1
|
Zondervan RL, Capobianco CA, Jenkins DC, Reicha JD, Fredrick L, Lam C, Schmanski JT, Isenberg JS, Ahn J, Marcucio RS, Hankenson KD. CD47 is required for mesenchymal progenitor proliferation and fracture repair. Bone Res 2025; 13:29. [PMID: 40025005 PMCID: PMC11873311 DOI: 10.1038/s41413-025-00409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025] Open
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone formation as assessed by microcomputed tomography 10 days post-fracture and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus size due to a reduction in bone relative to WT 15 days-post fracture. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell density. Finally, WT mice with ischemic fracture that were administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
Affiliation(s)
- Robert L Zondervan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christina A Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel C Jenkins
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - John D Reicha
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Livia Fredrick
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Charles Lam
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Jeanna T Schmanski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jeffery S Isenberg
- Department of Diabetes Complications and Metabolism and Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jaimo Ahn
- Department of Orthopaedics, Grady Memorial Hospital and Emory School of Medicine, Atlanta, GA, USA
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Lakhani NJ, Stewart D, Richardson DL, Dockery LE, Van Le L, Call J, Rangwala F, Wang G, Ma B, Metenou S, Huguet J, Offman E, Pandite L, Hamilton E. First-in-human phase I trial of the bispecific CD47 inhibitor and CD40 agonist Fc-fusion protein, SL-172154 in patients with platinum-resistant ovarian cancer. J Immunother Cancer 2025; 13:e010565. [PMID: 39800375 PMCID: PMC11749819 DOI: 10.1136/jitc-2024-010565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG4-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer. METHODS SL-172154 was administered intravenously at 0.1, 0.3, 1.0, 3.0, and 10.0 mg/kg. Dose escalation followed a modified toxicity probability interval-2 design. Objectives included evaluation of safety, dose-limiting toxicity, recommended phase II dose, pharmacokinetic (PK) and pharmacodynamic (PD) parameters, and antitumor activity. RESULTS 27 patients (median age 66 years (range, 33-85); median of 4 prior systemic therapies (range, 2-9)) with ovarian (70%), fallopian tube (15%), or primary peritoneal (15%) cancer received SL-172154. Treatment-emergent adverse events (TEAEs) were reported for 27 patients (100%), with 24 (88.9%) having a drug-related TEAE and infusion-related reactions being the most common. 12 patients (44.4%) had grade 3/4 TEAEs, and half of these patients (22.2%) had a drug-related grade 3/4 TEAE. There were no fatal adverse events, and no TEAEs led to drug discontinuation. SL-172154 Cmax and area under the curve increased with dose with greater than proportional exposure noted at 3.0 and 10.0 mg/kg. CD47 and CD40 target engagement on CD4+ T cells and B cells, respectively, approached 100% by 3.0 mg/kg. Dose-dependent responses in multiple cytokines (eg, interleukin 12 (IL-12), IP-10) approached a plateau at ≥3.0 mg/kg. Paired tumor biopsies demonstrated a shift in macrophages from an M2- to an M1-dominant phenotype and increased infiltration of CD8 T cells. PK/PD modeling showed near maximal margination of B cells and a dose-dependent production of IL-12 nearing a plateau at >3.0 mg/kg. The best response was stable disease in 6/27 (22%) patients. CONCLUSIONS SL-172154 was tolerable as monotherapy and induced, dose-dependent, and cyclical immune cell activation, increases in multiple serum cytokines, and trafficking of CD40-positive B cells and monocytes following each infusion. The safety, PK, and PD activity support 3.0 mg/kg as a safe and pharmacologically active dose. TRIAL REGISTRATION NUMBER NCT04406623.
Collapse
Affiliation(s)
- Nehal J Lakhani
- Clinical Research, START Midwest, Grand Rapids, Michigan, USA
| | - Daphne Stewart
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center and Sarah Cannon Research Institute/University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Lauren E Dockery
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Linda Van Le
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Justin Call
- Medical Oncology, START Mountain Region, West Valley City, Utah, USA
| | - Fatima Rangwala
- Clinical Research, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Guanfang Wang
- Biometrics, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Bo Ma
- Biometrics, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Simon Metenou
- Translational Medicine, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Jade Huguet
- Translational and Clinical Pharmacology, Certara, Toronto, Ontario, Canada
| | - Elliot Offman
- Translational and Clinical Pharmacology, Certara, Toronto, Ontario, Canada
| | - Lini Pandite
- Clinical Research, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Erika Hamilton
- Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Kang M, Park HK, Kim KS, Choi D. Animal models for transplant immunology: bridging bench to bedside. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:354-376. [PMID: 39233453 PMCID: PMC11732767 DOI: 10.4285/ctr.24.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 09/06/2024]
Abstract
The progress of transplantation has been propelled forward by animal experiments. Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Hwon Kyum Park
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
4
|
Hankenson K, Zondervan R, Capobianco C, Jenkins D, Reicha J, Frederick L, Lam C, Isenberg J, Ahn J, Marcucio RS. CD47 is Required for Mesenchymal Progenitor Proliferation and Fracture Repair. RESEARCH SQUARE 2024:rs.3.rs-4022423. [PMID: 38562718 PMCID: PMC10984034 DOI: 10.21203/rs.3.rs-4022423/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our In vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
|
5
|
Zondervan RL, Capobianco CA, Jenkins DC, Reicha JD, Fredrick LM, Lam C, Isenberg JS, Ahn J, Marcucio RS, Hankenson KD. CD47 is Required for Mesenchymal Progenitor Proliferation and Fracture Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583756. [PMID: 38496546 PMCID: PMC10942414 DOI: 10.1101/2024.03.06.583756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
Affiliation(s)
- Robert L. Zondervan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States, 48824
| | - Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor Michigan, United States, 48109
| | - Daniel C. Jenkins
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - John D. Reicha
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Livia M. Fredrick
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Charles Lam
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States, 94142
| | - Jeffery S. Isenberg
- Department of Diabetes Complications and Metabolism and Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States, 91010
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States, 94142
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| |
Collapse
|
6
|
Li W, Chen Y, Cai Z, He X, Yang L, Zhu J, Wang W. Traditional Chinese medicine Qingre Huoxue decoction enhances wound healing in through modulation of angiogenic and inflammatory pathways. Int Wound J 2024; 21:e14724. [PMID: 38439195 PMCID: PMC10912365 DOI: 10.1111/iwj.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 03/06/2024] Open
Abstract
This study investigates the therapeutic potential of Qingre Huoxue Decoction (QHD), a traditional Chinese herbal formulation, in promoting wound healing in an imiquimod-induced murine model of psoriasis. The research was driven by the need for effective wound healing strategies in psoriatic conditions, where conventional treatments often fall short. Employing a combination of in vivo and in vitro methodologies, we assessed the effects of QHD on key factors associated with wound healing. Our results showed that QHD treatment significantly reduced the expression of angiogenic proteins HIF-1α, FLT-1, and VEGF, and mitigated inflammatory responses, as evidenced by the decreased levels of pro-inflammatory cytokines and increased expression of IL-10. Furthermore, QHD enhanced the expression of genes essential for wound repair. In vitro assays with HUVECs corroborated the anti-angiogenic effects of QHD. Conclusively, the study highlights QHD's efficacy in enhancing wound healing in psoriatic conditions by modulating angiogenic and inflammatory pathways, presenting a novel therapeutic avenue in psoriasis wound management.
Collapse
Affiliation(s)
- Wen Li
- Department of DermatologyShuguang Hospital Affiliated to Shanghai University of TCMShanghaiChina
| | - Yongqi Chen
- Department of PathologyShuguang Hospital Affiliated to Shanghai University of TCMShanghaiChina
| | - Zhenguo Cai
- Department of DermatologyShuguang Hospital Affiliated to Shanghai University of TCMShanghaiChina
| | - Xiang He
- Department of DermatologyShuguang Hospital Affiliated to Shanghai University of TCMShanghaiChina
| | - Lili Yang
- Department of DermatologyShuguang Hospital Affiliated to Shanghai University of TCMShanghaiChina
| | - Jiong Zhu
- Department of DermatologyShuguang Hospital Affiliated to Shanghai University of TCMShanghaiChina
| | - Wuqing Wang
- Department of DermatologyShuguang Hospital Affiliated to Shanghai University of TCMShanghaiChina
| |
Collapse
|
7
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
8
|
Haj-Yehia E, Korste S, Jochem R, Lusha A, Roth A, Dietzel N, Niroomand J, Stock P, Westendorf AM, Buer J, Hendgen-Cotta UB, Rassaf T, Totzeck M. CD47 blockade enhances phagocytosis of cardiac cell debris by neutrophils. IJC HEART & VASCULATURE 2023; 48:101269. [PMID: 37731517 PMCID: PMC10507185 DOI: 10.1016/j.ijcha.2023.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
CD47 is a cell surface protein controlling phagocytotic activity of innate immune cells. CD47 blockade was investigated as an immune checkpoint therapy in cancer treatment, enhancing phagocytosis of tumor cells by macrophages. Anti-CD47 treatment also reduced injury size during reperfused acute myocardial infarction (repAMI) by enhancing phagocytotic acitivity of macrophages. Little is known about the impact of CD47 blockade on neutrophils, representing the main portion of early infiltrating immune cells after repAMI. Therefore, we performed 45 min of cardiac ischemia followed by 24 h of reperfusion, observing a decreased cardiac injury size measured by triphenyl tetrazolium chloride (TTC) Evan's blue staining. We were able to detect this effect with an innovative three-dimensional method based on light sheet fluorescence microscopy (LSFM). This further allowed us a simultaneous analysis of neutrophil infiltration, showing an unaltered amount of injury-associated neutrophils with reduced cardiac injury volume from repAMI. This observation suggests modulated phagocytosis of cell debris by neutrophils. Therefore, we performed flow cytometry analysis, revealing an increased phagocytotic activity of neutrophils in vitro. These findings highlight that CD47 blockade also enhances phagocytosis of cardiac cell debris by neutrophils, which might be an additional protective effect of anti-CD47 treatment after repAMI.
Collapse
Affiliation(s)
- Elias Haj-Yehia
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Sebastian Korste
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Robert Jochem
- Department of Nephrology, University Hospital Essen, 45147 Essen, Germany
| | - Aldona Lusha
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Anna Roth
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Nina Dietzel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Josefine Niroomand
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Pia Stock
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrike B. Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
9
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
10
|
Cao Y, Chen J, Liu F, Qi G, Zhao Y, Xu S, Wang J, Zhu T, Zhang Y, Jia Y. Formyl peptide receptor 2 activation by mitochondrial formyl peptides stimulates the neutrophil proinflammatory response via the ERK pathway and exacerbates ischemia-reperfusion injury. Cell Mol Biol Lett 2023; 28:4. [PMID: 36658472 PMCID: PMC9854225 DOI: 10.1186/s11658-023-00416-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an inevitable process in renal transplantation that significantly increases the risk of delayed graft function, acute rejection, and even graft loss. Formyl peptide receptor 2 (FPR2) is an important receptor in multiple septic and aseptic injuries, but its functions in kidney IRI are still unclear. This study was designed to reveal the pathological role of FPR2 in kidney IRI and its functional mechanisms. METHODS To explore the mechanism of FPR2 in kidney IRI, the model rats were sacrificed after IRI surgery. Immunofluorescence, enzyme-linked immunosorbent assays, and western blotting were used to detect differences in the expression of FPR2 and its ligands between the IRI and control groups. WRW4 (WRWWWW-NH2), a specific antagonist of FPR2, was administered to kidney IRI rats. Kidney function and pathological damage were detected to assess kidney injury and recovery. Flow cytometry was used to quantitatively compare neutrophil infiltration among the experimental groups. Mitochondrial formyl peptides (mtFPs) were synthesized and administered to primary rat neutrophils together with the specific FPR family antagonist WRW4 to verify our hypothesis in vitro. Western blotting and cell function assays were used to examine the functions and signaling pathways that FPR2 mediates in neutrophils. RESULTS FPR2 was activated mainly by mtFPs during the acute phase of IRI, mediating neutrophil migration and reactive oxygen species production in the rat kidney through the ERK1/2 pathway. FPR2 blockade in the early phase protected rat kidneys from IRI. CONCLUSIONS mtFPs activated FPR2 during the acute phase of IRI and mediated rat kidney injury by activating the migration and reactive oxygen species generation of neutrophils through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yirui Cao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Juntao Chen
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Feng Liu
- grid.411405.50000 0004 1757 8861Department of Integrative Medicine, Huashan Hospital Fudan University, Shanghai, People’s Republic of China
| | - Guisheng Qi
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Zhao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Shihao Xu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiyan Wang
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yi Zhang
- grid.413087.90000 0004 1755 3939Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichen Jia
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Hou Y, Xin Y, Liu S, Li Y, Meng X, Wang J, Xu Z, Sun T, Yang YG. A biocompatible nanoparticle-based approach to inhibiting renal ischemia reperfusion injury in mice by blocking thrombospondin-1 activity. Am J Transplant 2022; 22:2246-2253. [PMID: 35373451 DOI: 10.1111/ajt.17052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023]
Abstract
Thrombospondin-1 (TSP-1) is a key mediator of renal ischemia-reperfusion injury (IRI), a major cause of kidney dysfunction under various disease conditions and a risk factor of renal allograft rejection. In this study, we developed a nanotechnology-based therapy targeting TSP-1 to prevent renal IRI. A biocompatible nanoparticle (NP) capable of specific binding to TSP-1 was prepared by conjugating NPs with TSP-1-binding (LSKL) peptides. LSKL/NPs not only effectively adsorbed recombinant TSP-1 proteins in vitro, but also efficiently neutralized TSP-1 in mice undergoing renal IRI. IRI-induced elevation of TSP-1 in the kidney was significantly inhibited by post-IR treatment with LSKL/NPs, but not free LSKL or NPs. Furthermore, TSP-1 proteins adsorbed on LSKL/NPs were functionally inactive and unable to induce apoptosis in renal tubular epithelial cells. Importantly, LSKL/NPs induced strong protection against renal IRI, as shown by markedly diminished serum creatinine levels and improved histological lesions of the kidney. Thus, LSKL/NPs provide a useful means of depleting and inactivating TSP-1 and a potential therapy for renal IRI.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education and The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
13
|
Ahmed O, Xu M, Zhou F, Wein AN, Upadhya GA, Ye L, Wong BW, Lin Y, O'Farrelly C, Chapman WC. NRF2 assessment in discarded liver allografts: A role in allograft function and salvage. Am J Transplant 2022; 22:58-70. [PMID: 34379880 DOI: 10.1111/ajt.16789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023]
Abstract
Antioxidant defence mechanisms, such as the nuclear factor-erythroid 2-related-factor-2 (NRF2) axis, are integral to oxidative stress responses and ischemic injury. Hepatic antioxidant capacity is contingent on parenchymal quality, and there is a need to develop new insights into key molecular mechanisms in marginal liver allografts that might provide therapeutic targets. This study examines the clinical relevance of NRF2 in donor livers and its response to normothermic machine perfusion (NMP). Discarded donor livers (n = 40) were stratified into a high NRF2 and low NRF2 group by quantifying NRF2 expression. High NRF2 livers had significantly lower transaminase levels, hepatic vascular inflammation and peri-portal CD3+ T cell infiltration. Human liver allografts (n = 8) were then exposed to 6-h of NMP and high NRF2 livers had significantly reduced liver enzyme alterations and improved lactate clearance. To investigate these findings further, we used a rat fatty-liver model, treating livers with an NRF2 agonist during NMP. Treated livers had increased NRF2 expression and reduced transaminase derangements following NMP compared to vehicle control. These results support the association of elevated NRF2 expression with improved liver function. Targeting this axis could have a rationale in future studies and NRF2 agonists may represent a supplemental treatment strategy for rescuing marginal donor livers.
Collapse
Affiliation(s)
- Ola Ahmed
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA.,School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Min Xu
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fangyu Zhou
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander N Wein
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gundumi A Upadhya
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Li Ye
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian W Wong
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiing Lin
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cliona O'Farrelly
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland.,School of Biochemistry & Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - William C Chapman
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Švachová V, Krupičková L, Novotný M, Fialová M, Mezerová K, Čečrdlová E, Lánská V, Slavčev A, Viklický O, Viklický O, Stříž I. Changes in phenotypic patterns of blood monocytes after kidney transplantation and during acute rejection. Physiol Res 2021; 70:709-721. [PMID: 34505523 DOI: 10.33549/physiolres.934700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Peripheral blood monocytes, which serve as precursors for tissue macrophages and dendritic cells (DC), play a key role in the immune response to kidney allograft, reparation processes and homeostasis regulation. In this prospective study, we used multicolor flow cytometry to monitor the phenotypic patterns of peripheral monocytes in subjects with uncomplicated outcomes and those with acute rejection. We found a reciprocal increase in the proportion of "classical monocytes" (CD14+CD16-) along with a decline in pro-inflammatory "intermediary" (CD14+CD16+) and "non-classical" (CD14lowCD16+) monocytes in subjects with normal outcomes. In subjects with acute rejection, we observed no reduction in "intermediary" monocytes and no increase in "classical" monocytes. Patients with uncomplicated outcomes exhibited downregulated HLA-DR in all three monocyte subpopulations. However, non-classical monocytes were unaffected in subjects with acute rejection. Expression of CD47 was downregulated after transplantation, while patients with antibody-mediated rejection and donor-specific antibodies showed higher pre-transplant values. In monocytes isolated at the time of biopsy, CD47 expression was higher in individuals with acute rejection compared to patients with normal outcomes one year post-transplant. Expression of CD209 (DC-SIGN) and the proportion of CD163+CD206+ subpopulations were upregulated during the first week after kidney transplantation. CD209 was also upregulated in samples taken on the day of biopsy confirming acute rejection. Our data demonstrate that kidney allograft transplantation is associated with phenotypic changes in peripheral blood monocytes during acute rejection.
Collapse
Affiliation(s)
- V Švachová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Urbanellis P, Mazilescu L, Kollmann D, Linares-Cervantes I, Kaths JM, Ganesh S, Oquendo F, Sharma M, Goto T, Noguchi Y, John R, Konvalinka A, Mucsi I, Ghanekar A, Bagli D, Robinson LA, Selzner M. Prolonged warm ischemia time leads to severe renal dysfunction of donation-after-cardiac death kidney grafts. Sci Rep 2021; 11:17930. [PMID: 34504136 PMCID: PMC8429572 DOI: 10.1038/s41598-021-97078-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Kidney transplantation with grafts procured after donation-after-cardiac death (DCD) has led to an increase in incidence of delayed graft function (DGF). It is thought that the warm ischemic (WI) insult encountered during DCD procurement is the cause of this finding, although few studies have been designed to definitely demonstrate this causation in a transplantation setting. Here, we use a large animal renal transplantation model to study the effects of prolonged WI during procurement on post-transplantation renal function. Kidneys from 30 kg-Yorkshire pigs were procured following increasing WI times of 0 min (Heart-Beating Donor), 30 min, 60 min, 90 min, and 120 min (n = 3-6 per group) to mimic DCD. Following 8 h of static cold storage and autotransplantation, animals were followed for 7-days. Significant renal dysfunction (SRD), resembling clinical DGF, was defined as the development of oliguria < 500 mL in 24 h from POD3-4 along with POD4 serum potassium > 6.0 mmol/L. Increasing WI times resulted in incremental elevation of post-operative serum creatinine that peaked later. DCD120min grafts had the highest and latest elevation of serum creatinine compared to all groups (POD5: 19.0 ± 1.1 mg/dL, p < 0.05). All surviving animals in this group had POD4 24 h urine output < 500 cc (mean 235 ± 172 mL) and elevated serum potassium (7.2 ± 1.1 mmol/L). Only animals in the DCD120min group fulfilled our criteria of SRD (p = 0.003), and their renal function improved by POD7 with 24 h urine output > 500 mL and POD7 serum potassium < 6.0 mmol/L distinguishing this state from primary non-function. In a transplantation survival model, this work demonstrates that prolonging WI time similar to that which occurs in DCD conditions contributes to the development of SRD that resembles clinical DGF.
Collapse
Affiliation(s)
- Peter Urbanellis
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laura Mazilescu
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ivan Linares-Cervantes
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - J Moritz Kaths
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Sujani Ganesh
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Fabiola Oquendo
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Manraj Sharma
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Toru Goto
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Yuki Noguchi
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Istvan Mucsi
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Anand Ghanekar
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Darius Bagli
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Departments of Surgery (Urology) and Physiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Program in Developmental and Stem Cell Biology, The Hospital For Sick Children Research Institute, Toronto, ON, Canada
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| | - Markus Selzner
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada. .,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Takeuchi K, Ariyoshi Y, Shimizu A, Okumura Y, Cara-Fuentes G, Garcia GE, Pomposelli T, Watanabe H, Boyd L, Ekanayake-Alper DK, Amarnath D, Sykes M, Sachs DH, Johnson RJ, Yamada K. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation 2021; 28:e12708. [PMID: 34418164 DOI: 10.1111/xen.12708] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nephrotic syndrome is a common complication of pig-to-baboon kidney xenotransplantation (KXTx) that adversely affects outcomes. We have reported that upregulation of CD80 and down-regulation of SMPDL-3b in glomeruli have an important role in the development of proteinuria following pig-to-baboon KXTx. Recently we found induced expression of human CD47 (hCD47) on endothelial cells and podocytes isolated from hCD47 transgenic (Tg) swine markedly reduced phagocytosis by baboon and human macrophages. These observations led us to hypothesize that transplanting hCD47 Tg porcine kidneys could overcome the incompatibility of the porcine CD47-baboon SIRPα interspecies ligand-receptor interaction and prevent the development of proteinuria following KXTx. METHODS Ten baboons received pig kidneys with vascularized thymic grafts (n = 8) or intra-bone bone marrow transplants (n = 2). Baboons were divided into three groups (A, B, and C) based on the transgenic expression of hCD47 in GalT-KO pigs. Baboons in Group A received kidney grafts with expression of hCD47 restricted to glomerular cells (n = 2). Baboons in Group B received kidney grafts with high expression of hCD47 on both glomerular and tubular cells of the kidneys (n = 4). Baboons in Group C received kidney grafts with low/no glomerular expression of hCD47, and high expression of hCD47 on renal tubular cells (n = 4). RESULTS Consistent with this hypothesis, GalT-KO/hCD47 kidney grafts with high expression of hCD47 on glomerular cells developed minimal proteinuria. However, high hCD47 expression in all renal cells including renal tubular cells induced an apparent destructive inflammatory response associated with upregulated thrombospondin-1. This response could be avoided by a short course of weekly anti-IL6R antibody administration, resulting in prolonged survival without proteinuria (mean 170.5 days from 47.8 days). CONCLUSION Data showed that transgenic expression of hCD47 on glomerular cells in the GalT-KO donor kidneys can prevent xenograft nephropathy, a significant barrier for therapeutic applications of xenotransplantation. The ability to prevent nephrotic syndrome following KXTx overcomes a critical barrier for future clinical applications of KXTx.
Collapse
Affiliation(s)
- Kazuhiro Takeuchi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Yuichi Ariyoshi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yuichiro Okumura
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Gabriela E Garcia
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Thomas Pomposelli
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Hironosuke Watanabe
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Lennan Boyd
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Dilrukshi K Ekanayake-Alper
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Dasari Amarnath
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
17
|
Wang X, Zhou C, Liu J, Jia R. Dynamic regulation of anti-oxidation following donation repairing after circulatory determined death renal transplantation with prolonged non-heart-beating time. J Biomed Res 2021; 35:383-394. [PMID: 34628404 PMCID: PMC8502692 DOI: 10.7555/jbr.35.20210031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Donation after circulatory-determined death (DCD) is an important part of renal transplantation. Therefore, DCD renal transplantation animal model should be established to study the mechanism of organ injury. Here, we established a stable DCD rat renal transplantation model and investigated the dynamic regulation of graft self-repairing and antioxidant capacities with different non-heart-beating times (NHBTs). Male Sprague-Dawley rats were randomly divided into four groups with the NHBT of the donors from 0 to 15, 30, and 45 minutes. Recipients in long NHBT groups had a significantly lower survival rate and poorer graft function than those in short NHBT groups. Grafts from the 15-minute and 30-minute NHBT groups showed light and severe injury respectively at an early stage after transplantation and recovered within 7 days after transplantation, whereas the self-repairing of the grafts in the 45-minute NHBT group was delayed. The expressions of proliferating cell nuclear antigen (PCNA) and von Willebrand factor (vWF) were dependent on NHBT. The expression of antioxidant proteins paralleled graft recovery. In conclusion, the recipients can up-regulate antioxidant capacity to enhance graft self-repairing in DCD renal transplantation. Prolonged NHBT can delay the self-repairing and antioxidation of grafts.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| |
Collapse
|
18
|
Packialakshmi B, Stewart IJ, Burmeister DM, Chung KK, Zhou X. Large animal models for translational research in acute kidney injury. Ren Fail 2021; 42:1042-1058. [PMID: 33043785 PMCID: PMC7586719 DOI: 10.1080/0886022x.2020.1830108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While extensive research using animal models has improved the understanding of acute kidney injury (AKI), this knowledge has not been translated into effective treatments. Many promising interventions for AKI identified in mice and rats have not been validated in subsequent clinical trials. As a result, the mortality rate of AKI patients remains high. Inflammation plays a fundamental role in the pathogenesis of AKI, and one reason for the failure to translate promising therapeutics may lie in the profound difference between the immune systems of rodents and humans. The immune systems of large animals such as swine, nonhuman primates, sheep, dogs and cats, more closely resemble the human immune system. Therefore, in the absence of a basic understanding of the pathophysiology of human AKI, large animals are attractive models to test novel interventions. However, there is a lack of reviews on large animal models for AKI in the literature. In this review, we will first highlight differences in innate and adaptive immunities among rodents, large animals, and humans in relation to AKI. After illustrating the potential merits of large animals in testing therapies for AKI, we will summarize the current state of the evidence in terms of what therapeutics have been tested in large animal models. The aim of this review is not to suggest that murine models are not valid to study AKI. Instead, our objective is to demonstrate that large animal models can serve as valuable and complementary tools in translating potential therapeutics into clinical practice.
Collapse
Affiliation(s)
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
19
|
Gao L, Yang TT, Zhang JS, Liu HX, Cai DC, Wang LT, Wang J, Li XW, Gao K, Zhang SY, Cao YJ, Ji XX, Yang MM, Han B, Wang S, He L, Nie XY, Liu DM, Meng G, He CY. THBS1/CD47 Modulates the Interaction of γ-Catenin With E-Cadherin and Participates in Epithelial-Mesenchymal Transformation in Lipid Nephrotoxicity. Front Cell Dev Biol 2021; 8:601521. [PMID: 33681182 PMCID: PMC7930485 DOI: 10.3389/fcell.2020.601521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Hyperlipidemia, an important risk factor for cardiovascular and end-stage renal diseases, often aggravates renal injury and compromises kidney function. Here, histological analysis of human kidney samples revealed that high lipid levels induced the development of renal fibrosis. To elucidate the mechanism underlying lipid nephrotoxicity, we used two types of mouse models (Apoe−/− and C57BL/6 mice fed a 45 and 60% high-fat diet, respectively). Histological analysis of kidney tissues revealed high-lipid-induced renal fibrosis and inflammation; this was confirmed by examining fibrotic and inflammatory marker expression using Western blotting and real-time polymerase chain reaction. Oxidized low-density lipoprotein (OX-LDL) significantly induced the fibrotic response in HK-2 tubular epithelial cells. RNA-sequencing and Gene Ontology analysis of differentially expressed mRNAs in OX-LDL-treated HK-2 tubular epithelial cells and real-time PCR validation in Apoe−/− mice showed that the expression of thrombospondin-1 (THBS1) in the high-fat group was significantly higher than that of the other top known genes, along with significant overexpression of its receptor CD47. THBS1 knockdown cells verified its relation to OX-LDL-induced fibrosis and inflammation. Liquid chromatography tandem mass spectrometry and STRING functional protein association network analyses predicted that THBS1/CD47 modulated the interaction between γ-catenin and E-cadherin and was involved in epithelial–mesenchymal transition, which was supported by immunoprecipitation and immunohistochemistry. CD47 downregulation following transfection with small-hairpin RNA in OX-LDL-treated tubular epithelial cells and treatment with anti-CD47 antibody restored the expression of E-cadherin and attenuated renal injury, fibrosis, and inflammatory response in OX-LDL-treated cells and in type 2 diabetes mellitus. These findings indicate that CD47 may serve as a potential therapeutic target in long-term lipid-induced kidney injury.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ting-Ting Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jun-Sheng Zhang
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Xia Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Dong-Cheng Cai
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Lin-Tao Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xin-Wei Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Kun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Su-Ya Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yu-Jia Cao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiao-Xia Ji
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Yang
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Yizhiben Center for Judicial Expertise, Hefei, China
| | - Biao Han
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Yizhiben Center for Judicial Expertise, Hefei, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Lu He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiao-Yan Nie
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Dan-Mei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Gang Meng
- Pathophysiology Department, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Yizhiben Center for Judicial Expertise, Hefei, China
| | - Chao-Yong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Improving Liver Graft Function Using CD47 Blockade in the Setting of Normothermic Machine Perfusion. Transplantation 2021; 106:37-47. [PMID: 33577253 DOI: 10.1097/tp.0000000000003688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Towards the goal of utilizing more livers for transplantation, transplant centers are looking to increase the use of organs from "marginal" donors. Livers from these donors, however, have been shown to be more susceptible to preservation and reperfusion injury. METHODS Using a porcine model of donation after circulatory death (DCD), we studied the use of antibody-mediated CD47 blockade to further improve liver graft function undergoing normothermic machine perfusion. Livers from 20 pigs (5 per group) were brought under either 30 or 60 minutes of warm ischemia time (WIT) followed by the administration of CD47mAb treatment or IgG control antibodies and 6 hours of normothermic extracorporeal liver perfusion (NELP). RESULTS After 6 hours of NELP, CD47mAb-treated livers with 30 or 60 minutes WIT had significantly lower ALT levels and higher bile production compared to their respective control groups. Blockade of the CD47 signaling pathway resulted in significantly lower TSP-1 protein levels, lower expression of Caspase-3, and higher expression of pERK. CONCLUSIONS These findings suggested that CD47mAb treatment decreases ischemia/reperfusion injury through CD47/TSP-1 signaling downregulation and the presence of necrosis/apoptosis after reperfusion, and could increase liver regeneration during normothermic perfusion of the liver.Supplemental Visual Abstract; http://links.lww.com/TP/C146.
Collapse
|
21
|
Hameed AM, Lu DB, Burns H, Byrne N, Chew YV, Julovi S, Ghimire K, Zanjani NT, P'ng CH, Meijles D, Dervish S, Matthews R, Miraziz R, O'Grady G, Yuen L, Pleass HC, Rogers NM, Hawthorne WJ. Pharmacologic targeting of renal ischemia-reperfusion injury using a normothermic machine perfusion platform. Sci Rep 2020; 10:6930. [PMID: 32332767 PMCID: PMC7181764 DOI: 10.1038/s41598-020-63687-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
Normothermic machine perfusion (NMP) is an emerging modality for kidney preservation prior to transplantation. NMP may allow directed pharmacomodulation of renal ischemia-reperfusion injury (IRI) without the need for systemic donor/recipient therapies. Three proven anti-IRI agents not in widespread clinical use, CD47-blocking antibody (αCD47Ab), soluble complement receptor 1 (sCR1), and recombinant thrombomodulin (rTM), were compared in a murine model of kidney IRI. The most effective agent was then utilized in a custom NMP circuit for the treatment of isolated porcine kidneys, ascertaining the impact of the drug on perfusion and IRI-related parameters. αCD47Ab conferred the greatest protection against IRI in mice after 24 hours. αCD47Ab was therefore chosen as the candidate agent for addition to the NMP circuit. CD47 receptor binding was demonstrated by immunofluorescence. Renal perfusion/flow improved with CD47 blockade, with a corresponding reduction in oxidative stress and histologic damage compared to untreated NMP kidneys. Tubular and glomerular functional parameters were not significantly impacted by αCD47Ab treatment during NMP. In a murine renal IRI model, αCD47Ab was confirmed as a superior anti-IRI agent compared to therapies targeting other pathways. NMP enabled effective, direct delivery of this drug to porcine kidneys, although further efficacy needs to be proven in the transplantation setting.
Collapse
Affiliation(s)
- Ahmer M Hameed
- Department of Surgery, Westmead Hospital, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - David B Lu
- Westmead Institute for Medical Research, Sydney, Australia
| | - Heather Burns
- Westmead Institute for Medical Research, Sydney, Australia
| | - Nicole Byrne
- Westmead Institute for Medical Research, Sydney, Australia
| | - Yi Vee Chew
- Westmead Institute for Medical Research, Sydney, Australia
| | - Sohel Julovi
- Westmead Institute for Medical Research, Sydney, Australia
| | - Kedar Ghimire
- Westmead Institute for Medical Research, Sydney, Australia
| | | | - Chow H P'ng
- Institute for Clinical Pathology and Medical Research, Westmead Hospital, Sydney, Australia
| | | | - Suat Dervish
- Westmead Institute for Medical Research, Sydney, Australia
| | - Ross Matthews
- Department of Animal Care, Westmead Hospital, Sydney, Australia
| | - Ray Miraziz
- Department of Anesthesia, Westmead Hospital, Sydney, Australia
| | - Greg O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Lawrence Yuen
- Department of Surgery, Westmead Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Henry C Pleass
- Department of Surgery, Westmead Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Natasha M Rogers
- Westmead Institute for Medical Research, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
- Department of Transplant/Renal Medicine, Westmead Hospital, Sydney, Australia.
| | - Wayne J Hawthorne
- Department of Surgery, Westmead Hospital, Sydney, Australia.
- Westmead Institute for Medical Research, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
22
|
Li DY, Xie SL, Wang GY, Dang XW. CD47 blockade alleviates acute rejection of allogeneic mouse liver transplantation by reducing ischemia/reperfusion injury. Biomed Pharmacother 2019; 123:109793. [PMID: 31884341 DOI: 10.1016/j.biopha.2019.109793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite advances in immunosuppressive therapies, acute rejection response is still a serious concern especially in the early phase after liver transplantation. This study aimed to evaluate whether blocking the TSP1-CD47 signaling pathway could attenuate the acute rejection after liver transplantation. An allogeneic mouse orthotopic liver transplantation model (Balb/c→C3H) with prolonged cold ischemic phase was used to induce severe IRI and lethal acute rejection. CD47mAb or isotype matched-control IgG2a was administered to donor liver during graft perfusion. Recipients were sacrificed at 1d, 3d, 5d and 7d after reperfusion. Blood samples were collected to evaluate serum alanine aminotransferase, total bilirubin, HMGB-1,TNF-α, IL-2 and INF-γ level. Flow cytometric analysis was used to detect the strength of innate and adaptive immune response. Liver tissue was obtained for HE, TUNEL staining and F4/80 immumohistochemical staining. Moreover, we conducted a mixed lymphocyte reaction treated with IgG2a or CD47mAb. Mice in CD47mAb-treated group demonstrated improved survival and significantly lower increase in Suzuki score, apoptosis index, acute rejection index, serum alanine aminotransferase, total bilirubin, HMGB-1, TNF-α, IL-2, INF-γ level and the degree of Kupffer cells' activation especially in the early phase of acute rejection. In addition, Pearson's correlation analysis confirmed significant correlation between Suzuki score/ALT and acute rejection index. The in vitro inhibition assay showed that CD47 blockade couldn't directly inhibit recipient lymphocyte proliferation. Based on the evidence that TSP1-CD47 signaling blockade with CD47mAb could alleviate acute rejection by reducing the extent of IRI after liver transplantation indirectly, this study provided a basis for new interventions and management methods to support better transplant outcomes.
Collapse
Affiliation(s)
- Ding-Yang Li
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Shu-Li Xie
- Department of Hepatobiliary& Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun 130021, Jilin Province, China
| | - Guang-Yi Wang
- Department of Hepatobiliary& Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun 130021, Jilin Province, China
| | - Xiao-Wei Dang
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
23
|
Isenberg JS, Roberts DD. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury. Pediatr Nephrol 2019; 34:2479-2494. [PMID: 30392076 PMCID: PMC6677644 DOI: 10.1007/s00467-018-4123-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023]
Abstract
Ischemia reperfusion (IR) injury is a process defined by the temporary loss of blood flow and tissue perfusion followed later by restoration of the same. Brief periods of IR can be tolerated with little permanent deficit, but sensitivity varies for different target cells and tissues. Ischemia reperfusion injuries have multiple causes including peripheral vascular disease and surgical interventions that disrupt soft tissue and organ perfusion as occurs in general and reconstructive surgery. Ischemia reperfusion injury is especially prominent in organ transplantation where substantial effort has been focused on protecting the transplanted organ from the consequences of IR. A number of factors mediate IR injury including the production of reactive oxygen species and inflammatory cell infiltration and activation. In the kidney, IR injury is a major cause of acute injury and secondary loss of renal function. Transplant-initiated renal IR is also a stimulus for innate and adaptive immune-mediated transplant dysfunction. The cell surface molecule CD47 negatively modulates cell and tissue responses to stress through limitation of specific homeostatic pathways and initiation of cell death pathways. Herein, a summary of the maladaptive activities of renal CD47 will be considered as well as the possible therapeutic benefit of interfering with CD47 to limit renal IR.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, Corresponding author: David D. Roberts, , 301-480-4368
| |
Collapse
|
24
|
Chen Y, Burnett JC. The Kidney, Bone Marrow, and Heart Connection in Acute Kidney Injury: Role of Galecin-3. JACC Basic Transl Sci 2019; 4:733-735. [PMID: 31713546 PMCID: PMC6834947 DOI: 10.1016/j.jacbts.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Murphy-Ullrich JE. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J Histochem Cytochem 2019; 67:683-699. [PMID: 31116066 PMCID: PMC6713974 DOI: 10.1369/0022155419851103] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Thrombospondin 1 (TSP1) is a matricellular extracellular matrix protein that has diverse roles in regulating cellular processes important for the pathogenesis of fibrotic diseases. We will present evidence for the importance of TSP1 control of latent transforming growth factor beta activation in renal fibrosis with an emphasis on diabetic nephropathy. Other functions of TSP1 that affect renal fibrosis, including regulation of inflammation and capillary density, will be addressed. Emerging roles for TSP1 N-terminal domain regulation of collagen matrix assembly, direct effects of TSP1-collagen binding, and intracellular functions of TSP1 in mediating endoplasmic reticulum stress responses in extracellular matrix remodeling and fibrosis, which could potentially affect renal fibrogenesis, will also be discussed. Finally, we will address possible strategies for targeting TSP1 functions to treat fibrotic renal disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
26
|
Xu M, Garcia-Aroz S, Banan B, Wang X, Rabe BJ, Zhou F, Nayak DK, Zhang Z, Jia J, Upadhya GA, Manning PT, Gaut JP, Lin Y, Chapman WC. Enhanced immunosuppression improves early allograft function in a porcine kidney transplant model of donation after circulatory death. Am J Transplant 2019; 19:713-723. [PMID: 30152136 DOI: 10.1111/ajt.15098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023]
Abstract
It remains controversial whether renal allografts from donation after circulatory death (DCD) have a higher risk of acute rejection (AR). In the porcine large animal kidney transplant model, we investigated the AR and function of DCD renal allografts compared to the non-DCD renal allografts and the effects of increased immunosuppression. We found that the AR was significantly increased along with elevated MHC-I expression in the DCD transplants receiving low-dose immunosuppression; however, AR and renal function were significantly improved when given high-dose immunosuppressive therapy postoperatively. Also, high-dose immunosuppression remarkably decreased the mRNA levels of ifn-g, il-6, tgf-b, il-4, and tnf-a in the allograft at day 5 and decreased serum cytokines levels of IFN-g and IL-17 at day 4 and day 5 after operation. Furthermore, Western blot analysis showed that higher immunosuppression decreased phosphorylation of signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells-p65, increased phosphorylation of extracellular-signal-regulated kinase, and reduced the expression of Bcl-2-associated X protein and caspase-3 in the renal allografts. These results suggest that the DCD renal allograft seems to be more vulnerable to AR; enhanced immunosuppression reduces DCD-associated AR and improves early allograft function in a preclinical large animal model.
Collapse
Affiliation(s)
- Min Xu
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Sandra Garcia-Aroz
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Babak Banan
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuanchuan Wang
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Brian J Rabe
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Fangyu Zhou
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Deepak K Nayak
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Zhengyan Zhang
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianluo Jia
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Gundumi A Upadhya
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Joseph P Gaut
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiing Lin
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - William C Chapman
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Glinton K, DeBerge M, Yeap XY, Zhang J, Forbess J, Luo X, Thorp EB. Acute and chronic phagocyte determinants of cardiac allograft vasculopathy. Semin Immunopathol 2018; 40:593-603. [PMID: 30141073 DOI: 10.1007/s00281-018-0699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
Abstract
Post-transplant immunosuppression has reduced the incidence of T cell-mediated acute rejection, yet long-term cardiac graft survival rates remain a challenge. An important determinant of chronic solid organ allograft complication is accelerated vascular disease of the transplanted graft. In the case of cardiac allograft vasculopathy (CAV), the precise cellular etiology remains inadequately understood; however, histologic evidence hints at the accumulation and activation of innate phagocytes as a causal contributing factor. This includes monocytes, macrophages, and immature dendritic cell subsets. In addition to crosstalk with adaptive T and B immune cells, myeloid phagocytes secrete paracrine signals that directly activate fibroblasts and vascular smooth muscle cells, both of which contribute to fibrous intimal thickening. Though maladaptive phagocyte functions may promote CAV, directed modulation of myeloid cell function, at the molecular level, holds promise for tolerance and prolonged cardiac graft function.
Collapse
Affiliation(s)
- Kristofor Glinton
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA.,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Matthew DeBerge
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA.,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Xin-Yi Yeap
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA.,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Jenny Zhang
- Department of Surgery, The Feinberg School of Medicine, Northwestern University, 251 East Huron St, Chicago, IL, 60611, USA
| | - Joseph Forbess
- Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Xunrong Luo
- Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA.,Department of Surgery, The Feinberg School of Medicine, Northwestern University, 251 East Huron St, Chicago, IL, 60611, USA.,Department of Medicine, The Feinberg School of Medicine, Northwestern University, 251 East Huron St, Chicago, IL, 60611, USA
| | - Edward B Thorp
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA. .,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|