1
|
Song Y, Li C, Fang Y, Shen Z, Ge X, Wang R, Xia W, Huang R, Qiu H, Pan H, Hong J. Inflammatory cytokine profile in non-small cell lung Cancer (NSCLC) patients during early enhanced recovery after surgery (ERAS) period and its relation to hospital length of stay. Cytokine 2025; 190:156918. [PMID: 40120149 DOI: 10.1016/j.cyto.2025.156918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE Immunoregulatory cytokines may play a fundamental role in tumor growth and the acute surgical stress response. Inflammatory cytokine profiles have the potential to serve as biomarkers. This study aimed to correlate tumor- or surgery-related inflammatory cytokine profile, derived from data mining, with clinical data and the hospital length of stay for non-small cell lung cancer (NSCLC) patients during the early enhanced recovery after surgery (ERAS) period. METHODS A multi-phase detection approach was used, involving pre- and post-operative NSCLC patients and matched healthy controls. In the screening phase, plasma levels of 48 cytokines were quantified using a Luminex multiplex bead array to identify tumor- or surgery-related cytokine profiles. In the confirmation phase, differentially expressed cytokines were validated using ELISA with a new set of samples. Tumor-related cytokines were identified by comparing preoperative NSCLC patients with controls, while tumor or surgery-related cytokines were determined by comparing with the same cohort before and after surgery, as well as postoperative patients with controls. We then searched cancer genomics databases and protein atlas resources to investigate cytokine-related RNA expression and RNA-protein interactions. Finally, we integrated and standardized our results, conducting correlation analysis to explore relationships between cytokines, hospital length of stay, and clinical data. RESULTS During the initial phase of the ERAS, a comprehensive array of differential cytokines associated with tumors or surgery, including Eotaxin, IL-1β, IL-1Ra, IL-6, IL-13, IL-16, IP-10, MCP-1, PDGF-BB, RANTES, SCF, and TRAIL, were identified. Preoperative levels of RANTES, urea nitrogen, prognostic-nutritional index, and age may serve as potential indicators for predicting hospital length of stay. CONCLUSION The multi-phase detection analysis has identified a plasma cytokine signature for NSCLC patients during the early ERAS period. Assessment of cytokine profiles and clinical data may reveal unique insights into short-term survival outcome under ERAS.
Collapse
Affiliation(s)
- Yongxia Song
- The First Affiliated Hospital of Anhui Medical University, No. 218 Ji Xi Road, Shu Shan District, Hefei City, Anhui Province, China; School of Nursing, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Chengcheng Li
- School of Nursing, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Yan Fang
- School of Nursing, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Ziyi Shen
- School of Nursing, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Xiaoling Ge
- Department of General Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji Xi Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Rui Wang
- Department of Medical Service, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji Xi Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Wanli Xia
- Department of General Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji Xi Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Ruoyu Huang
- Clinical laboratory, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji Xi Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei City, Anhui Province, China
| | - Huaguang Pan
- Department of General Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji Xi Road, Shu Shan District, Hefei City, Anhui Province, China..
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei City, Anhui Province, China; Nursing International Collaboration Research Center of Anhui Province, Hefei, China..
| |
Collapse
|
2
|
Steuart R, Ale GB, Woolums A, Xia N, Benscoter D, Russell CJ, Shah SS, Thomson J. Respiratory culture organism isolation and test characteristics in children with tracheostomies with and without acute respiratory infection. Pediatr Pulmonol 2023; 58:1481-1491. [PMID: 36751142 DOI: 10.1002/ppul.26349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Among children with tracheostomies, little is known about how respiratory culture results differ between states with and without acute respiratory infections (ARI), or the overall test performance of respiratory cultures. OBJECTIVE To determine the association of respiratory culture organism isolation with diagnosis of ARI in children with tracheostomies, and assess test characteristics of respiratory cultures in the diagnosis of bacterial ARI (bARI). METHODS This single-center, retrospective cohort study included respiratory cultures of children with tracheostomies obtained between 2010 and 2018. The primary predictor was ARI diagnosis code at the time of culture; the primary outcomes were respiratory culture organism isolation and species identified. Generalized estimating equations were used to assess for association between ARI diagnosis and isolation of any organism while controlling for potential confounders and accounting for within-patient clustering. A multinomial logistic regression equation assessed for association with specific species. Test characteristics were calculated using bARI diagnosis as the reference standard. RESULTS Among 3578 respiratory cultures from 533 children (median 4 cultures/child, interquartile range (IQR): 1-9), 25.9% were obtained during ARI and 17.2% had ≥1 organism. Children with ARI diagnosis had higher odds of organism identification (adjusted odds ratio 1.29, 95% confidence interval [CI] 1.16-1.44). When controlling for covariates, ARI was associated with isolation of Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Streptococcus pyogenes. Test characteristics revealed a 24.3% sensitivity, 85.2% specificity, 36.5% positive predictive value, and 76.3% negative predictive value in screening for bARI. CONCLUSION The utility of respiratory culture testing to screen for, diagnose, and direct treatment of ARI in children with tracheostomies is limited.
Collapse
Affiliation(s)
- Rebecca Steuart
- Department of Pediatrics, Section of Special Needs, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Complex Care Program, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Guillermo B Ale
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Pulmonary and Sleep Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | - Abigail Woolums
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicole Xia
- Department of Pediatrics, Section of Special Needs, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dan Benscoter
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher J Russell
- Division of Hospital Medicine, Children's Hospital of Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samir S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joanna Thomson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- James M Anderson Center for Health Systems Excellence, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Ooka T, Raita Y, Fujiogi M, Freishtat RJ, Gerszten RE, Mansbach JM, Zhu Z, Camargo CA, Hasegawa K. Proteomics endotyping of infants with severe bronchiolitis and risk of childhood asthma. Allergy 2022; 77:3350-3361. [PMID: 35620861 PMCID: PMC9617778 DOI: 10.1111/all.15390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Bronchiolitis is the leading cause of hospitalization in U.S. infants and a major risk factor for childhood asthma. Growing evidence supports clinical heterogeneity within bronchiolitis. We aimed to identify endotypes of infant bronchiolitis by integrating clinical, virus, and serum proteome data, and examine their relationships with asthma development. METHODS This is a multicenter prospective cohort study of infants hospitalized for physician-diagnosis of bronchiolitis. We identified bronchiolitis endotypes by applying unsupervised machine learning (clustering) approaches to integrated clinical, virus (respiratory syncytial virus [RSV], rhinovirus [RV]), and serum proteome data measured at hospitalization. We then examined their longitudinal association with the risk for developing asthma by age 6 years. RESULTS In 140 infants hospitalized with bronchiolitis, we identified three endotypes: (1) clinicalatopic virusRV proteomeNFκB-dysregulated , (2) clinicalnon-atopic virusRSV/RV proteomeTNF-dysregulated , and (3) clinicalclassic virusRSV proteomeNFκB/TNF-regulated endotypes. Endotype 1 infants were characterized by high proportion of IgE sensitization and RV infection. These endotype 1 infants also had dysregulated NFκB pathways (FDR < 0.001) and significantly higher risks for developing asthma (53% vs. 22%; adjOR 4.04; 95% CI, 1.49-11.0; p = 0.006), compared with endotype 3 (clinically resembling "classic" bronchiolitis). Likewise, endotype 2 infants were characterized by low proportion of IgE sensitization and high proportion of RSV or RV infection. These endotype 2 infants had dysregulated tumor necrosis factor (TNF)-mediated signaling pathway (FDR <0.001) and significantly higher risks for developing asthma (44% vs. 22%; adjOR 2.71; 95% CI, 1.03-7.11, p = 0.04). CONCLUSION In this multicenter cohort, integrated clustering of clinical, virus, and proteome data identified biologically distinct endotypes of bronchiolitis that have differential risks of asthma development.
Collapse
Affiliation(s)
- Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Health Science, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michimasa Fujiogi
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J. Freishtat
- Center for Genetic Medicine Research and Division of Emergency Medicine Children’s National Hospital. Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine and Cardiovascular Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jonathan M. Mansbach
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Wasserman MG, Graham RJ, Mansbach JM. Airway Bacterial Colonization, Biofilms and Blooms, and Acute Respiratory Infection. Pediatr Crit Care Med 2022; 23:e476-e482. [PMID: 35767569 PMCID: PMC9529803 DOI: 10.1097/pcc.0000000000003017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mollie G Wasserman
- Department of General Pediatrics, Boston Children's Hospital, Boston, MA
| | - Robert J Graham
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital, Boston, MA
| | | |
Collapse
|
5
|
Raita Y, Pérez-Losada M, Freishtat RJ, Hahn A, Castro-Nallar E, Ramos-Tapia I, Stearrett N, Bochkov YA, Gern JE, Mansbach JM, Zhu Z, Camargo CA, Hasegawa K. Nasopharyngeal metatranscriptome profiles of infants with bronchiolitis and risk of childhood asthma: a multicentre prospective study. Eur Respir J 2022; 60:2102293. [PMID: 34916264 PMCID: PMC9206513 DOI: 10.1183/13993003.02293-2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Bronchiolitis is not only the leading cause of hospitalisation in US infants but also a major risk factor for asthma development. Growing evidence supports clinical heterogeneity within bronchiolitis. Our objectives were to identify metatranscriptome profiles of infant bronchiolitis, and to examine their relationship with the host transcriptome and subsequent asthma development. METHODS As part of a multicentre prospective cohort study of infants (age <1 year) hospitalised for bronchiolitis, we integrated virus and nasopharyngeal metatranscriptome (species-level taxonomy and function) data measured at hospitalisation. We applied network-based clustering approaches to identify metatranscriptome profiles. We then examined their association with the host transcriptome at hospitalisation and risk for developing asthma. RESULTS We identified five metatranscriptome profiles of bronchiolitis (n=244): profile A: virusRSVmicrobiomecommensals; profile B: virusRSV/RV-Amicrobiome H.influenzae ; profile C: virusRSVmicrobiome S.pneumoniae ; profile D: virusRSVmicrobiome M.nonliquefaciens ; and profile E: virusRSV/RV-Cmicrobiome M.catarrhalis . Compared with profile A, profile B infants were characterised by a high proportion of eczema, Haemophilus influenzae abundance and enriched virulence related to antibiotic resistance. These profile B infants also had upregulated T-helper 17 and downregulated type I interferon pathways (false discovery rate (FDR) <0.005), and significantly higher risk for developing asthma (17.9% versus 38.9%; adjusted OR 2.81, 95% CI 1.11-7.26). Likewise, profile C infants were characterised by a high proportion of parental asthma, Streptococcus pneumoniae dominance, and enriched glycerolipid and glycerophospholipid metabolism of the microbiome. These profile C infants had an upregulated RAGE signalling pathway (FDR <0.005) and higher risk of asthma (17.9% versus 35.6%; adjusted OR 2.49, 95% CI 1.10-5.87). CONCLUSIONS Metatranscriptome and clustering analysis identified biologically distinct metatranscriptome profiles that have differential risks of asthma.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos Pérez-Losada
- Dept of Biostatistics and Bioinformatics and Computational Biology Institute, The George Washington University, Washington, DC, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Dept of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- Dept of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Eduardo Castro-Nallar
- Centro de Bioinformática y Biología Integrativa, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Ramos-Tapia
- Centro de Bioinformática y Biología Integrativa, Universidad Andres Bello, Santiago, Chile
| | - Nathaniel Stearrett
- Computational Biology Institute, The George Washington University, Washington, DC, USA
| | - Yury A Bochkov
- Dept of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E Gern
- Dept of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Dept of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jonathan M Mansbach
- Dept of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaozhong Zhu
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Diaz-Diaz A, Bunsow E, Garcia-Maurino C, Moore-Clingenpeel M, Naples J, Juergensen A, Mertz S, Wang H, Leber AL, Gern J, Hall MW, Cohen DM, Ramilo O, Mejias A. Nasopharyngeal Codetection of H. influenzae and S. pneumoniae and Respiratory Syncytial Virus Disease Outcomes in Children. J Infect Dis 2021; 225:912-923. [PMID: 34543409 DOI: 10.1093/infdis/jiab481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The role of nasopharyngeal bacteria on RSV disease has been underestimated. We measured the frequency and quantitative detection of potentially pathogenic bacteria in the upper respiratory tract of infants with RSV infection over seven respiratory seasons, and their impact on clinical outcomes. METHODS Children <2 years old with mild (outpatients; n=115) or severe (inpatients; n=566) RSV infection, and matched healthy controls (n=161) were prospectively enrolled. Nasopharyngeal samples were obtained for RSV, S. pneumoniae, S. aureus, M. catarrhalis, and H. influenzae detection and quantitation by PCR. Multivariable models were constructed to identify variables predictive of severe disease. RESULTS S. pneumoniae, H. influenzae, and M. catarrhalis, but not S. aureus, were detected more frequently in RSV-infected children (84%) than healthy controls (46%; p<0.001). Detection of S. pneumoniae and/or H. influenzae was associated with fever, more frequent antibiotic treatment, worse radiologic findings, and higher neutrophil counts (p<0.01). In adjusted analyses S. pneumoniae/H. influenzae co-detection was associated with greater odds (OR; 95% CI) of hospitalization (2.25 [1.07-4.74), higher disease severity scores (1.93 [1.14-3.26]), prolonged oxygen administration (2.23 [1.01-4.91]), and longer hospitalization (2.53 [1.33-4.79]). CONCLUSIONS Nasopharyngeal co-detection of S. pneumoniae and H. influenzae in infants with RSV infection is associated with increased disease severity.
Collapse
Affiliation(s)
- Alejandro Diaz-Diaz
- Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital-The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eleonora Bunsow
- Center for Vaccines & Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cristina Garcia-Maurino
- Center for Vaccines & Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Melissa Moore-Clingenpeel
- Biostatistics Resource Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey Naples
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Alexis Juergensen
- Center for Vaccines & Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Sara Mertz
- Center for Vaccines & Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Huanyu Wang
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy L Leber
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - James Gern
- Department of Pediatrics. University of Wisconsin, School of Medicine and Public Health. Madison WI, USA
| | - Mark W Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel M Cohen
- Division of Emergency Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Octavio Ramilo
- Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital-The Ohio State University College of Medicine, Columbus, OH, USA.,Center for Vaccines & Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital-The Ohio State University College of Medicine, Columbus, OH, USA.,Center for Vaccines & Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
7
|
Abstract
The nasopharyngeal microbiome is a dynamic microbial interface of the aerodigestive tract, and a diagnostic window in the fight against respiratory infections and antimicrobial resistance. As its constituent bacteria, viruses and mycobacteria become better understood and sampling accuracy improves, diagnostics of the nasopharynx could guide more personalized care of infections of surrounding areas including the lungs, ears and sinuses. This review will summarize the current literature from a clinical perspective and highlight its growing importance in diagnostics and infectious disease management.
Collapse
Affiliation(s)
- Matthew Flynn
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Otolaryngology Department, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - James Dooley
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
8
|
Porto BN, Moraes TJ. The triad: respiratory microbiome - virus - immune response in the pathophysiology of pulmonary viral infections. Expert Rev Respir Med 2021; 15:635-648. [PMID: 33605840 DOI: 10.1080/17476348.2021.1893168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The longstanding dogma that the healthy lung is sterile has been refuted by recent advances in culture-independent analyses of airway samples. The respiratory microbiome comprises all airway and lung tissue-associated microbes. These micro-organisms occur throughout the upper and lower respiratory tracts, with different populations and distinct burdens at specific sites and can be classified as pathogenic or commensal. AREAS COVERED The majority of studies investigating the respiratory microbiome have focused on bacteria; however, emerging evidence has revealed the composition of the lung virome, the global viral communities present in the lung tissue. In this review, we searched PubMed and used keywords such as airway microbiome. We restricted outputs to English language and did not limit by any dates. We summarize the up-to-date knowledge on how the microbiome interacts with the host immune system and influences the pathogenesis of pulmonary viral infections. EXPERT OPINION The relationship between colonizing microbes and the host is complex and various factors need to be considered in order to appreciate its pathophysiological consequences. Understanding these intricate mechanisms of interaction among the respiratory microbiome, viruses and the immune response may lead to the development of better therapies to treat or prevent respiratory viral infections.
Collapse
Affiliation(s)
- Bárbara N Porto
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Management of Asthma Exacerbations in the Emergency Department. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:2599-2610. [PMID: 33387672 DOI: 10.1016/j.jaip.2020.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Asthma exacerbations occur across a wide spectrum of chronic severity; they contribute to millions of emergency department (ED) visits in both children and adults every year. Management of asthma exacerbations is an important part of the continuum of asthma care. The best strategy for ED management of an asthma exacerbation is early recognition and intervention, continuous monitoring, appropriate disposition, and, once improved, multifaceted transitional care that optimizes subacute and chronic asthma management after ED discharge. This article concisely reviews ED evaluation, treatment, disposition, and postdischarge care for patients with asthma exacerbations, based on high-quality evidence (eg, systematic reviews from the Cochrane Collaboration) and current international guidelines (eg, the National Asthma Education and Prevention Program Expert Panel Report 3, Global Initiative for Asthma, and Australian guidelines). Special populations (young children, pregnant women, and the elderly) also are addressed. Despite advances in asthma science, there remain many important evidence gaps in managing ED patients with asthma exacerbation. This article summarizes several of these controversial areas and challenges that merit further investigation.
Collapse
|
10
|
Raita Y, Camargo CA, Bochkov YA, Celedón JC, Gern JE, Mansbach JM, Rhee EP, Freishtat RJ, Hasegawa K. Integrated-omics endotyping of infants with rhinovirus bronchiolitis and risk of childhood asthma. J Allergy Clin Immunol 2020; 147:2108-2117. [PMID: 33197460 DOI: 10.1016/j.jaci.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Young children with rhinovirus (RV) infection-particularly bronchiolitis-are at high risk for developing childhood asthma. Emerging evidence suggests clinical heterogeneity within RV bronchiolitis. However, little is known about these biologically distinct subgroups (endotypes) and their relations with asthma risk. OBJECTIVE We aimed to identify RV bronchiolitis endotypes and examine their longitudinal relations with asthma risk. METHODS As part of a multicenter prospective cohort study of infants (age <12 months) hospitalized for bronchiolitis, we integrated clinical, RV species (RV-A, RV-B, and RV-C), nasopharyngeal microbiome (16S rRNA gene sequencing), cytokine, and metabolome (liquid chromatography tandem mass spectrometry) data collected at hospitalization. We then applied network and clustering approaches to identify bronchiolitis endotypes. We also examined their longitudinal association with risks of developing recurrent wheeze by age 3 years and asthma by age 5 years. RESULTS Of 122 infants hospitalized for RV bronchiolitis (median age, 4 months), we identified 4 distinct endotypes-mainly characterized by RV species, microbiome, and type 2 cytokine (T2) response: endotype A, virusRV-CmicrobiomemixedT2low; endotype B, virusRV-AmicrobiomeHaemophilusT2low; endotype C, virusRSV/RVmicrobiomeStreptococcusT2low; and endotype D, virusRV-CmicrobiomeMoraxellaT2high. Compared with endotype A infants, endotype D infants had a significantly higher rate of recurrent wheeze (33% vs 64%; hazard ratio, 2.23; 95% CI, 1.00-4.96; P = .049) and a higher risk for developing asthma (28% vs 59%; odds ratio, 3.74: 95% CI, 1.21-12.6; P = .03). CONCLUSIONS Integrated-omics analysis identified biologically meaningful RV bronchiolitis endotypes in infants, such as one characterized by RV-C infection, Moraxella-dominant microbiota, and high T2 cytokine response, at higher risk for developing recurrent wheeze and asthma. This study should facilitate further research toward validating our inferences.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Robert J Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
11
|
Santacroce L, Charitos IA, Ballini A, Inchingolo F, Luperto P, De Nitto E, Topi S. The Human Respiratory System and its Microbiome at a Glimpse. BIOLOGY 2020; 9:318. [PMID: 33019595 PMCID: PMC7599718 DOI: 10.3390/biology9100318] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
The recent COVID-19 pandemic promoted efforts to better understand the organization of the respiratory microbiome and its evolution from birth to adulthood and how it interacts with external pathogens and the host immune system. This review aims to deepen understanding of the essential physiological functions of the resident microbiome of the respiratory system on human health and diseases. First, the general characteristics of the normal microbiota in the different anatomical sites of the airways have been reported in relation to some factors such as the effect of age, diet and others on its composition and stability. Second, we analyze in detail the functions and composition and the correct functionality of the microbiome in the light of current knowledge. Several studies suggest the importance of preserving the micro-ecosystem of commensal, symbiotic and pathogenic microbes of the respiratory system, and, more recently, its relationship with the intestinal microbiome, and how it also leads to the maintenance of human health, has become better understood.
Collapse
Affiliation(s)
- Luigi Santacroce
- Ionian Department, Microbiology and Virology Laboratory, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Clinical Disciplines, University of Elbasan, Rruga Ismail Zyma, 3001 Elbasan, Albania;
| | | | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Paolo Luperto
- ENT Service, Brindisi Local Health Agency, Via Dalmazia 3, 72100 Brindisi, Italy;
| | - Emanuele De Nitto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University of Elbasan, Rruga Ismail Zyma, 3001 Elbasan, Albania;
| |
Collapse
|
12
|
Stewart CJ, Mansbach JM, Ajami NJ, Petrosino JF, Zhu Z, Liang L, Camargo CA, Hasegawa K. Serum Metabolome Is Associated With the Nasopharyngeal Microbiota and Disease Severity Among Infants With Bronchiolitis. J Infect Dis 2020; 219:2005-2014. [PMID: 30629185 DOI: 10.1093/infdis/jiz021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Emerging evidence suggests relationships between the nasopharyngeal metabolome and both the microbiota and severity of bronchiolitis. However, the influence of host systemic metabolism on disease pathobiology remains unclear. We aimed to examine metabolome profiles and their association with more-severe disease, defined by use of positive pressure ventilation (PPV), in infants hospitalized for bronchiolitis. METHODS In 140 infants with bronchiolitis, metabolomic profiling was performed on serum; samples from 70 were in a training data set, and samples from 70 were in an independent test data set. We also profiled the nasopharyngeal airway microbiota and examined its association with the serum metabolites. RESULTS Serum metabolome profiles differed by bronchiolitis severity (P < .001). In total, 20 metabolites in the training data set were significantly associated with the risk of PPV, of which 18 remained significant following adjustment for confounders (false-discovery rate [FDR], < 0.10). Phosphatidylcholine metabolites were associated with higher risks of PPV use, while metabolites from the plasmalogen subpathway were associated with lower risks. The test data set validated these findings (FDR < 0.05). Streptococcus abundance was positively associated with metabolites that are associated with higher risks of PPV. CONCLUSIONS Serum metabolomic signatures were associated with both the nasopharyngeal microbiota and the severity of bronchiolitis. Our findings advance research into the complex interrelations between the airway microbiome, host systemic response, and pathobiology of bronchiolitis.
Collapse
Affiliation(s)
- Christopher J Stewart
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas.,Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Zhaozhong Zhu
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Liming Liang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
13
|
Xu X, Wu L, Sheng Y, Liu J, Xu Z, Kong W, Tang L, Chen Z. Airway microbiota in children with bronchial mucus plugs caused by Mycoplasma pneumoniae pneumonia. Respir Med 2020; 170:105902. [PMID: 32843185 DOI: 10.1016/j.rmed.2020.105902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is increasing evidence for a role of lung microbiota in the pathogenesis of Mycoplasma pneumoniae pneumonia (MPP). However, the alterations of lung microbiota in MPP with bronchial mucus plugs and its role in disease pathogenesis remain poorly understood. METHODS In this prospective observational study, we performed a longitudinal 16S rRNA-based microbiome survey on bronchoalveolar lavage (BAL) samples collected from 31 MPP with bronchial mucus plugs and 52 MPP without mucus plugs. RESULTS Our study showed a clear difference in airway microbiota between MPP children with and without bronchial mucus plugs. The MPP children with mucus plugs had lower abundances of Sphingomonas and Elizabethkingia, and a high abundance of Mycoplasma compared with MPP children without mucus plugs, subsequently contributing to increased ratios of Mycoplasma to Sphingomonas and Mycoplasma to Elizabethkingia. Children's age, fever time and serum cytokine levels were associated with airway microbiota alteration. Furthermore, significant correlations between bacterial genus abundances were found in MPP children with mucus plugs. CONCLUSIONS Our results suggest an impact of airway microbiota on the clinical course of MPP in children, deserving further investigations.
Collapse
Affiliation(s)
- Xuefeng Xu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China; Department of Rheumatology Immunology & Allergy, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Lei Wu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Yuanjian Sheng
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Jinling Liu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Zhufei Xu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Weixing Kong
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Lanfang Tang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Zhimin Chen
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China.
| |
Collapse
|
14
|
Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chem Biol Interact 2019; 310:108732. [DOI: 10.1016/j.cbi.2019.108732] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
15
|
Abstract
Respiratory viral infections are associated with significant morbidity and mortality in children < 5 years of age worldwide. Among all respiratory viruses, respiratory syncytial virus (RSV) is the world's leading cause of bronchiolitis and pneumonia in young children. There are known populations at risk for severe disease but the majority of children who require hospitalization for RSV infection are previously healthy. Viral and host factors have been associated with the pathogenesis of RSV disease; however, the mechanisms that explain the wide variability in the clinical presentation are not completely understood. Recent studies suggest that the complex interaction between the respiratory microbiome, the host's immune response and the virus may have an impact on the pathogenesis and severity of RSV infection. In this review, we summarize the current evidence regarding the epidemiologic link, the mechanisms of viral-bacterial interactions, and the associations between the upper respiratory tract microbiome and RSV disease severity.
Collapse
|
16
|
Mansbach JM, Hasegawa K. Overcoming the Bronchiolitis Blues: Embracing Global Collaboration and Disease Heterogeneity. Pediatrics 2018; 142:e20181982. [PMID: 30126933 PMCID: PMC6317644 DOI: 10.1542/peds.2018-1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jonathan M Mansbach
- Department of Medicine, Boston Children's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts; and
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
17
|
Hasegawa K, Stewart CJ, Celedón JC, Mansbach JM, Tierney C, Camargo CA. Circulating 25-hydroxyvitamin D, nasopharyngeal airway metabolome, and bronchiolitis severity. Allergy 2018; 73:1135-1140. [PMID: 29315663 DOI: 10.1111/all.13379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/25/2022]
Abstract
Low circulating 25-hydroxyvitamin D (25OHD) levels are a risk factor for acute respiratory infection (eg, bronchiolitis) in children. However, little is known about the relation of circulating 25OHD with the many downstream functional molecules in target organs-such as the airway-and with clinical outcomes. In this prospective multicenter study of infants (age <1 year) hospitalized with bronchiolitis, we measured serum 25OHD levels and profiled the metabolome of 144 nasopharyngeal airway samples. Among 254 metabolites identified, we defined a set of 20 metabolites that are related to lower serum 25OHD and higher vitamin D-binding protein levels. Of these metabolites, 9 metabolites were associated with a significantly higher risk of positive pressure ventilation use. These metabolites were glycerophosphocholines esterified with proinflammatory fatty acids (palmitate, arachidonate, linoleate, and stearate), sphingomyelins, alpha-hydroxyisovalerate, 2-hydroxybutyrate, and 3-(4-hydroxyphenyl)lactate (all FDR<0.05). Based on the multicenter data, vitamin D-related airway metabolites were associated with risks of bronchiolitis severity.
Collapse
Affiliation(s)
- K. Hasegawa
- Department of Emergency Medicine; Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| | - C. J. Stewart
- Alkek Center for Metagenomics and Microbiome Research; Department of Molecular Virology and Microbiology; Baylor College of Medicine; Houston TX USA
| | - J. C. Celedón
- Division of Pulmonary Medicine, Allergy, and Immunology; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh; Pittsburgh PA USA
| | - J. M. Mansbach
- Department of Medicine; Boston Children's Hospital; Boston MA USA
| | - C. Tierney
- Department of Emergency Medicine; Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| | - C. A. Camargo
- Department of Emergency Medicine; Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| |
Collapse
|
18
|
Stewart CJ, Hasegawa K, Wong MC, Ajami NJ, Petrosino JF, Piedra PA, Espinola JA, Tierney CN, Camargo CA, Mansbach JM. Respiratory Syncytial Virus and Rhinovirus Bronchiolitis Are Associated With Distinct Metabolic Pathways. J Infect Dis 2018; 217:1160-1169. [PMID: 29293990 PMCID: PMC5939849 DOI: 10.1093/infdis/jix680] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 11/12/2022] Open
Abstract
Background Bronchiolitis, the leading cause of hospitalization among infants in the United States, is most commonly caused by respiratory syncytial virus (RSV), followed by rhinovirus (RV). Conventional perception is that bronchiolitis is a single entity, albeit with different viral etiologies and degrees of severity. Methods We conducted a cross-sectional study of nasopharyngeal aspirates from 106 infants hospitalized with bronchiolitis due to either RSV only (80 patients) or RV only (26 patients). We performed metabolomics analysis and 16S ribosomal RNA gene sequencing on all samples and metagenomic sequencing on 58 of 106 samples. Results Infants with RSV-only and RV-only infections had significantly different nasopharyngeal metabolome profiles (P < .001) and bacterial metagenome profiles (P < .05). RSV-only infection was associated with metabolites from a range of pathways and with a microbiome dominated by Streptococcus pneumoniae. By contrast, RV-only infection was associated with increased levels of essential and nonessential N-acetyl amino acids and with a high relative abundance of Haemophilus influenzae. These co-occurring species were associated with driving the bacterially derived metabolic pathways. Multi-omic analysis showed that both the virus and the microbiome were significantly associated with metabolic function in infants hospitalized with bronchiolitis. Conclusion Although replication of these findings is necessary, they highlight that bronchiolitis is not a uniform disease between RSV and RV infections, a result with future implications for prevention and treatment.
Collapse
Affiliation(s)
- Christopher J Stewart
- Alkek Center for Metagenomics and Microbiome Research, Houston, Texas
- Department of Molecular Virology and Microbiology, Houston, Texas
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew C Wong
- Alkek Center for Metagenomics and Microbiome Research, Houston, Texas
- Department of Molecular Virology and Microbiology, Houston, Texas
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Houston, Texas
- Department of Molecular Virology and Microbiology, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Houston, Texas
- Department of Molecular Virology and Microbiology, Houston, Texas
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Courtney N Tierney
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jonathan M Mansbach
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Hasegawa K, Pérez-Losada M, Hoptay CE, Epstein S, Mansbach JM, Teach SJ, Piedra PA, Camargo CA, Freishtat RJ. RSV vs. rhinovirus bronchiolitis: difference in nasal airway microRNA profiles and NFκB signaling. Pediatr Res 2018; 83:606-614. [PMID: 29244796 PMCID: PMC6174252 DOI: 10.1038/pr.2017.309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/25/2017] [Indexed: 01/03/2023]
Abstract
BackgroundAlthough rhinovirus infection is associated with increased risks of acute and chronic respiratory outcomes during childhood compared with respiratory syncytial virus (RSV), the underlying mechanisms remain unclear. We aimed to determine the differences in nasal airway microRNA profiles and their downstream effects between infants with rhinovirus and RSV bronchiolitis.MethodsAs part of a multicenter cohort study of infants hospitalized for bronchiolitis, we examined nasal samples obtained from 16 infants with rhinovirus and 16 infants with RSV. We tested nasal airway samples using microarrays to profile global microRNA expression and determine the predicted regulation of targeted transcripts. We also measured gene expression and cytokines for NFκB pathway components.ResultsBetween the virus groups, 386 microRNAs were differentially expressed (false discovery rate (FDR)<0.05). In infants with rhinovirus, the NFκB pathway was highly ranked as a predicted target for these differentially expressed microRNAs compared with RSV. Pathway analysis using measured mRNA expression data validated that rhinovirus infection had upregulation of NFκB family (RelA and NFκB2) and downregulation of inhibitor κB family. Infants with rhinovirus had higher levels of NFκB-induced type-2 cytokines (IL-10 and IL-13; FDR<0.01).ConclusionIn infants with bronchiolitis, rhinovirus and RSV infections had different nasal airway microRNA profiles associated with NFκB signaling.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Marcos Pérez-Losada
- Computational Biology Institute, George Washington University, Ashburn, VA;,Department of Pediatrics, George Washington University School of Medicine and Health Sciences and the Division of Emergency Medicine, Children’s National Health System, Washington, DC;,CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Claire E. Hoptay
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC
| | - Samuel Epstein
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC
| | | | - Stephen J. Teach
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences and the Division of Emergency Medicine, Children’s National Health System, Washington, DC
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert J. Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences and the Division of Emergency Medicine, Children’s National Health System, Washington, DC;,Center for Genetic Medicine Research, Children’s National Health System, Washington, DC;,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC;,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
20
|
Ederveen THA, Ferwerda G, Ahout IM, Vissers M, de Groot R, Boekhorst J, Timmerman HM, Huynen MA, van Hijum SAFT, de Jonge MI. Haemophilus is overrepresented in the nasopharynx of infants hospitalized with RSV infection and associated with increased viral load and enhanced mucosal CXCL8 responses. MICROBIOME 2018; 6:10. [PMID: 29325581 PMCID: PMC5765694 DOI: 10.1186/s40168-017-0395-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND While almost all infants are infected with respiratory syncytial virus (RSV) before the age of 2 years, only a small percentage develops severe disease. Previous studies suggest that the nasopharyngeal microbiome affects disease development. We therefore studied the effect of the nasopharyngeal microbiome on viral load and mucosal cytokine responses, two important factors influencing the pathophysiology of RSV disease. To determine the relation between (i) the microbiome of the upper respiratory tract, (ii) viral load, and (iii) host mucosal inflammation during an RSV infection, nasopharyngeal microbiota profiles of RSV infected infants (< 6 months) with different levels of disease severity and age-matched healthy controls were determined by 16S rRNA marker gene sequencing. The viral load was measured using qPCR. Nasopharyngeal CCL5, CXCL10, MMP9, IL6, and CXCL8 levels were determined with ELISA. RESULTS Viral load in nasopharyngeal aspirates of patients associates significantly to total nasopharyngeal microbiota composition. Healthy infants (n = 21) and RSV patients (n = 54) display very distinct microbial patterns, primarily characterized by a loss in commensals like Veillonella and overrepresentation of opportunistic organisms like Haemophilus and Achromobacter in RSV-infected individuals. Furthermore, nasopharyngeal microbiota profiles are significantly different based on CXCL8 levels. CXCL8 is a chemokine that was previously found to be indicative for disease severity and for which we find Haemophilus abundance as the strongest predictor for CXCL8 levels. CONCLUSIONS The nasopharyngeal microbiota in young infants with RSV infection is marked by an overrepresentation of the genus Haemophilus. We present that this bacterium is associated with viral load and mucosal CXCL8 responses, both which are involved in RSV disease pathogenesis.
Collapse
Affiliation(s)
- Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands.
| | - Inge M Ahout
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| | - Marloes Vissers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| | - Jos Boekhorst
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | | | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Ximenez C, Torres J. Development of Microbiota in Infants and its Role in Maturation of Gut Mucosa and Immune System. Arch Med Res 2017; 48:666-680. [PMID: 29198451 DOI: 10.1016/j.arcmed.2017.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022]
Abstract
Dysbiosis of the gut microbiota has been associated with increasing numbers of diseases, including obesity, diabetes, inflammatory bowel disease, asthma, allergy, cancer and even neurologic or behavioral disorders. The other side of the coin is that a healthy microbiota leads to a healthy human development, to a mature and well trained immune system and to an efficient metabolic machinery. What we have learned in adults is in the end the result of a good start, a programmed, healthy development of the microbiota that must occur in the early years of life, probably even starting during the fetal stage. This review aims to present and discuss reports that helps us understand what we have learned of the development of microbiota during the early times of life, from pregnancy to delivery to the early years after birth. The impact of the establishment of "healthy" bacterial communities on human surfaces in the maturation of epithelia, immune system and metabolism will also be discussed. The right process of maturation of the bacterial communities that establish a symbiosis with human surfaces depends on a number of environmental, genetic and temporal factors that need to be understand in order to have tools to monitor a healthy development and eventually intervene to correct undesired courses.
Collapse
Affiliation(s)
- Cecilia Ximenez
- Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Ciudad de México, México.
| |
Collapse
|
22
|
Bomar L, Brugger SD, Lemon KP. Bacterial microbiota of the nasal passages across the span of human life. Curr Opin Microbiol 2017; 41:8-14. [PMID: 29156371 DOI: 10.1016/j.mib.2017.10.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/15/2023]
Abstract
The human nasal passages host major human pathogens. Recent research suggests that the microbial communities inhabiting the epithelial surfaces of the nasal passages are a key factor in maintaining a healthy microenvironment by affecting both resistance to pathogens and immunological responses. The nasal bacterial microbiota shows distinct changes over the span of human life and disruption by environmental factors might be associated with both short- and long-term health consequences, such as susceptibility to viral and bacterial infections and disturbances of the immunological balance. Because infants and older adults experience a high burden of morbidity and mortality from respiratory tract infections, we review recent data on the bacterial nasal microbiota composition in health and acute respiratory infection in these age groups.
Collapse
Affiliation(s)
- Lindsey Bomar
- The Forsyth Institute (Microbiology), Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Silvio D Brugger
- The Forsyth Institute (Microbiology), Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Katherine P Lemon
- The Forsyth Institute (Microbiology), Cambridge, MA, United States; Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
23
|
Hasegawa K, Stewart CJ, Mansbach JM, Linnemann RW, Ajami NJ, Petrosino JF, Camargo CA. Sphingolipid metabolism potential in fecal microbiome and bronchiolitis in infants: a case-control study. BMC Res Notes 2017; 10:325. [PMID: 28747215 PMCID: PMC5530560 DOI: 10.1186/s13104-017-2659-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Emerging evidence demonstrated that the structure of fecal microbiome is associated with the likelihood of bronchiolitis in infants. However, no study has examined functional profiles of fecal microbiome in infants with bronchiolitis. In this context, we conducted a case-control study. As a part of multicenter prospective study, we collected stool samples from 40 infants hospitalized with bronchiolitis (cases). We concurrently enrolled 115 age-matched healthy controls. RESULTS First, by applying 16S rRNA gene sequencing to these 155 fecal samples, we identified the taxonomic profiles of fecal microbiome. Next, based on the taxonomy data, we inferred the functional capabilities of fecal microbiome and tested for differences in the functional capabilities between cases and controls. Overall, the median age was 3 months and 45% were female. Among 274 metabolic pathways surveyed, there were significant differences between bronchiolitis cases and healthy controls for 37 pathways, including lipid metabolic pathways (false discovery rate [FDR] <0.05). Particularly, the fecal microbiome of bronchiolitis cases had consistently higher abundances of gene function related to the sphingolipid metabolic pathways compared to that of controls (FDR <0.05). These pathways were more abundant in infants with Bacteroides-dominant microbiome profile compared to the others (FDR <0.001). On the basis of the predicted metagenome in this case-control study, we found significant differences in the functional potential of fecal microbiome between infants with bronchiolitis and healthy controls. Although causal inferences remain premature, our data suggest a potential link between the bacteria-derived metabolites, modulations of host immune response, and development of bronchiolitis.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 920, Boston, MA 02114-1101 USA
| | - Christopher J. Stewart
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | | | - Rachel W. Linnemann
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
| | - Nadim J. Ajami
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 920, Boston, MA 02114-1101 USA
| |
Collapse
|