1
|
Liang G, Zhao C, Wei Q, Feng S, Wang Y. Single cell transcriptome profiling reveals pathogenesis of bullous pemphigoid. Commun Biol 2025; 8:203. [PMID: 39922909 PMCID: PMC11807148 DOI: 10.1038/s42003-025-07629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Bullous pemphigoid (BP) triggers profound functional changes in both immune and non-immune cells in the skin and circulation, though the underlying mechanisms remain unclear. In this study, we conduct single-cell transcriptome analysis of lesional and non-lesional skin, as well as blood samples from BP patients. In lesional skin, non-immune cells upregulate pathways related to metabolism, wound healing, immune activation, and cell migration. LAMP3+DCs from cDC2 show stronger pro-inflammatory signatures than those from cDC1, and VEGFA+ mast cells, crucial for BP progression, are predominantly in lesional skin. As BP patients transition from active to remission stages, blood B cell function shifts from differentiation and memory formation to increased type 1 interferon signaling and reduced IL-4 response. Blood CX3CR1+ ZNF683+ and LAG3+ exhausted T cells exhibit the highest TCR expansion among clones shared with skin CD8+T cells, suggesting their role in fueling skin CD8+T cell clonal expansion. Clinical BP severity correlates positively with blood NK cell IFN-γ production and negatively with amphiregulin (AREG) production. NK cell-derived AREG mitigates IFN-γ-induced keratinocyte apoptosis, suggesting a crucial balance between AREG and IFN-γ in BP progression. These findings highlight functional shifts in BP pathology and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Guirong Liang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chenjing Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qin Wei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Suying Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Yetao Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Sugiura R, Hashimoto T, Ishizuka Y, Okuzawa M, Okuno S, Koga H, Ishii N, Satoh T. Matrix metalloproteinase-9 and neutrophil elastase from infiltrating neutrophils with neutrophil extracellular DNA traps in linear IgA bullous dermatosis: A case report. J Dermatol 2024; 51:e337-e339. [PMID: 38650312 DOI: 10.1111/1346-8138.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Riichiro Sugiura
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Yukiko Ishizuka
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Manami Okuzawa
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Satoshi Okuno
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Koga
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| | - Takahiro Satoh
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
3
|
Ruan Y, Xu C, Zhang T, Zhu L, Wang H, Wang J, Zhu H, Huang C, Pan M. Single-Cell Profiling Unveils the Inflammatory Heterogeneity within Cutaneous Lesions of Bullous Pemphigoid. J Invest Dermatol 2024:S0022-202X(24)00209-4. [PMID: 38537929 DOI: 10.1016/j.jid.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024]
Abstract
Bullous pemphigoid (BP) is a subepidermal blistering skin disease with a complex pathogenesis involving various immune cells. However, the transcriptional features of these cells remain poorly defined. In this study, we constructed a comprehensive and single-cell resolution atlas of various immune cells within BP skin lesions through integrative single-cell analysis, flow cytometry, and multiplex immunohistochemistry. We observed prominent expansion and transcriptional changes in mast cells, macrophages, basophils, and neutrophils within BP lesions. Mast cells within the lesions adopted an active state and exhibited an elevated capacity for producing proinflammatory mediators. We observed an imbalance of macrophages/dendritic cells within BP lesions. Two macrophage subpopulations (NLRP3+ and C1q+) with distinct transcriptional profiles were identified and upregulated effector programs. T-peripheral helper-like T helper 2 cells were expanded in skin lesions and peripheral blood of patients with BP and were capable of promoting B-cell responses. In addition, we observed clonally expanded granzyme B-positive CD8+ T cells within BP lesions. Chemokine receptor mapping revealed the potential roles of macrophages and mast cells in recruiting pathogenic immune cells and underlying mechanisms within BP lesions. Thus, this study reveals key immune pathogenic features of BP lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuqiao Xu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailun Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiqin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Pan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Akbarzadeh R, Czyz C, Thomsen SY, Schilf P, Murthy S, Sadik CD, König P. Monocyte populations are involved in the pathogenesis of experimental epidermolysis bullosa acquisita. Front Immunol 2023; 14:1241461. [PMID: 38116004 PMCID: PMC10728641 DOI: 10.3389/fimmu.2023.1241461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Monocytes play a significant role in the pathogenesis of most inflammatory diseases, including autoimmune diseases. Herein, different subpopulations of monocytes often play differential, partially antagonistic roles, in the regulation of tissue populations. Pemphigoid diseases constitute a group of autoimmune blistering skin diseases featuring a marked infiltration of the dermis with immune cells, including monocytes. The monocyte subsets infiltrating the skin, however, have largely remained elusive. Monocyte adhesion and recruitment into the inflamed tissues are regulated by chemokine receptors, most prominently by CCR2 and CX3CR1. To delineate the involvement of monocyte populations in autoimmune blistering skin diseases, we spatiotemporally monitored the dynamic spectrum of monocyte populations that infiltrate the inflamed skin using multiphoton intravital imaging and reporter mice for chemokine receptors. Experimental epidermolysis bullosa acquisita (EBA) was induced by injection of anti-murine type VII collagen (amCOLVII) IgG into the Csf1rEGFP-reporter mice, where circulating myeloid cells, such as monocytes and neutrophils, express an EGFP. EGFP+ cells, including neutrophils and monocytes, were present in the skin, immediately after the deposition of the amCOLVII antibody at the dermal-epidermal junction. To investigate the recruitment and involvement of different monocyte-derived cell populations in the disease course further, EBA was induced in CCR2RFP/+-reporter and CX3CR1GFP/+-reporter mice. A comparable distribution of red fluorescent protein (RFP)+ or green fluorescent protein (GFP)+ was found in both diseased mice and their respective controls over time, indicating the similar recruitment of monocytes into the skin following the binding of autoantibodies. Experiments were extended to the CCR2RFP/RFP-deficient and CX3CR1GFP/GFP-deficient mice to determine whether monocyte recruitment and disease severity are compromised in the absence of the receptor. A comparable pattern was seen in the recruitment of monocytes into the skin in both reporter and deficient mice. However, in contrast to similar disease severity between CX3CR1-deficient and reporter mice, CCR2-deficient mice developed significantly less disease than CCR2-reporter mice, as indicated by the percentage of affected area of ears. Collectively, our observations indicate that while CCR2 and CX3CR1 receptors are not involved in the recruitment of monocytes into the skin, CCR2 deficiency is associated with improved disease outcomes in experimental EBA in mice.
Collapse
Affiliation(s)
- Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | - Sarah-Yasmin Thomsen
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Sun C, Li X, Qian H, Liang G, Xiang R, Zhao C, Li Z, Li S, Jing K, Wang Y, Zhang H, Feng S. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio are positively correlated with disease activity of bullous pemphigoid. Arch Dermatol Res 2023; 315:2383-2391. [PMID: 37204459 DOI: 10.1007/s00403-023-02639-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Bullous pemphigoid (BP) is a complex inflammatory process with elevated levels of autoantibodies, eosinophils, neutrophils, and various cytokines. Hematological inflammatory biomarkers can reflect inflammatory state in various diseases. Up to now, the correlations of hematological inflammatory biomarkers and disease activity of BP remain unknown. The purpose of this study was to clarify the associations between hematological inflammatory biomarkers and disease activity of BP. The levels of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), platelet-to-neutrophil ratio (PNR) and mean platelet volume (MPV) of 36 untreated BP patients and 45 age and gender matched healthy controls were detected by routine blood tests. The correlations between hematological inflammatory markers and clinical characteristics of BP were statistically analyzed. The Bullous Pemphigoid Disease Area Index (BPDAI) was used to measure disease activity of BP. The mean levels of NLR, PLR, PNR and MPV in 36 untreated BP patients were 3.9, 157.9, 45.7 and 9.4 fl, respectively. Increased NLR (p < 0.001), PLR (p < 0.01), and MPV (p < 0.001) but decreased PNR (p < 0.001) were observed in BP patients when compared with healthy controls. In BP patients, the levels of NLR were positively correlated to BPDAI Erosion/Blister Scores (p < 0.01); and the levels of NLR and PLR were both positively correlated to BPDAI without Damage Score (both p < 0.05) and BPDAI Total Score (both p < 0.05). No correlation was found in other statistical analyses between hematological inflammatory markers and clinical characteristics in BP patients involved in the present study. Therefore, NLR and PLR are positively correlated with disease activity of BP.
Collapse
Affiliation(s)
- Chao Sun
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Xiaoguang Li
- Department of Laboratory Medicine, Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Hua Qian
- Department of Laboratory Medicine, Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Guirong Liang
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Ruiyu Xiang
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Chenjing Zhao
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Zhiliang Li
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Suo Li
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Ke Jing
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Yuan Wang
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Hanmei Zhang
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China
| | - Suying Feng
- Department of Dermatology, Institute of Dermatology and Hospital of Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiang Wangmiao Street, Nanjing, 210042, Jiangsu, China.
| |
Collapse
|
6
|
Manda-Handzlik A, Cieloch A, Kuźmicka W, Mroczek A, Stelmaszczyk-Emmel A, Demkow U, Wachowska M. Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps. Sci Rep 2023; 13:15633. [PMID: 37730741 PMCID: PMC10511515 DOI: 10.1038/s41598-023-42167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation.
Collapse
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland.
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Weronika Kuźmicka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Agnieszka Mroczek
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| |
Collapse
|
7
|
Limberg MM, Weihrauch T, Gray N, Ernst N, Hartmann K, Raap U. Eosinophils, Basophils, and Neutrophils in Bullous Pemphigoid. Biomolecules 2023; 13:1019. [PMID: 37509055 PMCID: PMC10377006 DOI: 10.3390/biom13071019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering skin disease, of which the incidence has increased in recent years. BP is characterized by circulating IgG and IgE autoantibodies against the hemidesmosomal proteins BP180 and BP230. Although autoantibodies trigger inflammatory cascades that lead to blister formation, effector cells and cell-mediated autoimmunity must also be considered as important factors in the pathogenesis of BP. The aim of this review is to outline the current knowledge on the role of eosinophils, basophils, and neutrophils in BP.
Collapse
Affiliation(s)
- Maren M. Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Natalie Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Nancy Ernst
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Karin Hartmann
- Division of Allergy, Departments of Dermatology and Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- University Clinic of Dermatology and Allergy, University of Oldenburg, 26133 Oldenburg, Germany
| |
Collapse
|
8
|
Yan T, Zhang Z. Adaptive and innate immune pathogenesis of bullous pemphigoid: A review. Front Immunol 2023; 14:1144429. [PMID: 36993969 PMCID: PMC10041874 DOI: 10.3389/fimmu.2023.1144429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects elderly individuals. The presentation of BP is heterogeneous, typically manifesting as microscopic subepidermal separation with a mixed inflammatory infiltrate. The mechanism of pemphigoid development is unclear. B cells play a major role in pathogenic autoantibody production, and T cells, type II inflammatory cytokines, eosinophils, mast cells, neutrophils, and keratinocytes are also implicated in the pathogenesis of BP. Here, we review the roles of and crosstalk between innate and adaptive immune cells in BP.
Collapse
Affiliation(s)
- Tianmeng Yan
- Department of Dermatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Zhenying Zhang
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhenying Zhang,
| |
Collapse
|
9
|
Maglie R, Solimani F, Didona D, Pipitò C, Antiga E, Di Zenzo G. The cytokine milieu of bullous pemphigoid: Current and novel therapeutic targets. Front Med (Lausanne) 2023; 10:1128154. [PMID: 36814775 PMCID: PMC9939461 DOI: 10.3389/fmed.2023.1128154] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Bullous pemphigoid (BP) is the most common autoimmune bullous disease, characterized by severe pruritus and skin blistering. The loss of tolerance against Collagen XVII, also referred to as BP180, is the main pathogenic event of BP, leading to production of IgG autoantibodies which mainly target the juxtamembranous extracellular non-collagenous 16th A (NC16A) domain of BP180. A complex inflammatory network is activated upon autoantibody binding to the basement membrane zone; this inflammatory loop involves the complement cascade and the release of several inflammatory cytokines, chemokines and proteases from keratinocytes, lymphocytes, mast cells and granulocytes. Collectively, these events disrupt the integrity of the dermal-epidermal junction, leading to subepidermal blistering. Recent advances have led to identify novel therapeutic targets for BP, whose management is mainly based on the long-term use of topical and systemic corticosteroids. As an example, targeting type-2 T-helper cell-associated cytokines, such as Interleukin-4 and interleukin-13 has shown meaningful clinical efficacy in case series and studies; targeting IL-17 and IL-23 has also been tried, owing to an important role of these cytokines in the chronic maintenance phase of BP. In this review article, we discuss the complex cytokine milieu that characterized BP inflammation, highlighting molecules, which are currently investigated as present and future therapeutic targets for this life-threatening disease.
Collapse
Affiliation(s)
- Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Carlo Pipitò
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni Di Zenzo
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
10
|
Nozawa K, Suzuki T, Kayanuma G, Yamamoto H, Nagayasu K, Shirakawa H, Kaneko S. Lisinopril prevents bullous pemphigoid induced by dipeptidyl peptidase 4 inhibitors via the Mas receptor pathway. Front Immunol 2023; 13:1084960. [PMID: 36685490 PMCID: PMC9849361 DOI: 10.3389/fimmu.2022.1084960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Recent studies have suggested that dipeptidyl peptidase 4 (DPP4) inhibitors increase the risk of development of bullous pemphigoid (BP), which is the most common autoimmune blistering skin disease; however, the associated mechanisms remain unclear, and thus far, no therapeutic targets responsible for drug-induced BP have been identified. Therefore, we used clinical data mining to identify candidate drugs that can suppress DPP4 inhibitor-associated BP, and we experimentally examined the underlying molecular mechanisms using human peripheral blood mononuclear cells (hPBMCs). A search of the US Food and Drug Administration Adverse Event Reporting System and the IBM® MarketScan® Research databases indicated that DPP4 inhibitors increased the risk of BP, and that the concomitant use of lisinopril, an angiotensin-converting enzyme inhibitor, significantly decreased the incidence of BP in patients receiving DPP4 inhibitors. Additionally, in vitro experiments with hPBMCs showed that DPP4 inhibitors upregulated mRNA expression of MMP9 and ACE2, which are responsible for the pathophysiology of BP in monocytes/macrophages. Furthermore, lisinopril and Mas receptor (MasR) inhibitors suppressed DPP4 inhibitor-induced upregulation of MMP9. These findings suggest that the modulation of the renin-angiotensin system, especially the angiotensin1-7/MasR axis, is a therapeutic target in DPP4 inhibitor-associated BP.
Collapse
Affiliation(s)
- Keisuke Nozawa
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Takahide Suzuki
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Gen Kayanuma
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroki Yamamoto
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,*Correspondence: Shuji Kaneko,
| |
Collapse
|
11
|
Lail SS, Arnold CR, de Almeida LGN, McKenna N, Chiriboga JA, Dufour A, Warren AL, Yates RM. Hox-driven conditional immortalization of myeloid and lymphoid progenitors: Uses, advantages, and future potential. Traffic 2022; 23:538-553. [PMID: 36117140 DOI: 10.1111/tra.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 01/20/2023]
Abstract
Those who study macrophage biology struggle with the decision whether to utilize primary macrophages derived directly from mice or opt for the convenience and genetic tractability of immortalized macrophage-like cell lines in in vitro studies. Particularly when it comes to studying phagocytosis and phagosomal maturation-a signature cellular process of the macrophage-many commonly used cell lines are not representative of what occurs in primary macrophages. A system developed by Mark Kamps' group, that utilizes conditionally constitutive activity of Hox transcription factors (Hoxb8 and Hoxa9) to immortalize differentiation-competent myeloid cell progenitors of mice, offers an alternative to the macrophage/macrophage-like dichotomy. In this resource, we will review the use of Hoxb8 and Hoxa9 as hematopoietic regulators to conditionally immortalize murine hematopoietic progenitor cells which retain their ability to differentiate into many functional immune cell types including macrophages, neutrophils, basophils, osteoclasts, eosinophils, dendritic cells, as well as limited potential for the generation of lymphocytes. We further demonstrate that the use of macrophages derived from Hoxb8/Hoxa9 immortalized progenitors and their similarities to bone marrow-derived macrophages. To supplement the existing data, mass spectrometry-based proteomics, flow cytometry, cytology, and in vitro phagosomal assays were conducted on macrophages derived from Hoxb8 immortalized progenitors and compared to bone marrow-derived macrophages and the macrophage-like cell line J774. We additionally propose the use of a standardized nomenclature to describe cells derived from the Hoxb8/Hoxa9 system in anticipation of their expanded use in the study of leukocyte cell biology.
Collapse
Affiliation(s)
- Shranjit S Lail
- Department of Medical Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Corey R Arnold
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luiz G N de Almeida
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil McKenna
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jose A Chiriboga
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy L Warren
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin Michael Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Mizuno Y, Shibata S, Ito Y, Taira H, Sugimoto E, Awaji K, Sato S. Interleukin-26–DNA complexes promote inflammation and dermal-epidermal separation in a modified human cryosection model of bullous pemphigoid. Front Immunol 2022; 13:1013382. [PMID: 36311716 PMCID: PMC9599390 DOI: 10.3389/fimmu.2022.1013382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by autoantibody-mediated activation of immune cells and subepidermal blister formation. Excess amounts of extracellular DNA are produced in BP, however, it remains unclear how extracellular DNA contributes to BP pathogenesis. Here we show a possible mechanism by which interleukin (IL)-26 binds to extracellular DNA released from neutrophils and eosinophils to support DNA sensing. Patients with BP exhibited high circulating levels of IL-26, forming IL-26–DNA complexes in the upper dermis and inside the blisters. IL-26–DNA complexes played a dual role in regulating local immunity and blister formation. First, they enhanced the production of inflammatory cytokines in monocytes and neutrophils. Second, and importantly, the complexes augmented the production and activity of proteases from co-cultured monocytes and neutrophils, which induced BP180 cleavage in keratinocytes and dermal-epidermal separation in a modified human cryosection model. Collectively, we propose a model in which IL-26 and extracellular DNA synergistically act on immune cells to enhance autoantibody-driven local immune responses and protease-mediated fragility of dermal-epidermal junction in BP.
Collapse
|
13
|
Zhou Z, Li N, Li H, Shi L, Gao Y, Liu W, Wang X, Qian H, Li X. Changes of platelet levels in routine blood tests may predict the possible remission and relapse of autoimmune bullous disease. Int J Dermatol 2022; 62:688-690. [PMID: 36030540 DOI: 10.1111/ijd.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/03/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Zhijun Zhou
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
| | - Na Li
- Department of Dermatology The Affiliated Hospital of Inner Mongolia Medical University Hohhot China
| | - Huicheng Li
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
| | - Luhuai Shi
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
| | - Yangmin Gao
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
| | - Weijun Liu
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
| | - Xiaobing Wang
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
| | - Hua Qian
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
- Chronic Disease Research Center Medical College, Dalian University Dalian Liaoning China
| | - Xiaoguang Li
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province The Affiliated Dermatology Hospital of Nanchang University Nanchang China
- Chronic Disease Research Center Medical College, Dalian University Dalian Liaoning China
| |
Collapse
|
14
|
Cole C, Vinay K, Borradori L, Amber KT. Insights Into the Pathogenesis of Bullous Pemphigoid: The Role of Complement-Independent Mechanisms. Front Immunol 2022; 13:912876. [PMID: 35874745 PMCID: PMC9300999 DOI: 10.3389/fimmu.2022.912876] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bullous pemphigoid is an autoimmune blistering disease caused by autoantibodies targeting BP180 and BP230. While deposits of IgG and/or complement along the epidermal basement membrane are typically seen suggesting complement -mediated pathogenesis, several recent lines of evidence point towards complement-independent pathways contributing to tissue damage and subepidermal blister formation. Notable pathways include macropinocytosis of IgG-BP180 complexes resulting in depletion of cellular BP180, direct induction of pro-inflammatory cytokines from keratinocytes, as well as IgE autoantibody- and eosinophil-mediated effects. We review these mechanisms which open new perspectives on novel targeted treatment modalities.
Collapse
|
15
|
Genetic polymorphism of glutathione S-transferases (GSTM1, GSTT1, and GSTP1) in patients with bullous pemphigoid in a Polish population. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction. Bullous pemphigoid (BP) is one of the most common bullous diseases with an autoimmune background. The etiology and pathogenesis of BP are believed to be influenced not only by environmental, genetic, and immunological factors as well as by oxidative stress. BP is observed more frequently in elderly patients. Additionally, more potent oxidative stress is observed just in old age. Glutathione S-transferases (GSTs) play key roles in the detoxification of xenobiotics, metabolism of endogenous substrates, and the defense against oxidative stress. The present study examines whether polymorphism of genes encoding three selected GSTs (GSTM1, GSTT1, and GSTP1) might be associated with a higher risk for BP.
Materials and methods. The study involved 71 patients with BP and 100 healthy volunteers from a Polish population. The presence of the deletion type polymorphism for GSTM1 and GSTT1 was confirmed by multiplex PCR. The Ile105Val GSTP1 polymorphism was analyzed by PCR-RFLP.
Results. It was observed that the combination of GSTM1 null/GSTT1 null/GSTP1 Ile/Val, Val/Val genotypes occurred more frequently in patients with BP (8.5%) than in controls (4.0%). The odds ratio for carriers of GSTM1 null/GSTT1 null/ GSTP1 Ile/Val, Val/Val genotypes was 2.22 (95% CI 0.60–8.16; p = 0.3727), but was not statistically significant.
Conclusions. The combination of GSTM1 null, GSTT1 null, GSTP1 Ile/Val, Val/Val genotypes might be related to a greater risk of BP in a Polish population. However, future studies including more individuals are required to confirm this.
Collapse
|
16
|
Cirillo N, Prime SS. A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules 2021; 11:1506. [PMID: 34680139 PMCID: PMC8533820 DOI: 10.3390/biom11101506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Pemphigus and pemphigoid diseases are potentially life-threatening autoimmune blistering disorders that are characterized by intraepithelial and subepithelial blister formation, respectively. In both disease groups, skin and/or mucosal blistering develop as a result of a disruption of intercellular adhesion (pemphigus) and cell-extracellular matrix (ECM) adhesion (pemphigoid). Given that metalloproteinases can target cell adhesion molecules, the purpose of the present study was to investigate the role of these enzymes in the pathogenesis of these bullous dermatoses. Studies examining MMPs (matrix metalloproteinases) and the ADAM (a disintegrin and metalloproteinase) family of proteases in pemphigus and pemphigoid were selected from articles published in the repository of the National Library of Medicine (MEDLINE/PubMed) and bioRxiv. Multiple phases of screening were conducted, and relevant data were extracted and tabulated, with 29 articles included in the final qualitative analysis. The majority of the literature investigated the role of specific components of the MMP family primarily in bullous pemphigoid (BP) whereas studies that focused on pemphigus were rarer. The most commonly studied metalloproteinase was MMP-9 followed by MMP-2; other MMPs included MMP-1, MMP-3, MMP-8, MMP-12 and MMP-13. Molecules related to MMPs were also included, namely, ADAM5, 8, 10, 15, 17, together with TIMP-1 and TIMP-3. The results demonstrated that ADAM10 and MMP-9 activity is necessary for blister formation in experimental models of pemphigus vulgaris (PV) and BP, respectively. The data linking MMPs to the pathogenesis of experimental BP were relatively strong but the evidence for involvement of metalloproteinases in PV was more tentative. These molecules represent potential candidates for the development of mechanism-based treatments of these blistering diseases.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, VIC 3053, Australia
| | - Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
17
|
Fang H, Shao S, Xue K, Yuan X, Qiao P, Zhang J, Cao T, Luo Y, Bai X, Li W, Li C, Qiao H, Dang E, Wang G. Neutrophil extracellular traps contribute to immune dysregulation in bullous pemphigoid via inducing B-cell differentiation and antibody production. FASEB J 2021; 35:e21746. [PMID: 34151465 DOI: 10.1096/fj.202100145r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Bullous pemphigoid (BP), an autoimmune skin disease, is characterized by autoantibodies against hemidesmosomal proteins in the skin and mucous membranes. Neutrophils infiltrate BP skin lesions, however, their role in immune dysregulation remains unclear. We investigated whether BP involves aberrant neutrophil extracellular traps (NETs) formation in skin lesions and circulation; and examined the triggers and deleterious immuno-inflammatory consequences. In the present study, we found that circulating NET-related biomarker levels increased in serum and blister fluid of BP patients and significantly correlated with disease severity. Additionally, circulating neutrophils from BP patients displayed enhanced spontaneous NETs formation than healthy controls. In vitro, BP180-NC16A immune complexes-induced NETosis in neutrophils from BP patients, which was abrogated by Fcγ receptor and/or NADPH pathway blockade. Furthermore, the elevated levels of NETs from BP patients boosted autoantibody production by inducing B-cell differentiation into plasma cells, mediated by MAPK P38 cascade activation. Together, our findings provide strong evidence that NETs are involved in a pathogenic loop, causing excessive differentiation of B cells and promotion of autoantibody production. Hence, targeting aberrant neutrophil responses will provide novel potential targets for the treatment of BP.
Collapse
Affiliation(s)
- Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu Yuan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jieyu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianyu Cao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaocui Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Caixia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Fang H, Li Q, Wang G. The role of T cells in pemphigus vulgaris and bullous pemphigoid. Autoimmun Rev 2020; 19:102661. [DOI: 10.1016/j.autrev.2020.102661] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/28/2022]
|
19
|
Margaroli C, Bradley B, Thompson C, Brown MR, Giacalone VD, Bhatt L, Stoff B, Ahuja S, Springman E, Tirouvanziam R, Feldman RJ. Distinct compartmentalization of immune cells and mediators characterizes bullous pemphigoid disease. Exp Dermatol 2020; 29:1191-1198. [PMID: 33047366 DOI: 10.1111/exd.14209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by recruitment of leucocytes into skin and release of damaging enzymes, resulting in epidermal detachment and blister formation. To better understand the role of leukotriene B4 (LTB4) and other inflammatory factors in BP pathophysiology, we conducted microscopic and immunohistochemical analyses of preserved skin biopsy sections and conducted flow cytometry and ELISA analyses of matched blood and blister fluid from BP patients. Neutrophils predominated in BP blister fluid, which also contained monocytes/macrophages and T cells, but few to no eosinophils and B cells. In contrast, BP skin histology showed a different pattern, with abundant neutrophils but eosinophils being the predominant immune cell type. LTB4 pathway and neutrophil activation markers were prevalent in BP skin lesions and strongly associated with perivascular neutrophils. Blister fluid neutrophils, monocytes/macrophages and eosinophils all exhibited increased surface expression of leukotriene A4 hydrolase and neutrophil elastase (P = .002 for both). Blister fluid was also enriched in interleukins (IL)-1α, IL-1β, IL-8, IL-10, IL-18, monocyte colony-stimulating factor (M-CSF) and vascular endothelial growth factor (VEGF). Our findings suggest differential leucocyte recruitment from blood into dermis and from dermis into blister, which correlates with disease activity, and presents potential new treatment opportunities for BP.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bridget Bradley
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Cecilia Thompson
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Milton R Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Vincent D Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Benjamin Stoff
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - Ron J Feldman
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Peng ZP, Jiang ZZ, Guo HF, Zhou MM, Huang YF, Ning WR, Huang JH, Zheng L, Wu Y. Glycolytic activation of monocytes regulates the accumulation and function of neutrophils in human hepatocellular carcinoma. J Hepatol 2020; 73:906-917. [PMID: 32407813 DOI: 10.1016/j.jhep.2020.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Neutrophils are one of the most abundant components in human hepatocellular carcinoma (HCC) and have been shown to play important roles in regulating disease progression. However, neutrophils are very short-lived cells in circulation, and mechanisms regulating their accumulation and functions in HCC are not yet fully understood. METHODS Monocytes were purified from non-tumor or paired tumor tissues of patients with HCC, and their production of neutrophil-attracting chemokines was evaluated. Mechanisms regulating the expression of CXCL2/8 by tumor monocytes, and the role of tumor monocyte-derived chemokines and cytokines in modulating neutrophil accumulation and functions were studied with both ex vivo analyses and in vitro experiments. RESULTS Monocyte-derived CXCL2 and CXCL8 were major factors in regulating the recruitment of neutrophils into tumor milieus. These chemokines, in addition to tumor-derived soluble factors, could inhibit apoptosis and sustain survival of neutrophils, thus leading to neutrophil accumulation in tumor tissues. Moreover, monocyte-derived TNF-α acted synergistically with tumor-derived soluble factors to induce the production of the pro-metastasis factor OSM by neutrophils. Further, the glycolytic switch in tumor-infiltrating monocytes mediated their production of CXCL2 and CXCL8 via the PFKFB3-NF-κB signaling pathway. Accordingly, levels of PFKFB3, CXCL2/CXCL8 production in monocytes and infiltration of OSM-producing neutrophils were positively correlated in human HCC tissues. CONCLUSIONS Our results unveiled a previously unappreciated link between monocytes and neutrophils in human HCC, identifying possible targets that could be therapeutically exploited in the future. LAY SUMMARY Neutrophils constitute a major but poorly understood component of human hepatocellular carcinoma (HCC). Herein, we unveil a novel mechanism by which metabolic switching in monocytes promotes the accumulation of neutrophils in the tumors of patients with HCC. Both monocyte-produced chemokines and signals from the tumor microenvironment promote the production of the pro-metastatic factor OSM by neutrophils. These data identify potential targets for immune-based anticancer therapies for HCC.
Collapse
Affiliation(s)
- Zhi-Peng Peng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ze-Zhou Jiang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hao-Fan Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Meng-Meng Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yu-Fan Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wan-Ru Ning
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jin-Hua Huang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
21
|
Yousefi S, Simon D, Stojkov D, Karsonova A, Karaulov A, Simon HU. In vivo evidence for extracellular DNA trap formation. Cell Death Dis 2020; 11:300. [PMID: 32355207 PMCID: PMC7193637 DOI: 10.1038/s41419-020-2497-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Extracellular DNA trap formation is a cellular function of neutrophils, eosinophils, and basophils that facilitates the immobilization and killing of invading microorganisms in the extracellular milieu. To form extracellular traps, granulocytes release a scaffold consisting of mitochondrial DNA in association with granule proteins. As we understand more about the molecular mechanism for the formation of extracellular DNA traps, the in vivo function of this phenomenon under pathological conditions remains an enigma. In this article, we critically review the literature to summarize the evidence for extracellular DNA trap formation under in vivo conditions. Extracellular DNA traps have not only been detected in infectious diseases but also in chronic inflammatory diseases, as well as in cancer. While on the one hand, extracellular DNA traps clearly exhibit an important function in host defense, it appears that they can also contribute to the maintenance of inflammation and metastasis, suggesting that they may represent an interesting drug target for such pathological conditions.
Collapse
Affiliation(s)
- Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
22
|
Kridin K, Kowalski EH, Kneiber D, Laufer-Britva R, Amber KT. From bench to bedside: evolving therapeutic targets in autoimmune blistering disease. J Eur Acad Dermatol Venereol 2019; 33:2239-2252. [PMID: 31314932 DOI: 10.1111/jdv.15816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune blistering diseases comprise a group of heterogenous conditions characterized by the loss of tolerance and subsequent development of autoantibodies targeting epidermal and subepidermal adhesion proteins. Blisters and erosions form on the skin and mucous membranes leading to significant morbidity and mortality. Traditional therapies rely on systemic immunosuppression. Advancements in our understanding of the pathophysiology of pemphigus and pemphigoid have led to the development of molecules which target specific pathways involved in induction and perpetuation of disease. In this review, we outline the novel therapeutic strategies including B-cell depletion, T-regulatory cell repletion, cell signalling inhibitors and small molecular inhibitors, inhibitory monoclonal antibodies, as well as complement inhibition. We additionally review their current level of clinical evidence. We lastly review therapeutics targets gleaned from the experimental epidermolysis bullosa acquisita mouse model. These emerging treatments offer an exciting progression from basic science discoveries that have the potential to transform the treatment paradigm in autoimmune blistering diseases.
Collapse
Affiliation(s)
- K Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - E H Kowalski
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - D Kneiber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - R Laufer-Britva
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - K T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Genovese G, Di Zenzo G, Cozzani E, Berti E, Cugno M, Marzano AV. New Insights Into the Pathogenesis of Bullous Pemphigoid: 2019 Update. Front Immunol 2019; 10:1506. [PMID: 31312206 PMCID: PMC6614376 DOI: 10.3389/fimmu.2019.01506] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
There are several lines of evidence indicating that the physiopathological bases of bullous pemphigoid (BP), the most common subepidermal autoimmune bullous disease, are hallmarked by the production of autoantibodies directed against the hemidesmosomal anchoring proteins BP180 and BP230. In contrast to the robustness of the latter assumption, the multifaceted complexity of upstream and downstream mechanisms implied in the pathogenesis of BP remains an area of intense speculation. So far, an imbalance between T regulatory cells and autoreactive T helper (Th) cells has been regarded as the main pathogenic factor triggering the autoimmune response in BP patients. However, the contributory role of signaling pathways fostering the B cell stimulation, such as Toll-like receptor activation, as well as that of ancillary inflammatory mechanisms responsible for blister formation, such as Th17 axis stimulation and the activation of the coagulation cascade, are still a matter of debate. In the same way, the pathomechanisms implied in the loss of dermal-epidermal adhesion secondary to autoantibodies binding are not fully understood. Herein, we review in detail the current concepts and controversies on the complex pathogenesis of BP, shedding light on the most recent theories emerging from the literature.
Collapse
Affiliation(s)
- Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Emanuele Cozzani
- DISSAL Section of Dermatology, Università degli Studi di Genova, Genoa, Italy
| | - Emilio Berti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo Cugno
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Internal Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Kowalski EH, Kneibner D, Kridin K, Amber KT. Serum and blister fluid levels of cytokines and chemokines in pemphigus and bullous pemphigoid. Autoimmun Rev 2019; 18:526-534. [DOI: 10.1016/j.autrev.2019.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
|
25
|
Giusti D, Bini E, Terryn C, Didier K, Le Jan S, Gatouillat G, Durlach A, Nesmond S, Muller C, Bernard P, Antonicelli F, Pham BN. NET Formation in Bullous Pemphigoid Patients With Relapse Is Modulated by IL-17 and IL-23 Interplay. Front Immunol 2019; 10:701. [PMID: 31019514 PMCID: PMC6458298 DOI: 10.3389/fimmu.2019.00701] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background: DNA extracellular traps (ETs), released by neutrophils (NETs), or eosinophils (EETs), play a pathogenic role in several autoimmune disorders. However, to date, NETs have never been investigated in bullous pemphigoid (BP) with respect to clinical and immunological activities, both at baseline and at time of relapse which have been characterized with specific IL-17 and IL-23 patterns. Objective: We sought to assess whether ETs were associated with BP as well as the relative contribution of IL-17 axis cytokines to NET induction. Methods: Skin biopsy specimens were obtained from 11 patients with BP. Immuno-detection of neutrophils and eosinophils combined to DNA staining allowed us to investigate the in-situ presence of NETs and EETs using confocal scanning microscopy. NETs release was evaluated ex vivo by stimulating polymorphonuclear cells from BP patients with BP biological fluids in presence of IL-17A and IL-23 or of glucocorticoids. Results: At baseline, ETs were observed in BP lesions at the site of dermal-epidermal cleavage. Despite an important infiltrate of eosinophils, ETs were essentially associated with neutrophils in situ and were not related to BP clinical activity at diagnosis. In situ observation of NETs was associated in 6 among 8 patients with serum capacity of NET induction. Notably both blister fluid and sera from BP patients at diagnosis and at time of relapse could induce NET formation ex vivo. In contrast, a longitudinal investigation showed a decrease of NET formation with time of treatment in patients undergoing remission. Mimicking relapse, complementation of sera from BP patients with ongoing remission with either IL-17A or IL-23 increased NET formation. Conversely, IL-17A inhibited NET formation induced by serum from BP patients with relapse supplemented or not with IL-23. Finally, glucocorticoids also inhibited NET formation ex vivo in BP. Conclusion: NET formation is an associated phenomenon with BP. Furthermore, we showed that IL-23 favored NET formation, whereas the effects of IL-17A are environment dependent. Indeed, IL-17A displayed a protective effect on NET formation when associated with IL-23, showing for the first-time differential effects of these two cytokines in BP.
Collapse
Affiliation(s)
- Delphine Giusti
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| | - Estela Bini
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Christine Terryn
- PICT Platform, University of Reims Champagne-Ardenne, Reims, France
| | - Kevin Didier
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Grégory Gatouillat
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| | - Anne Durlach
- Laboratory of Pathology, Reims University Hospital, Reims, France
| | - Stéphane Nesmond
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Celine Muller
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Department of Dermatology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims Champagne-Ardenne, Reims, France
| | - Bach Nga Pham
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| |
Collapse
|
26
|
Tie D, Da X, Natsuga K, Yamada N, Yamamoto O, Morita E. Bullous Pemphigoid IgG Induces Cell Dysfunction and Enhances the Motility of Epidermal Keratinocytes via Rac1/Proteasome Activation. Front Immunol 2019; 10:200. [PMID: 30809225 PMCID: PMC6379344 DOI: 10.3389/fimmu.2019.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 02/03/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by the formation of blisters, in which autoantibodies mainly target type XVII collagen (ColXVII) expressed in basal keratinocytes. BP IgG is known to induce the internalization of ColXVII from the plasma membrane of keratinocytes through macropinocytosis. However, the cellular dynamics following ColXVII internalization have not been completely elucidated. BP IgG exerts a precise effect on cultured keratinocytes, and the morphological/functional changes in BP IgG-stimulated cells lead to the subepidermal blistering associated with BP pathogenesis. Based on the electron microscopy examination, BP IgG-stimulated cells exhibit alterations in the cell membrane structure and the accumulation of intracellular vesicles. These morphological changes in the BP IgG-stimulated cells are accompanied by dysfunctional mitochondria, increased production of reactive oxygen species, increased motility, and detachment. BP IgG triggers the cascade leading to metabolic impairments and stimulates cell migration in the treated keratinocytes. These cellular alterations are reversed by pharmacological inhibitors of Rac1 or the proteasome pathway, suggesting that Rac1 and proteasome activation are involved in the effects of BP IgG on cultured keratinocytes. Our study highlights the role of keratinocyte kinetics in the direct functions of IgG in patients with BP.
Collapse
Affiliation(s)
- Duerna Tie
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Xia Da
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nanako Yamada
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Eishin Morita
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan,*Correspondence: Eishin Morita
| |
Collapse
|
27
|
Wannick M, Assmann JC, Vielhauer JF, Offermanns S, Zillikens D, Sadik CD, Schwaninger M. The Immunometabolomic Interface Receptor Hydroxycarboxylic Acid Receptor 2 Mediates the Therapeutic Effects of Dimethyl Fumarate in Autoantibody-Induced Skin Inflammation. Front Immunol 2018; 9:1890. [PMID: 30154797 PMCID: PMC6102353 DOI: 10.3389/fimmu.2018.01890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
The drug dimethyl fumarate (DMF) is in clinical use for the treatment of psoriasis and multiple sclerosis. In addition, it has recently been demonstrated to ameliorate skin pathology in mouse models of pemphigoid diseases, a group of autoimmune blistering diseases of the skin and mucous membranes. However, the mode of action of DMF in inflammatory skin diseases has remained elusive. Therefore, we have investigated here the mechanisms by which DMF improves skin pathology, using the antibody transfer model of bullous pemphigoid-like epidermolysis bullosa acquisita (EBA). Experimental EBA was induced by transfer of antibodies against collagen VII that triggered the infiltration of immune cells into the skin and led to inflammatory skin lesions. DMF treatment reduced the infiltration of neutrophils and monocytes into the skin explaining the improved disease outcome in DMF-treated animals. Upon ingestion, DMF is converted to monomethyl fumarate that activates the hydroxycarboxylic acid receptor 2 (HCA2). Interestingly, neutrophils and monocytes expressed Hca2. To investigate whether the therapeutic effect of DMF in EBA is mediated by HCA2, we administered oral DMF to Hca2-deficient mice (Hca2−/−) and wild-type littermates (Hca2+/+) and induced EBA. DMF treatment ameliorated skin lesions in Hca2+/+ but not in Hca2−/− animals. These findings demonstrate that HCA2 is a molecular target of DMF treatment in EBA and suggest that HCA2 activation limits skin pathology by inhibiting the infiltration of neutrophils and monocytes into the skin.
Collapse
Affiliation(s)
- Melanie Wannick
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Julian C Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Jakob F Vielhauer
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|