1
|
Ohm B, Giannou AD, Harriman D, Oh J, Jungraithmayr W, Zazara DE. Chimerism and immunological tolerance in solid organ transplantation. Semin Immunopathol 2025; 47:27. [PMID: 40387984 PMCID: PMC12089243 DOI: 10.1007/s00281-025-01052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
In solid organ transplantation, chimerism inevitably occurs via the coexistence of donor-derived cells from the graft and host cells throughout the recipient. However, long-term immunosuppressive treatment is needed to suppress host immune responses to the foreign organ graft. The deliberate induction of stable mixed bone marrow chimerism to achieve donor-specific immunological tolerance in solid organ graft recipients is an ambitious goal that may significantly contribute to the long-term survival of solid organ grafts and their recipients. While this strategy has been effectively established in laboratory animals and some promising clinical case series have been reported, widespread clinical application is still limited by the toxicity of the necessary conditioning regimens. On the other hand, the naturally occurring chimeric state resulting from the bidirectional transplacental cell trafficking during pregnancy, the so-called feto-maternal microchimerism, can also induce immune tolerance and thus influence the outcome of mother-to-child or child-to-mother organ transplantation. This review provides an overview of the field's historical development, clinical results, and underlying principles of (micro) chimerism-based tolerance.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- General Surgery, Liver, Pancreas and Intestinal Transplant Unit, Hospital Universitario-Fundación Favaloro, Buenos Aires, Argentina
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - David Harriman
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Jun Oh
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
- Division of Thoracic Surgery, Rostock University Medical Center, Rostock, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Dimitra E Zazara
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Xing K, Chang Y, Jia H, Song J. Advances in Subclinical and Clinical Trials and Immunosuppressive Therapies in Xenotransplantation. Xenotransplantation 2025; 32:e70053. [PMID: 40387233 DOI: 10.1111/xen.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Organ transplantation remains the foremost effective intervention for end-stage organ failure. Nevertheless, the scarcity of donors has resulted in prolonged waiting times for countless patients globally. The advent of xenografts presents a promising solution to the organ shortage crisis. Although the utilization of xenografts has a long history, it is only in recent years that breakthroughs in genetically modified pigs have rendered successful xenotransplantation a feasible option. In the past 4 years, numerous subclinical and clinical trials have involved xenotransplantation from genetically modified pigs to humans. However, the outcomes have been disappointing, necessitating a reassessment of basic and preclinical research to address the emerging challenges. Furthermore, immunosuppressive therapies remain essential in xenotransplantation. The range of immunosuppressive agents, encompassing traditional immunosuppressants and monoclonal antibodies such as anti-CD154/CD40 monoclonal antibodies, exhibits considerable diversity. However, the most effective drug combination for achieving optimal efficacy remains elusive. This review will offer a succinct overview of the results from recent clinical and subclinical xenotransplantation trials. Moreover, it will highlight recent advancements in immunosuppressive strategies and discuss potential future research directions in this field.
Collapse
Affiliation(s)
- Kai Xing
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jia
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
3
|
Stark H, Ho QY, Cross A, Alessandrini A, Bertaina A, Brennan D, Busque S, Demetris A, Devey L, Fruhwirth G, Fuchs E, Friend P, Geissler E, Guillonneau C, Hester J, Isaacs J, Jaeckel E, Kawai T, Lakkis F, Leventhal J, Levings M, Levitsky J, Lombardi G, Martinez-Llordella M, Mathew J, Moreau A, Reinke P, Riella LV, Sachs D, Fueyo AS, Schreeb K, Sykes M, Tang Q, Thomson A, Tree T, Trzonkowski P, Uchida K, Veale J, Weiner J, Wekerle T, Issa F. Meeting Report: The Sixth International Sam Strober Workshop on Clinical Immune Tolerance. Transplantation 2025; 109:569-579. [PMID: 39800883 DOI: 10.1097/tp.0000000000005311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Affiliation(s)
- Helen Stark
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Quan Yao Ho
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | - Amy Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Daniel Brennan
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephan Busque
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Palo Alto, CA
| | - Anthony Demetris
- Department of Pathology, Division of Transplantation, University of Pittsburgh, Pittsburgh, PA
| | - Luke Devey
- Quell Therapeutics, Translation and Innovation Hub, London, UK
| | - Gilbert Fruhwirth
- Imaging Therapies and Cancer Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | | | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ed Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elmar Jaeckel
- Ajmera Transplant Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Tatsuo Kawai
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Boston, MA
| | - Fadi Lakkis
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Leventhal
- Comprehensive Transplant Center at Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Megan Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, UK
| | | | - James Mathew
- Departments of Surgery and Microbiology-Immunology, Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - Aurélie Moreau
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Petra Reinke
- Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David Sachs
- Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, MA
- Medical School, Harvard University, Boston, MA
- Columbia Center of Translational Immunology, Columbia University Medical Center, New York, NY
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Departments of Medicine, Surgery, and Microbiology and Immunology, Columbia University, New York, NY
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, University of California, San Francisco, CA
| | - Angus Thomson
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Piotr Trzonkowski
- Medical University of Gdansk, Department of Medical Immunology, Gdansk, Poland
| | - Koichiro Uchida
- Juntendo University Center for Immunotherapy and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeffrey Veale
- Department of Urology, University of California, Los Angeles, CA
| | - Josh Weiner
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Fadi Issa
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Guo Y, Zhu M, Yu Z, Li Q, Chen Y, Ci L, Sun R, Shen R. Generation and characterization of a tamoxifen-inducible lineage tracing tool Cd2-P2A-CreERT2 knock-in mice. Front Immunol 2025; 16:1482070. [PMID: 40129982 PMCID: PMC11931051 DOI: 10.3389/fimmu.2025.1482070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction The new targeted gene editing technologies, such as the CRISPR/Cas system, enable researchers to insert or delete genes at targeted loci efficiently. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Methods Using the CRISPR/Cas9 system, we inserted the CreERT2 transgene expression cassette into the Cd2 gene locus to generate conditional Cre-driver line Cd2-CreERT2 knock-in mice, which drove the expression of CreERT2 by the endogenous Cd2 promoter. By mating the Cd2-CreERT2 strain with a Rosa26-LSL-tdTomato reporter mouse strain which contains a tdTomato expression fragment blocked with a loxP-flanked STOP cassette (LSL) driven by a CAG promoter, a Cd2-CreERT2;Rosa26-LSL-tdTomato reporter strain was obtained to evaluate the expression pattern of CD2 in different cell types. Results After treatment with tamoxifen, the Cd2-CreERT2 knock-in mice were induced to perform efficient recombination at the loxP site following CreERT2 activation and cause the expression of tdTomato fluorescence. The tdTomato and CD2 were expressed in the T cells of peripheral blood, spleen and mesenteric lymph nodes, whereas detected in a low proportion in the B cells. While about 20% of cells labeled with tamoxifen-induced tdTomato were CD2+ monocytes in peripheral blood, 10% of dendritic cells were tdTomato+/CD2+ cells. Tamoxifen-independent expression of tdTomato occurred in approximately 3% of CD2+ macrophages, but in negligible (~0.5%) in CD2+ granulocytes. Discussion This work supplied a new transgenic mouse as a valuable tool for lineage tracing in CD2-expressing cells, for conditional mutant studies of immune modulatory effects in a time-dependent manner, and analysis of the potential therapeutic effect of CD2-targeting biologics.
Collapse
Affiliation(s)
- Yang Guo
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Mengyan Zhu
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Zhilan Yu
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Qing Li
- Shanghai Engineering Research Center for Model Organizations, Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Yanjuan Chen
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organizations, Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organizations, Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruling Shen
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| |
Collapse
|
5
|
Dash UC, Nayak V, Navani HS, Samal RR, Agrawal P, Singh AK, Majhi S, Mogare DG, Duttaroy AK, Jena AB. Understanding the molecular bridges between the drugs and immune cell. Pharmacol Ther 2025; 267:108805. [PMID: 39908660 DOI: 10.1016/j.pharmthera.2025.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
The interactions of drugs with the host's immune cells determine the drug's efficacy and adverse effects in patients. Nonsteroidal Anti-Inflammatory Drugs (NSAID), such as corticosteroids, NSAIDs, and immunosuppressants, affect the immune cells and alter the immune response. Molecularly, drugs can interact with immune cells via cell surface receptors, changing the antigen presentation by modifying the co-stimulatory molecules and interacting with the signaling pathways of T cells, B cells, Natural killer (NK) cells, mast cells, basophils, and macrophages. Immunotoxicity, resulting from drug-induced changes in redox status, generation of Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS), and alterations in antioxidant enzymes within immune cells, leads to immunodeficiency. This, in turn, causes allergic reactions, autoimmune diseases, and cytokine release syndrome (CRS). The treatment options should include the evaluation of immune status and utilization of the concept of pharmacogenomics to minimize the chances of immunotoxicity. Many strategies in redox, like targeting the redox pathway or using redox-active agents, are available for the modulation of the immune system and developing drugs. Case studies highlight significant drug-immune cell interactions and patient outcomes, underscoring the importance of understanding these complexities. The future direction focuses on the drugs to deliver antiviral therapy, new approaches to immunomodulation, and modern technologies for increasing antidote effects with reduced toxicity. In conclusion, in-depth knowledge of the interaction between drugs and immune cells is critical to protect the patient from the adverse effects of the drug and improve therapeutic outcomes of the treatment process. This review focuses on the multifaceted interactions of drugs and their consequences at the cellular levels of immune cells.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Vinayak Nayak
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Hiten Shanker Navani
- Biological Materials Laboratory, CSIR- Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Palak Agrawal
- Unit de Microbiologie Structurale, Institut Pasteur, Paris, France
| | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Devraj Ganpat Mogare
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| |
Collapse
|
6
|
Tönshoff B, Patry C, Fichtner A, Höcker B, Böhmig GA. New Immunosuppressants in Pediatric Kidney Transplantation: What's in the Pipeline for Kids? Pediatr Transplant 2025; 29:e70008. [PMID: 39711054 DOI: 10.1111/petr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
The 1- and 5-year patient and graft survival rates of pediatric kidney transplant recipients have improved considerably in recent years. Regardless of early success, kidney transplantation is challenged by suboptimal long-term allograft and patient survival. Many kidney transplants are lost due to immune (rejection) and nonimmune allograft injuries, and patient survival is limited from cardiovascular disease, infection, and malignancy. Many of these co-morbidities are due to side effects of the currently available immunosuppressive drugs, especially calcineurin inhibitors and glucocorticoids, which are associated with long-term toxicity. Hence, there is an urgent need to develop new, more specific and less toxic immunosuppressive drugs. Unfortunately, there have also been no new drug approvals for adult kidney transplant recipients since belatacept in 2012, leaving the immunosuppressive drug armamentarium unchanged for more than 20 years. As a consequence of the lack of innovation in adult kidney transplant recipients, the pipeline of novel immunosuppressive agents for pediatric solid organ transplant recipients is also limited. The most promising agent in the near future, at least for adolescent patients, appears to be belatacept, despite its many limitations. In this review article, we report on three areas that appear to be the most relevant topics at this time: (i) extended-release tacrolimus, (ii) costimulation blockade with belatacept, and (iii) treatment of antibody-mediated rejection. Improved synergies between the pharmaceutical industry and the transplant community are needed to achieve the ultimate goal of improving long-term outcomes in pediatric kidney transplantation.
Collapse
Affiliation(s)
- Burkhard Tönshoff
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christian Patry
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alexander Fichtner
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Britta Höcker
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Georg A Böhmig
- Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Tonsho M, O JM, Ahrens K, Robinson K, Sommer W, Boskovic S, Patel PM, Becerra DC, Huh KH, Miller CL, Dehnadi A, Hanekamp I, Rosales IA, Colvin RB, Sachs DH, Alessandrini A, Cosimi A, Fairchild RL, Cravedi P, Bin S, Heeger PS, Allan JS, Kawai T, Benichou G, Madsen JC. Cardiac allograft tolerance can be achieved in nonhuman primates by donor bone marrow and kidney cotransplantation. Sci Transl Med 2025; 17:eads0255. [PMID: 39841809 DOI: 10.1126/scitranslmed.ads0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Long-term, immunosuppression-free allograft survival has been induced in human and nonhuman primate (NHP) kidney recipients after nonmyeloablative conditioning and donor bone marrow transplantation (DBMT), resulting in transient mixed hematopoietic chimerism. However, the same strategy has consistently failed in NHP heart transplant recipients. Here, we investigated whether long-term heart allograft survival could be achieved by cotransplanting kidneys from the same donor. Cynomolgus monkeys were transplanted with heart allografts alone or heart and kidney allografts from the same major histocompatibility complex (MHC)-mismatched donors. All animals except one received DBMT, either at the same time or after a 2- to 4-month delay, plus short-term costimulation blockade and calcineurin inhibitor treatment. Long-term, immunosuppression-free heart allograft survival was consistently achieved in heart/kidney, but not heart-alone, recipients. This was not associated with greater donor/recipient histocompatibility or altered lymphoid cell reconstitution after conditioning. The maintenance of tolerance after heart/kidney transplantation was associated with the presence of forkhead box P3 (Foxp3+) regulatory T cell (Treg)-rich organized lymphoid structures in kidneys but not hearts. Substituting high-dose erythropoietin treatment for kidney transplantation was unsuccessful, suggesting that it was not the sole mechanism of action. RNA sequencing analysis revealed that gene expression in hearts from tolerant recipients closely resembled that in hearts from chronically immunosuppressed recipients but differed markedly from rejecting allografts and naïve hearts. A version of this protocol may be able to induce tolerance in patients with end-stage heart and kidney failure who require combined heart and kidney transplantation.
Collapse
Affiliation(s)
- Makoto Tonsho
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jane M O
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kaitlan Ahrens
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kortney Robinson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wiebke Sommer
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Svjetlan Boskovic
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Parth M Patel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David C Becerra
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kyu Ha Huh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cynthia L Miller
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Abbas Dehnadi
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabel Hanekamp
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David H Sachs
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - A Cosimi
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sofia Bin
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nephrology, Dialysis and Kidney Transplant Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS)-Azienda Ospedaliero, University of Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences (DIMEC)-Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - James S Allan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tatsuo Kawai
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
8
|
Pratap Kashyap M, Mishra B, Sinha R, Jin L, Gou Y, Kumar N, Goliwas KF, Haque S, Deshane J, Berglund E, Berglund D, Elewski BE, Elmets CA, Athar M, Mukhtar MS, Raman C. CD2 expressing innate lymphoid and T cells are critical effectors of immunopathogenesis in hidradenitis suppurativa. Proc Natl Acad Sci U S A 2024; 121:e2409274121. [PMID: 39560648 PMCID: PMC11621750 DOI: 10.1073/pnas.2409274121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/26/2024] [Indexed: 11/20/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disease with a poorly understood immunopathogenesis. Here, we report that HS lesional skin is characterized by the expansion of innate lymphocytes and T cells expressing CD2, an essential activation receptor and adhesion molecule. Lymphocytes expressing elevated CD2 predominated with unique spatial distribution throughout the epidermis and hypodermis in the HS lesion. CD2+ cells were mainly innate lymphocytes expressing the NK cell marker, CD56, and CD4+ T cells. Importantly, these CD2+ cells interacted with CD58 (LFA3) expressing epidermal keratinocytes and fibroblasts in the hypodermis. Granzyme Abright NKT cells (CD2+CD3+CD56bright) clustered with α-SMA expressing fibroblasts juxtaposed to epithelialized tunnels and fibrotic regions of the hypodermis. Whereas NK cells (CD2+CD56dim) were perforin+, granzymes A+ and B+, and enriched adjacent to hyperplastic follicular epidermis and tunnels of HS showing presence of apoptotic cells. The cytokines IL-12, IL-15, and IL-18, which enhance NK cell maturation and function were significantly elevated in HS. Ex vivo HS skin explant cultures treated with CD2:CD58 interaction-blocking anti-CD2 monoclonal antibody attenuated secretion of inflammatory cytokines/chemokines and suppressed inflammatory gene signature. Additionally, CD2:CD58 blockade altered miRNAs involved in NK/NKT differentiation and/or function. In summary, we show that a cellular network of heterogenous NKT and NK cell populations drives inflammation and is critical in the pathobiology of HS, including tunnel formation and fibrosis. Finally, CD2 blockade is a viable immunotherapeutic approach for the effective management of HS.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Bharat Mishra
- Department of Biology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Rajesh Sinha
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Lin Jin
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - YiFei Gou
- Department of Biology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Nilesh Kumar
- Department of Biology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Kayla F. Goliwas
- Department of Medicine (Division of Pulmonary, Allergy and Critical Care Medicine) at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Safiya Haque
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jessy Deshane
- Department of Medicine (Division of Pulmonary, Allergy and Critical Care Medicine) at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Erik Berglund
- Department of Research and Development, ITB-MED AB, Stockholm113 68, Sweden
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, and Division of Transplantation Surgery, Karolinska Institute, Stockholm171 76, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm171 77, Sweden
| | - David Berglund
- Department of Research and Development, ITB-MED AB, Stockholm113 68, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala751 85, Sweden
| | - Boni E. Elewski
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Craig A. Elmets
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - Mohammad Athar
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| | - M. Shahid Mukhtar
- Department of Biology at the University of Alabama at Birmingham, Birmingham, AL35294
- Department of Genetics & Biochemistry at Clemson University, Clemson, SC29634
| | - Chander Raman
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology at the University of Alabama at Birmingham, Birmingham, AL35294
| |
Collapse
|
9
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024; 56:2113-2126. [PMID: 39349829 PMCID: PMC11541569 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Jang C, Hsu J. Allogeneic Hematopoietic Stem Cell Transplantation After Solid Organ Transplantation in Patients With Hematologic Malignancies Managed With Post-Transplant Cyclophosphamide-Based Graft-Versus-Host Disease Prophylaxis. J Hematol 2024; 13:250-258. [PMID: 39493605 PMCID: PMC11526586 DOI: 10.14740/jh1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Patients who receive solid organ transplants often require lifelong immunosuppression, which increases their risk for hematologic disorders. Allogeneic hematopoietic stem cell transplantation (HSCT) offers a potential curative treatment option for these patients. However, there is still a lack of understanding and guidance on graft-vs-host disease (GVHD) immunosuppression regimens, potential complications, and outcomes in patients with solid organ transplants who undergo HSCT. The rate of solid organ transplantation continues to increase annually, making this a common clinical scenario that hematologists encounter. In this case series, we present three patients who underwent liver, kidney and cardiac transplants and each developed hematological malignancies requiring allogeneic stem cell transplant. This is the first case report of two patients who received post-transplant cyclophosphamide with mycophenolate mofetil and tacrolimus GVHD prophylaxis. We also review recent advances in GVHD prophylaxis in allogeneic HSCT and solid organ transplantation including immune tolerance and immunosuppression-free protocols. Our case series support the use of post-transplant cyclophosphamide with mycophenolate mofetil and tacrolimus as post-transplant GVHD prophylaxis, which does not appear to compromise solid organ graft function. Our case series also provides evidence that allogeneic HSCT is a feasible and potentially life-saving treatment option in patients who develop hematologic malignancies after solid organ transplantation.
Collapse
Affiliation(s)
- Charley Jang
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Jingmei Hsu
- Department of Hematology and Oncology, NYU Langone Health Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Feng S, Roll GR, Rouhani FJ, Sanchez Fueyo A. The future of liver transplantation. Hepatology 2024; 80:674-697. [PMID: 38537154 DOI: 10.1097/hep.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/02/2024] [Indexed: 06/15/2024]
Abstract
Over the last 50 years, liver transplantation has evolved into a procedure routinely performed in many countries worldwide. Those able to access this therapy frequently experience a miraculous risk-benefit ratio, particularly if they face the imminently life-threatening disease. Over the decades, the success of liver transplantation, with dramatic improvements in early posttransplant survival, has aggressively driven demand. However, despite the emergence of living donors to augment deceased donors as a source of organs, supply has lagged far behind demand. As a result, rationing has been an unfortunate focus in recent decades. Recent shifts in the epidemiology of liver disease combined with transformative innovations in liver preservation suggest that the underlying premise of organ shortage may erode in the foreseeable future. The focus will sharpen on improving equitable access while mitigating constraints related to workforce training, infrastructure for organ recovery and rehabilitation, and their associated costs. Research efforts in liver preservation will undoubtedly blossom with the aim of optimizing both the timing and conditions of transplantation. Coupled with advances in genetic engineering, regenerative biology, and cellular therapies, the portfolio of innovation, both broad and deep, offers the promise that, in the future, liver transplantation will not only be broadly available to those in need but also represent a highly durable life-saving therapy.
Collapse
Affiliation(s)
- Sandy Feng
- Department of Surgery, Division of Transplant Surgery, University of California, San Francisco, California, USA
| | - Garrett R Roll
- Department of Surgery, Division of Transplant Surgery, University of California, San Francisco, California, USA
| | - Foad J Rouhani
- Tissue Regeneration and Clonal Evolution Laboratory, The Francis Crick Institute, London, UK
- Institute of Liver Studies, King's College London, King's College Hospital, NHS Foundation Trust, London, UK
| | - Alberto Sanchez Fueyo
- Institute of Liver Studies, King's College London, King's College Hospital, NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Negi S, Rutman AK, Saw CL, Paraskevas S, Tchervenkov J. Pretransplant, Th17 dominant alloreactivity in highly sensitized kidney transplant candidates. FRONTIERS IN TRANSPLANTATION 2024; 3:1336563. [PMID: 38993777 PMCID: PMC11235243 DOI: 10.3389/frtra.2024.1336563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 07/13/2024]
Abstract
Introduction Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.
Collapse
Affiliation(s)
- Sarita Negi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | | | - Chee Loong Saw
- HLA Laboratory, Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Steven Paraskevas
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Jean Tchervenkov
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
13
|
Burke GW, Mitrofanova A, Fontanella AM, Vendrame F, Ciancio G, Vianna RM, Roth D, Ruiz P, Abitbol CL, Chandar J, Merscher S, Pugliese A, Fornoni A. Transplantation: platform to study recurrence of disease. Front Immunol 2024; 15:1354101. [PMID: 38495894 PMCID: PMC10940352 DOI: 10.3389/fimmu.2024.1354101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Beyond the direct benefit that a transplanted organ provides to an individual recipient, the study of the transplant process has the potential to create a better understanding of the pathogenesis, etiology, progression and possible therapy for recurrence of disease after transplantation while at the same time providing insight into the original disease. Specific examples of this include: 1) recurrence of focal segmental glomerulosclerosis (FSGS) after kidney transplantation, 2) recurrent autoimmunity after pancreas transplantation, and 3) recurrence of disease after orthotopic liver transplantation (OLT) for cirrhosis related to progressive steatosis secondary to jejuno-ileal bypass (JIB) surgery. Our team has been studying these phenomena and their immunologic underpinnings, and we suggest that expanding the concept to other pathologic processes and/or transplanted organs that harbor the risk for recurrent disease may provide novel insight into the pathogenesis of a host of other disease processes that lead to organ failure.
Collapse
Affiliation(s)
- George William Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Francesco Vendrame
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaetano Ciancio
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rodrigo M. Vianna
- Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Phillip Ruiz
- Transplant Pathology, Immunology and Histocompatibility Laboratory University of Miami Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn L. Abitbol
- Pediatric Nephrology & Hypertension, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Pediatric Kidney Transplant, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami - Miller School of Medicine, Miami, FL, United States
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami - Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
14
|
Kitchens WH, Larsen CP, Badell IR. Costimulatory Blockade and Solid Organ Transplantation: The Past, Present, and Future. Kidney Int Rep 2023; 8:2529-2545. [PMID: 38106575 PMCID: PMC10719580 DOI: 10.1016/j.ekir.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
Belatacept is the first costimulatory blockade agent clinically approved for transplant immunosuppression. Although more than 10 years of study have demonstrated that belatacept offers superior long-term renal allograft and patient survival compared to conventional calcineurin inhibitor (CNI)-based immunosuppression regimens, the clinical adoption of belatacept has continued to lag because of concerns of an early risk of acute cellular rejection (ACR) and various logistical barriers to its administration. In this review, the history of the clinical development of belatacept is examined, along with the findings of the seminal BENEFIT and BENEFIT-EXT trials culminating in the clinical approval of belatacept. Recent efforts to incorporate belatacept into novel CNI-free immunosuppression regimens are reviewed, as well as the experience of the Emory Transplant Center in using a tapered course of low-dose tacrolimus in belatacept-treated renal allograft patients to garner the long-term outcome benefits of belatacept without the short-term increased risks of ACR. Potential avenues to increase the clinical adoption of belatacept in the future are explored, including surmounting the logistical barriers of belatacept administration through subcutaneous administration or more infrequent belatacept dosing. In addition, belatacept conversion strategies and potential expanded clinical indications of belatacept are discussed for pediatric transplant recipients, extrarenal transplant recipients, treatment of antibody-mediated rejection (AMR), and in patients with failed renal allografts. Finally, we discuss the novel immunosuppressive drugs currently in the development pipeline that may aid in the expansion of costimulation blockade utilization.
Collapse
Affiliation(s)
- William H. Kitchens
- Division of Transplantation, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christian P. Larsen
- Division of Transplantation, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - I. Raul Badell
- Division of Transplantation, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
16
|
Salvaris EJ, Fisicaro N, McIlfatrick S, Thomas A, Fuller E, Lew AM, Nottle MB, Hawthorne WJ, Cowan PJ. Characterisation of transgenic pigs expressing a human T cell-depleting anti-CD2 monoclonal antibody. Xenotransplantation 2023; 31:e12836. [PMID: 37961013 PMCID: PMC10909556 DOI: 10.1111/xen.12836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Pig islet xenotransplantation is a potential treatment for type 1 diabetes. We have shown that maintenance immunosuppression is required to protect genetically modified (GM) porcine islet xenografts from T cell-mediated rejection in baboons. Local expression of a depleting anti-CD2 monoclonal antibody (mAb) by the xenograft may provide an alternative solution. We have previously reported the generation of GGTA1 knock-in transgenic pigs expressing the chimeric anti-CD2 mAb diliximab under an MHC class I promoter (MHCIP). In this study, we generated GGTA1 knock-in pigs in which MHCIP was replaced by the β-cell-specific porcine insulin promoter (PIP), and compared the pattern of diliximab expression in the two lines. METHODS A PIP-diliximab knock-in construct was prepared and validated by transfection of NIT-1 mouse insulinoma cells. The construct was knocked into GGTA1 in wild type (WT) porcine fetal fibroblasts using CRISPR, and knock-in cells were used to generate pigs by somatic cell nuclear transfer (SCNT). Expression of the transgene in MHCIP-diliximab and PIP-diliximab knock-in pigs was characterised at the mRNA and protein levels using RT-qPCR, flow cytometry, ELISA and immunohistochemistry. Islets from MHCIP-diliximab and control GGTA1 KO neonatal pigs were transplanted under the kidney capsule of streptozotocin-diabetic SCID mice. RESULTS NIT-1 cells stably transfected with the PIP-diliximab knock-in construct secreted diliximab into the culture supernatant, confirming correct expression and processing of the mAb in β cells. PIP-diliximab knock-in pigs showed a precise integration of the transgene within GGTA1. Diliximab mRNA was detected in all tissues tested (spleen, kidney, heart, liver, lung, pancreas) in MHCIP-diliximab pigs, but was not detectable in PIP-diliximab pigs. Likewise, diliximab was present in the serum of MHCIP-diliximab pigs, at a mean concentration of 1.8 μg/mL, but was not detected in PIP-diliximab pig serum. An immunohistochemical survey revealed staining for diliximab in all organs of MHCIP-diliximab pigs but not of PIP-diliximab pigs. Whole genome sequencing (WGS) of a PIP-diliximab pig identified a missense mutation in the coding region for the dixilimab light chain. This mutation was also found to be present in the fibroblast knock-in clone used to generate the PIP-diliximab pigs. Islet xenografts from neonatal MHCIP-diliximab pigs restored normoglycemia in diabetic immunodeficient mice, indicating no overt effect of the transgene on islet function, and demonstrated expression of diliximab in situ. CONCLUSION Diliximab was widely expressed in MHCIP-diliximab pigs, including in islets, consistent with the endogenous expression pattern of MHC class I. Further investigation is required to determine whether the level of expression in islets from the MHCIP-diliximab pigs is sufficient to prevent T cell-mediated islet xenograft rejection. The unexpected absence of diliximab expression in the islets of PIP-diliximab pigs was probably due to a mutation in the transgene arising during the generation of the knock-in cells used for SCNT.
Collapse
Affiliation(s)
- Evelyn J. Salvaris
- Immunology Research CentreSt. Vincent's Hospital MelbourneFitzroyVictoriaAustralia
| | - Nella Fisicaro
- Immunology Research CentreSt. Vincent's Hospital MelbourneFitzroyVictoriaAustralia
| | - Stephen McIlfatrick
- Robinson Research Institute and School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Adwin Thomas
- The Centre for Transplant & Renal ResearchWestmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| | - Erin Fuller
- The Centre for Transplant & Renal ResearchWestmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| | - Andrew M. Lew
- Walter and Eliza Hall InstituteDepartment of Medical Biology and Department of Microbiology & ImmunologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Mark B. Nottle
- Robinson Research Institute and School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Wayne J. Hawthorne
- The Centre for Transplant & Renal ResearchWestmead Institute for Medical ResearchWestmeadNew South WalesAustralia
- Department of SurgeryWestmead HospitalSchool of Medical SciencesUniversity of SydneyWestmeadNew South WalesAustralia
| | - Peter J. Cowan
- Immunology Research CentreSt. Vincent's Hospital MelbourneFitzroyVictoriaAustralia
- Department of MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
17
|
Cvetkovski F, Razavi R, Sellberg F, Berglund E, Berglund D. Siplizumab combination therapy with belatacept or abatacept broadly inhibits human T cell alloreactivity in vitro. Am J Transplant 2023; 23:1603-1611. [PMID: 37270108 DOI: 10.1016/j.ajt.2023.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Combined antigen-specific T cell receptor stimulation and costimulation are needed for complete T cell activation. Belatacept and abatacept are nondepleting fusion proteins blocking CD28/B7 costimulation, whereas siplizumab is a depleting antiCD2 immunoglobulin G1 monoclonal antibody targeting CD2/CD58 costimulation. Herein, the effect of siplizumab combination therapy with abatacept or belatacept on T cell alloreactivity in mixed lymphocyte reactions was investigated. In contrast to monotherapy, the combination of siplizumab with belatacept or abatacept induced near-complete suppression of T cell proliferation and increased the potency of siplizumab-mediated T cell inhibition. Furthermore, dual targeting of CD2 and CD28 costimulation enhanced the selective depletion of memory T cells compared with monotherapy. Although siplizumab monotherapy leads to significant regulatory T cell enrichment, high doses of cytotoxic T-lymphocyte-associated antigen 4 and a human IgG1 Fc fragment in the combination therapy reduced this effect. These results support the clinical evaluation of dual costimulation blockade, combining siplizumab with abatacept or belatacept, for the prophylaxis of organ transplant rejection and improvement of long-term outcomes following transplantation. Ongoing investigative research will elucidate when other forms of siplizumab-based dual costimulatory blockade may be able to induce similarly strong inhibition of T cell activation although still allowing for enrichment of regulatory T cells.
Collapse
Affiliation(s)
- Filip Cvetkovski
- Research and Development, ITB-MED AB, Stockholm, Sweden; Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ronia Razavi
- Research and Development, ITB-MED AB, Stockholm, Sweden
| | - Felix Sellberg
- Research and Development, ITB-MED AB, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Sweden
| | - Erik Berglund
- Research and Development, ITB-MED AB, Stockholm, Sweden; Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - David Berglund
- Research and Development, ITB-MED AB, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Sweden.
| |
Collapse
|
18
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Hawthorne WJ, Salvaris EJ, Chew YV, Burns H, Hawkes J, Barlow H, Hu M, Lew AM, Nottle MB, O’Connell PJ, Cowan PJ. Xenotransplantation of Genetically Modified Neonatal Pig Islets Cures Diabetes in Baboons. Front Immunol 2022; 13:898948. [PMID: 35784286 PMCID: PMC9243461 DOI: 10.3389/fimmu.2022.898948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Xenotransplantation using porcine donors is rapidly approaching clinical applicability as an alternative therapy for treatment of many end-stage diseases including type 1 diabetes. Porcine neonatal islet cell clusters (NICC) have normalised blood sugar levels for relatively short periods in the preclinical diabetic rhesus model but have met with limited success in the stringent baboon model. Here we report that NICC from genetically modified (GM) pigs deleted for αGal and expressing the human complement regulators CD55 and CD59 can cure diabetes long-term in immunosuppressed baboons, with maximum graft survival exceeding 22 months. Five diabetic baboons were transplanted intraportally with 9,673 – 56,913 islet equivalents (IEQ) per kg recipient weight. Immunosuppression consisted of T cell depletion with an anti-CD2 mAb, tacrolimus for the first 4 months, and maintenance with belatacept and anti-CD154; no anti-inflammatory treatment or cytomegalovirus (CMV) prophylaxis/treatment was given. This protocol was well tolerated, with all recipients maintaining or gaining weight. Recipients became insulin-independent at a mean of 87 ± 43 days post-transplant and remained insulin-independent for 397 ± 174 days. Maximum graft survival was 675 days. Liver biopsies showed functional islets staining for all islet endocrine components, with no evidence of the inflammatory blood-mediated inflammatory reaction (IBMIR) and minimal leukocytic infiltration. The costimulation blockade-based immunosuppressive protocol prevented an anti-pig antibody response in all recipients. In conclusion, we demonstrate that genetic modification of the donor pig enables attenuation of early islet xenograft injury, and in conjunction with judicious immunosuppression provides excellent long-term function and graft survival in the diabetic baboon model.
Collapse
Affiliation(s)
- Wayne J. Hawthorne
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Department of Surgery, Westmead Hospital, School of Medical Sciences, University of Sydney, Westmead, NSW, Australia
- *Correspondence: Wayne J. Hawthorne,
| | - Evelyn J. Salvaris
- Immunology Research Centre, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Yi Vee Chew
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Heather Burns
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Joanne Hawkes
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Helen Barlow
- Immunology Research Centre, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Min Hu
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew M. Lew
- Division of Immunology, Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - Mark B. Nottle
- Department of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, Australia
| | - Philip J. O’Connell
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Peter J. Cowan
- Immunology Research Centre, St. Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Lowsky R, Strober S. Establishment of Chimerism and Organ Transplant Tolerance in Laboratory Animals: Safety and Efficacy of Adaptation to Humans. Front Immunol 2022; 13:805177. [PMID: 35222384 PMCID: PMC8866443 DOI: 10.3389/fimmu.2022.805177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The definition of immune tolerance to allogeneic tissue and organ transplants in laboratory animals and humans continues to be the acceptance of the donor graft, rejection of third-party grafts, and specific unresponsiveness of recipient immune cells to the donor alloantigens in the absence of immunosuppressive treatments. Actively acquired tolerance was achieved in mice more than 60 years ago by the establishment of mixed chimerism in neonatal mice. Once established, mixed chimerism was self-perpetuating and allowed for acceptance of tissue transplants in adults. Successful establishment of tolerance in humans has now been reported in several clinical trials based on the development of chimerism after combined transplantation of hematopoietic cells and an organ from the same donor. This review examines the mechanisms of organ graft acceptance after establishment of mixed chimerism (allo-tolerance) or complete chimerism (self-tolerance), and compares the development of graft versus host disease (GVHD) and graft versus tumor (GVT) activity in complete and mixed chimerism. GVHD, GVT activity, and complete chimerism are also discussed in the context of bone marrow transplantation to treat hematologic malignancies. The roles of transient versus persistent mixed chimerism in the induction and maintenance of tolerance and organ graft acceptance in animal models and clinical studies are compared. Key differences in the stability of mixed chimeras and tolerance induction in MHC matched and mismatched rodents, large laboratory animals, and humans are examined to provide insights into the safety and efficacy of translation of results of animal models to clinical trials.
Collapse
Affiliation(s)
- Robert Lowsky
- Division of Blood and Marrow Transplantation and Cancer Cellular Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Samuel Strober
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
21
|
Autologous Stem Cell Transplant to Treat Recurrent Primary Sclerosing Cholangitis: Tolerance, But at What Price? Transplantation 2022; 106:458-459. [PMID: 34033607 DOI: 10.1097/tp.0000000000003830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Podestà MA, Sykes M. Chimerism-Based Tolerance to Kidney Allografts in Humans: Novel Insights and Future Perspectives. Front Immunol 2022; 12:791725. [PMID: 35069574 PMCID: PMC8767096 DOI: 10.3389/fimmu.2021.791725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic rejection and immunosuppression-related toxicity severely affect long-term outcomes of kidney transplantation. The induction of transplantation tolerance – the lack of destructive immune responses to a transplanted organ in the absence of immunosuppression – could potentially overcome these limitations. Immune tolerance to kidney allografts from living donors has been successfully achieved in humans through clinical protocols based on chimerism induction with hematopoietic cell transplantation after non-myeloablative conditioning. Notably, two of these protocols have led to immune tolerance in a significant fraction of HLA-mismatched donor-recipient combinations, which represent the large majority of cases in clinical practice. Studies in mice and large animals have been critical in dissecting tolerance mechanisms and in selecting the most promising approaches for human translation. However, there are several key differences in tolerance induction between these models and humans, including the rate of success and stability of donor chimerism, as well as the relative contribution of different mechanisms in inducing donor-specific unresponsiveness. Kidney allograft tolerance achieved through durable full-donor chimerism may be due to central deletion of graft-reactive donor T cells, even though mechanistic data from patient series are lacking. On the other hand, immune tolerance attained with transient mixed chimerism-based protocols initially relies on Treg-mediated suppression, followed by peripheral deletion of donor-reactive recipient T-cell clones under antigenic pressure from the graft. These conclusions were supported by data deriving from novel high-throughput T-cell receptor sequencing approaches that allowed tracking of alloreactive repertoires over time. In this review, we summarize the most important mechanistic studies on tolerance induction with combined kidney-bone marrow transplantation in humans, discussing open issues that still need to be addressed and focusing on techniques developed in recent years to efficiently monitor the alloresponse in tolerance trials. These cutting-edge methods will be instrumental for the development of immune tolerance protocols with improved efficacy and to identify patients amenable to safe immunosuppression withdrawal.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milano, Italy
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Surgery, Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
23
|
Heterologous Immunity of Virus-Specific T Cells Leading to Alloreactivity: Possible Implications for Solid Organ Transplantation. Viruses 2021; 13:v13122359. [PMID: 34960628 PMCID: PMC8706157 DOI: 10.3390/v13122359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure of the adaptive immune system to a pathogen can result in the activation and expansion of T cells capable of recognizing not only the specific antigen but also different unrelated antigens, a process which is commonly referred to as heterologous immunity. While such cross-reactivity is favourable in amplifying protective immune responses to pathogens, induction of T cell-mediated heterologous immune responses to allo-antigens in the setting of solid organ transplantation can potentially lead to allograft rejection. In this review, we provide an overview of murine and human studies investigating the incidence and functional properties of virus-specific memory T cells cross-reacting with allo-antigens and discuss their potential relevance in the context of solid organ transplantation.
Collapse
|
24
|
Fernandez Lahore G, Förster M, Johannesson M, Sabatier P, Lönnblom E, Aoun M, He Y, Nandakumar KS, Zubarev RA, Holmdahl R. Polymorphic estrogen receptor binding site causes Cd2-dependent sex bias in the susceptibility to autoimmune diseases. Nat Commun 2021; 12:5565. [PMID: 34552089 PMCID: PMC8458462 DOI: 10.1038/s41467-021-25828-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Complex autoimmune diseases are sexually dimorphic. An interplay between predisposing genetics and sex-related factors probably controls the sex discrepancy in the immune response, but the underlying mechanisms are unclear. Here we positionally identify a polymorphic estrogen receptor binding site that regulates Cd2 expression, leading to female-specific differences in T cell-dependent mouse models of autoimmunity. Female mice with reduced Cd2 expression have impaired autoreactive T cell responses. T cells lacking Cd2 costimulation upregulate inhibitory Lag-3. These findings help explain sexual dimorphism in human autoimmunity, as we find that CD2 polymorphisms are associated with rheumatoid arthritis and 17-β-estradiol-regulation of CD2 is conserved in human T cells. Hormonal regulation of CD2 might have implications for CD2-targeted therapy, as anti-Cd2 treatment more potently affects T cells in female mice. These results demonstrate the relevance of sex-genotype interactions, providing strong evidence for CD2 as a sex-sensitive predisposing factor in autoimmunity.
Collapse
Affiliation(s)
- Gonzalo Fernandez Lahore
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Michael Förster
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Martina Johannesson
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Erik Lönnblom
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Mike Aoun
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Yibo He
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Kutty Selva Nandakumar
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- SMU-KI United Medical Inflammation Centre, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Rikard Holmdahl
- Division Medical Inflammation Research, Dept. Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden.
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), 710004, Xi'an, China.
| |
Collapse
|
25
|
Koritzinsky EH, Tsuda H, Fairchild RL. Endogenous memory T cells with donor-reactivity: early post-transplant mediators of acute graft injury in unsensitized recipients. Transpl Int 2021; 34:1360-1373. [PMID: 33963616 PMCID: PMC8389524 DOI: 10.1111/tri.13900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
The pretransplant presence of endogenous donor-reactive memory T cells is an established risk factor for acute rejection and poorer transplant outcomes. A major source of these memory T cells in unsensitized recipients is heterologously generated memory T cells expressing reactivity to donor allogeneic MHC molecules. Multiple clinical studies have shown that the pretransplant presence of high numbers of circulating endogenous donor-reactive memory T cells correlates with higher incidence of acute rejection and decreased graft function during the first-year post-transplant. These findings have spurred investigation in preclinical models to better understand mechanisms underlying endogenous donor-reactive memory T-cell-mediated allograft injury in unsensitized graft recipients. These studies have led to the identification of unique mechanisms underlying the activation of these memory T cells within allografts at early times after transplant. In particular, optimal activation to mediate acute allograft injury is dependent on the intensity of ischaemia-reperfusion injury. Therapeutic strategies directed at the recruitment and activation of endogenous donor-reactive memory T cells are effective in attenuating acute injury in allografts experiencing increased ischaemia-reperfusion injury in preclinical models and should be translatable to clinical transplantation.
Collapse
Affiliation(s)
- Erik H. Koritzinsky
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Hidetoshi Tsuda
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
26
|
Ni X, Wang Q, Gu J, Lu L. Clinical and Basic Research Progress on Treg-Induced Immune Tolerance in Liver Transplantation. Front Immunol 2021; 12:535012. [PMID: 34093514 PMCID: PMC8173171 DOI: 10.3389/fimmu.2021.535012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Rejection after organ transplantation is a cause of graft failure. Effectively reducing rejection and inducing tolerance is a challenge in the field of transplantation immunology. The liver, as an immunologically privileged organ, has high rates of spontaneous and operational tolerance after transplantation, allowing it to maintain its normal function for long periods. Although modern immunosuppression regimens have serious toxicity and side effects, it is very risky to discontinue immunosuppression regimens blindly. A more effective treatment to induce immune tolerance is the most sought-after goal in transplant medicine. Tregs have been shown to play a pivotal role in the regulation of immune balance, and infusion of Tregs can also effectively prevent rejection and cure autoimmune diseases without significant side effects. Given the immune characteristics of the liver, the correct use of Tregs can more effectively induce the occurrence of operational tolerance for liver transplants than for other organ transplants. This review mainly summarizes the latest research advances regarding the characteristics of the hepatic immune microenvironment, operational tolerance, Treg generation in vitro, and the application of Tregs in liver transplantation. It is hoped that this review will provide a deeper understanding of Tregs as the most effective treatment to induce and maintain operational tolerance after liver transplantation.
Collapse
Affiliation(s)
- Xuhao Ni
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jian Gu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
27
|
Strategies for Liver Transplantation Tolerance. Int J Mol Sci 2021; 22:ijms22052253. [PMID: 33668238 PMCID: PMC7956766 DOI: 10.3390/ijms22052253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Liver transplant (LT) recipients require life-long immunosuppression (IS) therapy to preserve allograft function. The risks of chronic IS include an increased frequency of malignancy, infection, renal impairment, and other systemic toxicities. Despite advances in IS, long-term LT outcomes have not been improved over the past three decades. Standard-of-care (SoC) therapy can, in rare cases, lead to development of operational tolerance that permits safe withdrawal of maintenance IS. However, successful IS withdrawal cannot be reliably predicted and, in current prospective studies, is attempted several years after the transplant procedure, after considerable exposure to the cumulative burden of maintenance therapy. A recent pilot clinical trial in liver tolerance induction demonstrated that peri-transplant immunomodulation, using a regulatory T-cell (Treg) approach, can reduce donor-specific alloreactivity and allow early IS withdrawal. Herein we review protocols for active tolerance induction in liver transplantation, with a focus on identifying tolerogenic cell populations, as well as barriers to tolerance. In addition, we propose the use of novel IS agents to promote immunomodulatory mechanisms favoring tolerance. With numerous IS withdrawal trials underway, improved monitoring and use of novel immunomodulatory strategies will help provide the necessary knowledge to establish an active liver tolerance induction protocol for widespread use.
Collapse
|
28
|
Binder C, Sellberg F, Cvetkovski F, Berg S, Berglund E, Berglund D. Siplizumab Induces NK Cell Fratricide Through Antibody-Dependent Cell-Mediated Cytotoxicity. Front Immunol 2021; 12:599526. [PMID: 33643309 PMCID: PMC7904868 DOI: 10.3389/fimmu.2021.599526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
The glycoprotein CD2 is expressed on T and NK cells and contributes to cell-cell conjugation, agonistic signaling and actin cytoskeleton rearrangement. CD2 has previously been shown to have an important function in natural NK cell cytotoxicity but to be expendable in antibody-mediated cytotoxicity. Siplizumab is a monoclonal anti-CD2 IgG1 antibody that is currently undergoing clinical trials in the field of transplantation. This study investigated the effect of CD2 binding and Fc γ receptor binding by siplizumab (Fc-active) and Fc-silent anti-CD2 monoclonal antibodies in allogeneic mixed lymphocyte reaction and autologous lymphocyte culture. Further, induction of NK cell fratricide and inhibition of natural cytotoxicity as well as antibody-dependent cytotoxicity by these agents were assessed. Blockade of CD2 via monoclonal antibodies in the absence of Fc γ receptor binding inhibited NK cell activation in allogeneic mixed lymphocyte reaction. In contrast, siplizumab increased NK cell activation in both mixed lymphocyte reaction and autologous lymphocyte culture due to FcγRIIIA binding. However, experiments using purified NK cells did not show an inhibitory effect of CD2 blockade on natural cytotoxicity or antibody-dependent cytotoxicity. Lastly, it was shown that siplizumab induces NK cell fratricide. Concluding, siplizumab is a promising biopharmaceutical drug candidate for depletion of T and NK cells with minimal off-target effects.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
29
|
Binder C, Sellberg F, Cvetkovski F, Berglund E, Berglund D. Siplizumab, an Anti-CD2 Monoclonal Antibody, Induces a Unique Set of Immune Modulatory Effects Compared to Alemtuzumab and Rabbit Anti-Thymocyte Globulin In Vitro. Front Immunol 2020; 11:592553. [PMID: 33262770 PMCID: PMC7686512 DOI: 10.3389/fimmu.2020.592553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 01/09/2023] Open
Abstract
Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.
Collapse
Affiliation(s)
- Christian Binder
- Section of Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Felix Sellberg
- Section of Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Section of Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To describe the most recent progress towards tolerance in xenotransplantation. RECENT FINDINGS Mixed chimerism and thymic transplantation have been used to promote tolerance in xenotransplantation models. Intra-bone bone marrow transplantation is a recent advance for mixed chimerism, which promotes longer lasting chimerism and early graft function of subsequent organ transplantation. The hybrid thymus, an advancement to the vascularized thymokidney and vascularized thymic lobe, is being developed to allow for both donor and recipient T-cell selection in the chimeric thymus, encouraging tolerance to self and donor while maintaining appropriate immune function. Regulatory T cells show promise to promote tolerance by suppressing effector T cells and by supporting mixed chimerism. Monoclonal antibodies such as anti-CD2 may promote tolerance through suppression of CD2+ effector and memory T cells whereas Tregs, which express lower numbers of CD2, are relatively spared and might be used to promote tolerance. SUMMARY These findings contribute major advances to tolerance in xenotransplantation. A combination of many of these mechanisms will likely be needed to have long-term tolerance maintained without the use of immunosuppression.
Collapse
Affiliation(s)
- Erin M. Duggan
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Surgery, Columbia University, New York, NY
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Surgery, Columbia University, New York, NY
| |
Collapse
|
31
|
Karahan GE, Claas FHJ, Heidt S. Pre-existing Alloreactive T and B Cells and Their Possible Relevance for Pre-transplant Risk Estimation in Kidney Transplant Recipients. Front Med (Lausanne) 2020; 7:340. [PMID: 32793610 PMCID: PMC7385137 DOI: 10.3389/fmed.2020.00340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
In allogeneic transplantation, genetic disparities between patient and donor may lead to cellular and humoral immune responses mediated by both naïve and memory alloreactive cells of the adaptive immune system. This review will focus on alloreactive T and B cells with emphasis on the memory compartment, their role in relation to kidney rejection, and in vitro assays to detect these alloreactive cells. Finally, the potential additional value of utilizing donor-specific memory T and B cell assays supplementary to current routine pre-transplant risk assessment of kidney transplant recipients will be discussed.
Collapse
Affiliation(s)
- Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
32
|
Binder C, Cvetkovski F, Sellberg F, Berg S, Paternina Visbal H, Sachs DH, Berglund E, Berglund D. CD2 Immunobiology. Front Immunol 2020; 11:1090. [PMID: 32582179 PMCID: PMC7295915 DOI: 10.3389/fimmu.2020.01090] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
The glycoprotein CD2 is a costimulatory receptor expressed mainly on T and NK cells that binds to LFA3, a cell surface protein expressed on e.g., antigen-presenting cells. CD2 has an important role in the formation and organization of the immunological synapse that is formed between T cells and antigen-presenting cells upon cell-cell conjugation and associated intracellular signaling. CD2 expression is upregulated on memory T cells as well as activated T cells and plays an important role in activation of memory T cells despite the coexistence of several other costimulatory pathways. Anti-CD2 monoclonal antibodies have been shown to induce immune modulatory effects in vitro and clinical studies have proven the safety and efficacy of CD2-targeting biologics. Investigators have highlighted that the lack of attention to the CD2/LFA3 costimulatory pathway is a missed opportunity. Overall, CD2 is an attractive target for monoclonal antibodies intended for treatment of pathologies characterized by undesired T cell activation and offers an avenue to more selectively target memory T cells while favoring immune regulation.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Horacio Paternina Visbal
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - David H Sachs
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Division of Transplantation Surgery, CLINTEC, Karolinska Institute, and Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
33
|
Berglund E, Alonso-Guallart P, Danton M, Sellberg F, Binder C, Fröbom R, Berglund D, Llore N, Sakai H, Iuga A, Ekanayake-Alper D, Reimann KA, Sachs DH, Sykes M, Griesemer A. Safety and pharmacodynamics of anti-CD2 monoclonal antibody treatment in cynomolgus macaques - an experimental study. Transpl Int 2019; 33:98-107. [PMID: 31523849 DOI: 10.1111/tri.13524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
Anti-CD2 treatment provides targeted immunomodulatory properties that have demonstrated clinical usefulness to condition the immune system and to treat transplant rejection. The treatment is species-specific due to structural CD2 antigen differences between nonhuman primates and humans. Herein, we report the safety profile and efficacy of two modifications of the same anti-CD2 monoclonal antibody in cynomolgus macaques. Twelve subjects received one i.v. anti-CD2 (of rat or rhesus type) dose each, range 1-4 mg/kg, and were followed for 1-7 days. Treatment effects were evaluated with flow cytometry on peripheral blood and histopathological evaluation of secondary lymphoid organs. In vitro inhibitory activity on primary MHC disparate mixed lymphocyte reactions (MLRs) was determined. Upon anti-CD2 treatment, CD4+ , CD8+ memory subsets were substantially depleted. Naïve T cells and Tregs were relatively spared and exhibited lower CD2 expression than memory T cells. Early immune reconstitution was noted for naïve cells, while memory counts had not recovered after one week. Both antibodies displayed a concentration-dependent MLR inhibition. Lymph node examination revealed no significant lymphocyte depletion. None of the animals experienced any significant study drug-related adverse events. This study outlines the safety and pharmacodynamic profile of primate-specific anti-CD2 treatment, relevant for translation of anti-CD2-based animal models into clinical trials.
Collapse
Affiliation(s)
- Erik Berglund
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.,Division of Transplantation Surgery, Department of Transplantation Surgery, Karolinska Institute, CLINTEC, Karolinska University Hospital, Stockholm, Sweden
| | - Paula Alonso-Guallart
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Makenzie Danton
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Robin Fröbom
- Division of Transplantation Surgery, Department of Transplantation Surgery, Karolinska Institute, CLINTEC, Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Nathaly Llore
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Hiroshi Sakai
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Alina Iuga
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Dilrukshi Ekanayake-Alper
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Keith A Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA, USA
| | - David H Sachs
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.,Department of Surgery, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Adam Griesemer
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.,Department of Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Sellberg F, Berglund D, Binder C, Hope J, Fontenot J, Griesemer A, Sykes M, Sachs DH, Berglund E. Pharmacokinetic and pharmacodynamic study of a clinically effective anti-CD2 monoclonal antibody. Scand J Immunol 2019; 91:e12839. [PMID: 31630416 DOI: 10.1111/sji.12839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
The humanized IgG1κ monoclonal antibody siplizumab and its rat parent monoclonal IgG2b antibody BTI-322 are directed against the CD2 antigen. Siplizumab is species-specific, reacting with human and chimpanzee cells but not with cells from any other species, including other non-human primates. Because siplizumab treatment has recently shown great potential in clinical transplantation, we now present the results of our previous pharmacokinetic, pharmacodynamic and safety studies of both antibodies. Fourteen chimpanzees received 1-3 doses of 0.143 to 5.0 mg/kg iv The effects were followed with flow cytometry on peripheral lymphocytes and staining of lymph nodes. Side effects were recorded. Serum antibody concentrations were followed. Across the doses, a rapid, transient depletion of CD2, CD3, CD4 and CD8 lymphocytes and NK cells was observed for both antibodies. Immune reconstitution was more rapid for BTI-322 compared to siplizumab. Paracortical lymph node T cell depletion was moderate, estimated at 45% with doses of >0.6 mg/kg. Restoration of lymph node architecture was seen after two weeks to two months for all animals. All four subjects receiving BTI-322 experienced AEs on the first dosing day, while the eight subjects dosed with siplizumab experienced few mild, transient AEs. Infusion with siplizumab and BTI-322 resulted in rapid depletion of CD2+ cells in circulation and tissue. Siplizumab had a longer t1/2 and fewer AEs compared to BTI-322.
Collapse
Affiliation(s)
- Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - James Hope
- Independent BioTechnology Consultants, Chicago, IL, USA
| | - Jane Fontenot
- University of Louisiana at Lafayette New Iberia Primate Research Center, New Iberia, LA, USA
| | - Adam Griesemer
- Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Megan Sykes
- Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - David H Sachs
- Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Erik Berglund
- Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA.,Division of Transplantation Surgery, Department of Transplantation Surgery, Karolinska Institute, CLINTEC, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|