gestational age" Z scores were 0.189 points (95% CI, .045-.333) higher in women randomized to IPTp-SP vs IPTp-DP. Women randomized to IPTp-SP had fewer incident NMFIs (incidence rate ratio, 0.74; 95% CI, .58-.95), mainly respiratory NMFIs (incidence rate ratio, 0.69; 95% CI, .48-1.00), vs IPTp-DP. Counterintuitively, respiratory NMFI incidence was positively correlated with birthweight in multigravidae. In total 75% of respiratory NMFIs were treated with antibiotics. Although overall antibiotic prescriptions were similar between arms, for each antibiotic prescribed, "birthweight for gestational age" Z scores increased by 0.038 points (95% CI, .001-.074). Conclusions Monthly IPTp-SP was associated with reduced respiratory NMFI incidence, revealing a potential nonmalarial mechanism of SP and supporting current World Health Organization recommendations for IPTp-SP, even in areas with high-grade SP resistance. While maternal respiratory NMFIs are known risk factors of lower birthweight, most women in our study were presumptively treated with antibiotics, masking the potential benefit of SP on birthweight mediated through preventing respiratory NMFIs.
Collapse
Affiliation(s)
- Jordan John Lee
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Karen B Jacobson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Kaiser Permanente Northern California Division of Research, Vaccine Study Center, Oakland, California, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Anju Ranjit
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Stephanie L Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Julie Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Grant Dorsey
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Michelle E Roh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Masson W, Barbagelata L, Lobo M, Berg G, Lavalle-Cobo A, Nogueira JP. Association between maternal epicardial adipose tissue, gestational diabetes mellitus, and pregnancy-related hypertensive disorders: a systematic review and meta-analysis. Arch Gynecol Obstet 2023; 308:1057-1066. [PMID: 36695898 DOI: 10.1007/s00404-023-06933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Several small studies have evaluated the association between epicardial adipose tissue (EAT) and pregnancy-related cardiovascular risk factors such as gestational diabetes mellitus (GDM) or hypertensive disorders. The objective of this study was to quantitatively compare EAT thickening between patients with GDM or pregnancy-related hypertensive disorders and healthy controls. This systematic review and meta-analysis were performed according to PRISMA guidelines. A literature search was performed to detect studies that have quantified EAT in women with GDM and pregnancy-related hypertensive disorders compared to a control group. The primary outcome was EAT thickening estimated by ultrasound expressed in millimeters. Random or fixed effects models were used. Nine observational studies including 3146 patients were identified and considered eligible for this systematic review. The quantitative analysis showed that patients with GDM have a higher EAT thickness (mean difference: 1.1 mm [95% confidence interval: 1.0-1.2]; I2 = 24%) compared to the control group. Moreover, patients with pregnancy-related hypertensive disorders showed higher EAT thickness (mean difference: 1.0 mm [95% confidence interval: 0.6-1.4]; I2 = 83%) compared to the control group. In conclusion, this study demonstrated that EAT thickening is increased in patients with GDM and pregnancy-related hypertensive disorders compared with healthy controls. Whether or not this association is causal should be evaluated in prospective studies.
Collapse
Affiliation(s)
- Walter Masson
- Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| | - Leandro Barbagelata
- Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martín Lobo
- Cardiology Department, Hospital Militar Campo de Mayo, Buenos Aires, Argentina
| | - Gabriela Berg
- Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Bioquímica Clínica I, Laboratorio de Lípidos y Aterosclerosis, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Juan P Nogueira
- Centro de Investigación en Endocrinología, Nutrición y Metabolismo (CIENM), Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Formosa, Argentina
| |
Collapse
|
10
|
Menkhorst E, Santos LL, Zhou W, Yang G, Winship AL, Rainczuk KE, Nguyen P, Zhang JG, Moore P, Williams M, Lê Cao KA, Mansell A, Dimitriadis E. IL11 activates the placental inflammasome to drive preeclampsia. Front Immunol 2023; 14:1175926. [PMID: 37292200 PMCID: PMC10244672 DOI: 10.3389/fimmu.2023.1175926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Preeclampsia is a life-threatening disorder of pregnancy unique to humans. Interleukin (IL)11 is elevated in serum from pregnancies that subsequently develop early-onset preeclampsia and pharmacological elevation of IL11 in pregnant mice causes the development of early-onset preeclampsia-like features (hypertension, proteinuria, and fetal growth restriction). However, the mechanism by which IL11 drives preeclampsia is unknown. Method Pregnant mice were administered PEGylated (PEG)IL11 or control (PEG) from embryonic day (E)10-16 and the effect on inflammasome activation, systolic blood pressure (during gestation and at 50/90 days post-natal), placental development, and fetal/post-natal pup growth measured. RNAseq analysis was performed on E13 placenta. Human 1st trimester placental villi were treated with IL11 and the effect on inflammasome activation and pyroptosis identified by immunohistochemistry and ELISA. Result PEGIL11 activated the placental inflammasome causing inflammation, fibrosis, and acute and chronic hypertension in wild-type mice. Global and placental-specific loss of the inflammasome adaptor protein Asc and global loss of the Nlrp3 sensor protein prevented PEGIL11-induced fibrosis and hypertension in mice but did not prevent PEGIL11-induced fetal growth restriction or stillbirths. RNA-sequencing and histology identified that PEGIL11 inhibited trophoblast differentiation towards spongiotrophoblast and syncytiotrophoblast lineages in mice and extravillous trophoblast lineages in human placental villi. Discussion Inhibition of ASC/NLRP3 inflammasome activity could prevent IL11-induced inflammation and fibrosis in various disease states including preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Leilani L. Santos
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Guannan Yang
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Amy L. Winship
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katarzyna E. Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Philana Nguyen
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Paddy Moore
- Abortion and Contraception, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Michelle Williams
- Biomedical Animal Facility, The University of Melbourne, Parkville, VIC, Australia
| | - Kim-Anh Lê Cao
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|