1
|
Ryu MS, Yang EM, Ye YM, Jang JH, Kim J, Lee SY, Park HS. Therapeutic Efficacy of YH35324 on FcεRIα-Mediated Mast Cell/Basophil Activation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2025; 17:181-195. [PMID: 40204504 PMCID: PMC11982638 DOI: 10.4168/aair.2025.17.2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 04/11/2025]
Abstract
PURPOSE Immunoglobulin E (IgE) induces mast cell/basophil activation by binding with FcεRIα and contributes to the development of allergic disease, in which targeting IgE has been considered an effective therapeutic strategy. YH35324 (YH) is a new hybrid protein with an extracellular domain consisting of FcεRIα, and its pharmacodynamic effect and safety were validated. This study aimed to evaluate the therapeutic potential of YH as an anti-IgE immunomodulator compared with omalizumab (Oma). METHODS To evaluate the in vitro efficacy of YH in human mast cells, YH was treated with various methods, and the changes were confirmed through flow cytometry, immunoblot analysis, and immunocytochemistry. To evaluate the ex vivo efficacy of YH, the expression of FcεRIα on the surface of blood basophils was measured in 64 subjects with allergic diseases by flow cytometry. Serum soluble FcεRIα, CD23, and Mas-Related G-Protein Coupled Receptor Member X2 levels were measured by enzyme-linked immunosorbent assay. RESULTS The YH-administered group exhibited significantly lower expression of FcεRIα on peripheral basophils compared to the Oma-administered group up to 14 days post-administration. YH directly suppressed FcεRIα expression on the surface of LAD2 cells, as it was bound to IgE-unbound FcεRIα and migrated into the cells by actin-dependent endocytosis, then was recycled by FcRn binding in the lysosome in vitro. Serum soluble FcεRIα levels were increased in the YH-administered group compared to the other groups and showed a positive correlation with serum-free IgE. CONCLUSIONS YH represents a new therapeutic agent for IgE-mediated allergic disease. Further studies are needed to evaluate its additional effects on the FcεRIα-mediated autoimmune mechanism.
Collapse
Affiliation(s)
- Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
2
|
Januskevicius A, Vasyle E, Rimkunas A, Palacionyte J, Kalinauskaite-Zukauske V, Malakauskas K. Serum T2-High Inflammation Mediators in Eosinophilic COPD. Biomolecules 2024; 14:1648. [PMID: 39766355 PMCID: PMC11674300 DOI: 10.3390/biom14121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Eosinophils are central inflammatory cells in asthma; however, a portion of patients with chronic obstructive pulmonary disease (COPD) have blood or sputum eosinophilia, a condition termed eosinophilic COPD (eCOPD), which may contribute to the progression of the disease. We hypothesize that eosinophilic inflammation in eCOPD patients is related to Type 2 (T2)-high inflammation seen in asthma and that serum mediators might help us to identify T2-high inflammation in patients and choose an appropriate personalized treatment strategy. Thus, we aimed to investigate ten serum levels of T2-high inflammation mediators in eCOPD patients and compare them to severe non-allergic eosinophilic asthma (SNEA) patients. We included 8 subjects with eCOPD, 10 with SNEA, and 11 healthy subjects (HS) as a control group. The concentrations of biomarkers in serum samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). In this study, we found that eCOPD patients were distinguished from SNEA patients by elevated serum levels of sIL-5Rα, MET, TRX1, ICTP, and IL-4, as well as decreased serum levels of eotaxin-1 and sFcεRI. Moreover, MET, ICTP, eotaxin-1, and sFcεRI demonstrated high sensitivity and specificity as potential biomarkers for eCOPD patients. Furthermore, serum levels of IL-5 and IL-25 in combination with sIL-5Rα, MET, and IL-4 demonstrated a high value in identifying T2-high inflammation in eCOPD patients. In conclusion, this study highlights that while T2-high inflammation drives eosinophilic inflammation in both eCOPD and SNEA through similar mechanisms, the distinct expression of its mediators reflects an imbalance between T1 and T2 inflammation pathways in eCOPD patients. A combined analysis of serum mediators may aid in identifying T2-high inflammation in eCOPD patients and in selecting an appropriate personalized treatment strategy.
Collapse
Affiliation(s)
- Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (J.P.); (V.K.-Z.)
| | | | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (J.P.); (V.K.-Z.)
| |
Collapse
|
3
|
Engeroff P, Villazala-Merino S. Editorial: IgE and its receptors in the context of allergy. FRONTIERS IN ALLERGY 2024; 5:1471097. [PMID: 39262765 PMCID: PMC11387217 DOI: 10.3389/falgy.2024.1471097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Affiliation(s)
- Paul Engeroff
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sergio Villazala-Merino
- Centre D'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| |
Collapse
|
4
|
Vogel M, Engeroff P. A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies (Basel) 2024; 13:58. [PMID: 39051334 PMCID: PMC11270207 DOI: 10.3390/antib13030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.
Collapse
Affiliation(s)
- Monique Vogel
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Paul Engeroff
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Palacionyte J, Januskevicius A, Vasyle E, Rimkunas A, Miliauskas S, Malakauskas K. Clinical Remission Criteria and Serum Levels of Type 2 Inflammation Mediators during 24 Weeks of Treatment with the Anti-IL-5 Drug Mepolizumab in Patients with T2-High Severe Asthma. Diagnostics (Basel) 2024; 14:1345. [PMID: 39001236 PMCID: PMC11240777 DOI: 10.3390/diagnostics14131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Anti-interleukin (IL) 5 is an effective treatment modality for inhibiting eosinophilic inflammation in patients with T2-high severe asthma. The aim of this study was to determine the clinical efficacy and serum levels of type 2 inflammatory mediators during 24 weeks of mepolizumab treatment in patients with T2-high severe asthma. Eighteen patients with T2-high severe asthma were enrolled in this study. All patients received 100 mg of mepolizumab subcutaneously every 4 weeks and were retested at 4, 12, and 24 weeks. A clinical examination, asthma control test (ACT), and spirometry were performed; fractional exhaled nitric oxide (FeNO) levels were evaluated; and blood samples were drawn at every visit. Type 2 inflammation mediator levels were measured using enzyme-linked immunosorbent assay (ELISA). The blood eosinophil level significantly decreased, the ACT score and FEV1 increased after 4 weeks of mepolizumab treatment with the same tendency after 12 and 24 weeks (p < 0.05), and the FeNO level did not change (p > 0.05). A total of 27.8% of patients reached clinical remission criteria after 24 weeks of mepolizumab treatment. IL-33 and eotaxin significantly increased (p < 0.05) while IL-5, IL-13, thymic stromal lymphopoietin (TSLP), soluble IL-5 receptor subunit alpha (sIL-5Rα), and soluble high-affinity immunoglobulin E receptor (sFcεRI) decreased, with the same tendency after 12 and 24 weeks (p < 0.05). The serum levels of immunoglobulin (Ig) E and IL-4 and IL-25 levels did not change during mepolizumab treatment compared to baseline (p > 0.05). In conclusion, treatment with mepolizumab over 24 weeks improved lung function and asthma control in T2-high severe asthma patients, with nearly one-third achieving clinical remission criteria, and affected the balance of type 2 inflammatory mediators.
Collapse
Affiliation(s)
- Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (S.M.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| | - Skaidrius Miliauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (S.M.); (K.M.)
| | - Kestutis Malakauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (S.M.); (K.M.)
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| |
Collapse
|
6
|
Moñino-Romero S, Kolkhir P, Ohanyan T, Szépfalusi Z, Weller K, Metz M, Scheffel J, Maurer M, Altrichter S. Elevated baseline soluble FcεRI may be linked to early response to omalizumab treatment in chronic spontaneous urticaria. J Eur Acad Dermatol Venereol 2024; 38:167-174. [PMID: 37641982 DOI: 10.1111/jdv.19485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Omalizumab, an anti-IgE monoclonal antibody, is an effective treatment in chronic spontaneous urticaria (CSU). Predictors of fast and good response for omalizumab treatment have not yet been identified and characterized. OBJECTIVE To evaluate whether soluble FcεRI (sFcεRI), a marker of IgE-mediated mast cell activation, predicts the time of response to omalizumab in CSU. METHODS Sera of 67 CSU patients were obtained before omalizumab treatment and analysed for sFcεRI levels by ELISA (2 ng/mL was used as cut-off for elevated sFcɛRI). Treatment response during the first 4 weeks was assessed with the urticaria activity score (UAS7), urticaria control test (UCT) and the rolling UAS7 (rUAS7). RESULTS Elevated pre-treatment sFcɛRI levels were detected in more than 70% of patients with completely controlled disease (UCT = 16) and well-controlled disease (UCT = 12-15) and were significantly associated with disease control (χ2 = 4.94, p < 0.05). More than half of the patients (14/25) with low levels had poor disease control (UCT < 12). Of the patients who achieved complete and marked UAS7 response, respectively, 75% and 63% had elevated baseline sFcɛRI levels. Post-treatment UAS7 scores were lower in patients with elevated sFcɛRI levels reaching statistical significance at Week 3 (p < 0.05). Patients with elevated baseline sFcɛRI levels achieved rUAS7 ≤ 6 and = 0 earlier than those with lower levels (Days 9 vs. 13 and Days 12 vs. 14, respectively). CONCLUSION Elevated sFcεRI serum levels predict early and good response to treatment with omalizumab, which may help to better design treatment options for CSU patients.
Collapse
Affiliation(s)
- S Moñino-Romero
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - P Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - T Ohanyan
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Z Szépfalusi
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - K Weller
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - M Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - J Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - M Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - S Altrichter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Department of Dermatology and Venereology, Kepler University Hospital, Linz, Austria
| |
Collapse
|
7
|
Moñino-Romero S, Kolkhir P, Szépfalusi Z, Schoepke N, Metz M, Asero R, Ferrer M, Gimenez-Arnau A, Grattan CEH, Jakob T, Konstantinou GN, Raap U, Staubach P, Zhang K, Bindslev-Jensen C, Daschner A, Kinaciyan T, Makris M, Marrouche N, Schmid-Grendelmeier P, Sussman G, Toubi E, Maurer M, Altrichter S. In chronic spontaneous urticaria soluble FcεRI is elevated and linked to atopy and chronic inducible urticaria. Clin Transl Allergy 2023; 13:e12272. [PMID: 37488737 PMCID: PMC10314276 DOI: 10.1002/clt2.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Affiliation(s)
- Sherezade Moñino-Romero
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Zsolt Szépfalusi
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nicole Schoepke
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Riccardo Asero
- Department of Allergology, Clinica San Carlo, Paderno Dugnano, Milan, Italy
| | - Marta Ferrer
- Department of Allergy and Clinical Immunology, Clinica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), RETIC de Asma, Reacciones Adversas y Alérgicas (ARADYAL), Pamplona, Spain
| | - Ana Gimenez-Arnau
- Department of Dermatology, Hospital Del Mar, IMIM, Universitat Autònoma y Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus-Liebig University Gießen, Gießen, Germany
| | - George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Ulrike Raap
- Department of Human Medicine and Health Sciences, University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany
| | - Petra Staubach
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Ke Zhang
- Allerdia Inc, Los Angeles, California, USA
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Alvaro Daschner
- Servicio de Alergia, Instituto de Investigación Sanitaria (IIS)-Hospital Universitario de La Princesa, Madrid, Spain
| | - Tamar Kinaciyan
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Nadine Marrouche
- Department of Dermatology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Peter Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Gordon Sussman
- Division of Allergy and Clinical Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Elias Toubi
- Faculty of Medicine, Bnai-Zion Medical Center, Haifa, Israel
| | - Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sabine Altrichter
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| |
Collapse
|
8
|
Steinert C, Moñino‐Romero S, Butze M, Scheffel J, Dölle‐Bierke S, Dobbertin‐Welsch J, Beyer K, Maurer M, Altrichter S. Soluble IgE-binding factors in the serum of food-allergic patients: Possible pathophysiological role of soluble FcεRI as protective factor. Clin Transl Allergy 2023; 13:e12222. [PMID: 36825516 PMCID: PMC9904993 DOI: 10.1002/clt2.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND IgE-mediated food allergy is the result of an aberrant immune response involving the interaction of a food allergen with its specific IgE bound to FcɛRI, the high affinity IgE receptor, on mast cells. Allergen-specific IgE also binds to soluble binding factors, but, their expression and role in food allergy is not well characterized. Here, we assess the prevalence and relevance of soluble IgE binding factors in food allergy and tolerance. METHODS We measured serum levels of four IgE binding factors, that is, galectin-3, galectin-9, soluble FcɛRI (sFcεRI) and soluble CD23 (sCD23) in 67 adults sensitized to peanut or hazelnut and sFcɛRI in 29 children sensitized to hen's egg. Adults without food allergen sensitization (n = 17) served as healthy controls. We compared serum levels of patients and controls and assessed them, in the former, for links to clinical features including allergy and tolerance. RESULTS Serum levels of sFcɛRI and sCD23, but not galectin-3 and galectin-9, significantly differ in food-sensitized patients as compared to healthy controls. A subgroup (28%) of peanut and hazelnut allergic patients had elevated sFcεRI levels, that were associated with higher total and specific IgE levels. Furthermore, sFcεRI levels were significantly higher in tolerant subjects compared to allergics. Among hazelnut allergic patients, those with high sFcεRI levels tolerated the highest protein amounts in the oral food challenge. CONCLUSION sFcɛRI but not sCD23, galectin-3 and galectin-9 might play a role in the pathophysiology of food allergy. Its functional role or use as biomarker should be assessed in further studies.
Collapse
Affiliation(s)
- Carolin Steinert
- Institute of AllergologyCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
- Allergology and ImmunologyFraunhofer Institute for Translational Medicine and Pharmacology ITMPBerlinGermany
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
| | - Sherezade Moñino‐Romero
- Institute of AllergologyCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
- Allergology and ImmunologyFraunhofer Institute for Translational Medicine and Pharmacology ITMPBerlinGermany
| | - Monique Butze
- Institute of AllergologyCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
- Allergology and ImmunologyFraunhofer Institute for Translational Medicine and Pharmacology ITMPBerlinGermany
- University of PotsdamPotsdamGermany
| | - Jörg Scheffel
- Institute of AllergologyCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
- Allergology and ImmunologyFraunhofer Institute for Translational Medicine and Pharmacology ITMPBerlinGermany
| | - Sabine Dölle‐Bierke
- Division of Allergy and Immunology, Venerology and AllergyDepartment of DermatologyCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
| | - Josefine Dobbertin‐Welsch
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
| | - Marcus Maurer
- Institute of AllergologyCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
- Allergology and ImmunologyFraunhofer Institute for Translational Medicine and Pharmacology ITMPBerlinGermany
| | - Sabine Altrichter
- Institute of AllergologyCharité – Universitätsmedizin BerlinFreie Universität Berlin und Humboldt‐Universität zu BerlinBerlinGermany
- Allergology and ImmunologyFraunhofer Institute for Translational Medicine and Pharmacology ITMPBerlinGermany
- Department for Dermatology and VenerologyKepler University HospitalLinzAustria
| |
Collapse
|
9
|
Ando T, Kitaura J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells 2021; 10:cells10071697. [PMID: 34359869 PMCID: PMC8305778 DOI: 10.3390/cells10071697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.
Collapse
Affiliation(s)
- Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| |
Collapse
|
10
|
Autoimmunity, IgE and FcεRI-bearing cells. Curr Opin Immunol 2021; 72:43-50. [PMID: 33819742 DOI: 10.1016/j.coi.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Antibody-mediated autoimmune diseases (AAID) involve several isotypes of autoreactive antibodies. In a growing number of AAID, autoreactive IgE are present with a significant prevalence and are often associated with the presence of IgG anti-IgE and/or anti-FcεRIα (high affinity IgE receptor α chain). FcεRI-bearing cells, such as basophils or mast cells, are key players in some of these AAID. Recent advances in the pathophysiology of these diseases led to the passed or current development of anti-IgE strategies that showed very potent effects in some of them. The present review centralizes the information on the relevance of autoreactive IgE and FcεRI-bearing cells in the pathophysiology of different AAID and the ones where the anti-IgE therapeutic strategy shows or may show some benefits for the patients.
Collapse
|
11
|
Czolk R, Klueber J, Sørensen M, Wilmes P, Codreanu-Morel F, Skov PS, Hilger C, Bindslev-Jensen C, Ollert M, Kuehn A. IgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches. Front Immunol 2021; 11:594350. [PMID: 33584660 PMCID: PMC7876438 DOI: 10.3389/fimmu.2020.594350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Abstract
Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (eg, peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes.
Collapse
Affiliation(s)
- Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Julia Klueber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Martin Sørensen
- Department of Pediatric and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Per Stahl Skov
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
- RefLab ApS, Copenhagen, Denmark
- Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
12
|
MacGlashan D. The relationship between released soluble FceRI-alpha and its cell surface density on human basophils. PLoS One 2021; 16:e0245942. [PMID: 33481953 PMCID: PMC7822313 DOI: 10.1371/journal.pone.0245942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background The IgE-mediated activation of mast cells and basophils results in the secretion of many substances, including the release of FceRI-alpha subunit. This released alpha subunit can bind IgE and it may act as a down-regulator of subsequent IgE-dependent reactions. However, previous studies do not observe loss of the mass of FceRI-alpha associated with the cells, at least not for human basophils. This study was designed to understand the basis for the discordant observations. Methods Purified human basophils were stimulated with multiple activating secretagogues and supernatants were examined for histamine and released FceRI-alpha. In addition, cell surface IgE densities (occupied and unoccupied) were measured by flow cytometry and total cellular content of mature and immature FceRI-alpha determined with Western blots. Results Released FceRI-alpha, on average, represented 7% of the total surface FceRI before the reaction. The molecular weight of the soluble FceRI-alpha was approximately 54 kD, larger than immature subunit and somewhat smaller than surface subunit. In addition, 1) release ceased long before internalized FceRI-alpha was processed, 2) release was insensitive to Bafilomycin A, 3) release was independent of the starting density of FceRI and 4) release occurred more effectively with non-IgE-dependent stimuli, FMLP or C5a. Conclusions There appears to be relatively constant amount of nearly mature FceRI-alpha that is susceptible to secretion events induced by any form of stimulation. The amount, on average, represents about 7% of the mature form of FceRI-alpha.
Collapse
Affiliation(s)
- Donald MacGlashan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
14
|
Üzülmez Ö, Kalic T, Breiteneder H. Advances and novel developments in molecular allergology. Allergy 2020; 75:3027-3038. [PMID: 32882057 PMCID: PMC7756543 DOI: 10.1111/all.14579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Abstract
The continuous search for new allergens and the design of allergen derivatives improves the understanding of their allergenicity and aids the design of novel diagnostic and immunotherapy approaches. This article discusses the recent developments in allergen and epitope discovery, allergy diagnostics and immunotherapy. Structural information is crucial for the elucidation of cross-reactivity of marker allergens such as the walnut Jug r 6 or that of nonhomologous allergens, as shown for the peanut allergens Ara h 1 and 2. High-throughput sequencing, liposomal nanoallergen display, bead-based assays, and protein chimeras have been used in epitope discovery. The binding of natural ligands by the birch pollen allergen Bet v 1 or the mold allergen Alt a 1 increased the stability of these allergens, which is directly linked to their allergenicity. We also report recent findings on the use of component-resolved approaches, basophil activation test, and novel technologies for improvement of diagnostics. New strategies in allergen-specific immunotherapy have also emerged, such as the use of virus-like particles, biologics or novel adjuvants. The identification of dectin-1 as a key player in allergy to tropomyosins and the formyl peptide receptor 3 in allergy to lipocalins are outstanding examples of research into the mechanism of allergic sensitization.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
15
|
Zhang Y, Hu S, Ge S, Wang J, He L. Paeoniflorin inhibits IgE-mediated allergic reactions by suppressing the degranulation of mast cells though binding with FcϵRI alpha subunits. Eur J Pharmacol 2020; 886:173415. [PMID: 32771669 DOI: 10.1016/j.ejphar.2020.173415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Paeoniflorin (PF), a monoterpene glycoside isolated from the aqueous extract of the Chinese herb Radix Paeoniae Alba, has been used for treating various inflammatory diseases. In this study, we aimed to investigate the anti-allergic activities of PF. The anti-anaphylactic activity of PF was investigated using mast cell (MC) degranulation assay as well as Ca2+ influx in vitro and skin swelling and extravasation assays in vivo. The results showed that PF inhibited MC degranulation (histamine release from 74.5 ± 4.95 ng/ml to 58.7 ± 6.06 ng/ml) and Ca2+ influx challenged by DNP-BSA in vitro. In addition, PF reduced the degree of swelling and Evans blue exudation in mice paws. Furthermore, PF dose-dependently reduced serum inflammatory mediator release in mice sensitized with ovalbumin for 48 h by inhibiting MC degranulation. Molecular docking study revealed that PF bound better with the α subunit of FcϵRI than with the β subunit. SPR revealed that PF had a strong affinity interaction with FcϵRI α subunit and the KD value was (7.08 ± 0.97) e-6 M. Our findings revealed that PF inhibited anaphylactic responses in vivo and in vitro, and it can be considered a novel FcϵRI inhibitor for preventing MC-related allergic diseases.
Collapse
Affiliation(s)
- Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Ge
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jue Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Doña I, Pérez‐Sánchez N, Eguiluz‐Gracia I, Muñoz-Cano R, Bartra J, Torres MJ, Cornejo‐García JA. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy 2020; 75:561-575. [PMID: 31469167 DOI: 10.1111/all.14032] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), the medications most commonly used for treating pain and inflammation, are the main triggers of drug hypersensitivity reactions. The latest classification of NSAIDs hypersensitivity by the European Academy of Allergy and Clinical Immunology (EAACI) differentiates between cross-hypersensitivity reactions (CRs), associated with COX-1 inhibition, and selective reactions, associated with immunological mechanisms. Three phenotypes fill into the first group: NSAIDs-exacerbated respiratory disease, NSAIDs-exacerbated cutaneous disease and NSAIDs-induced urticaria/angioedema. Two phenotypes fill into the second one: single-NSAID-induced urticaria/angioedema/anaphylaxis and single-NSAID-induced delayed reactions. Diagnosis of NSAIDs hypersensitivity is hampered by different factors, including the lack of validated in vitro biomarkers and the uselessness of skin tests. The advances achieved over recent years recommend a re-evaluation of the EAACI classification, as it does not consider other phenotypes such as blended reactions (coexistence of cutaneous and respiratory symptoms) or food-dependent NSAID-induced anaphylaxis. In addition, it does not regard the natural evolution of phenotypes and their potential interconversion, the development of tolerance over time or the role of atopy. Here, we address these topics. A state of the art on the underlying mechanisms and on the approaches for biomarkers discovery is also provided, including genetic studies and available information on transcriptomics and metabolomics.
Collapse
Affiliation(s)
- Inmaculada Doña
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Natalia Pérez‐Sánchez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
| | - Ibon Eguiluz‐Gracia
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Rosa Muñoz-Cano
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - Joan Bartra
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - María José Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Malaga Spain
| | | |
Collapse
|
17
|
Moñino-Romero S, Vecillas LDL, Alenazy LA, Labella M, Szépfalusi Z, Fiebiger E, Castells MC. Soluble FcεRI, IgE, and tryptase as potential biomarkers of rapid desensitizations for platin IgE sensitized cancer patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2085-2088.e10. [PMID: 32028011 DOI: 10.1016/j.jaip.2020.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Sherezade Moñino-Romero
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Mass.
| | - Leticia de Las Vecillas
- Department of Allergy, Marqués de Valdecilla University Hospital-Instituto de Investigación Marques de Valdecilla, Santander, Spain; Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Leila A Alenazy
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marina Labella
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Edda Fiebiger
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mariana C Castells
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
18
|
Eiwegger T, Hung L, San Diego KE, O'Mahony L, Upton J. Recent developments and highlights in food allergy. Allergy 2019; 74:2355-2367. [PMID: 31593325 DOI: 10.1111/all.14082] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The achievement of long-lasting, safe treatments for food allergy is dependent on the understanding of the immunological basis of food allergy. Accurate diagnosis is essential for management. In recent years, data from oral food challenges have revealed that routine allergy testing is poor at predicting clinical allergy for tree nuts, almonds in particular. More advanced antigen-based tests including component-resolved diagnostics and epitope reactivity may lead to more accurate diagnosis and selection of therapeutic intervention. Additional diagnostic accuracy may come from cellular tests such as the basophil activation test or mast cell approaches. In the context of clinical trials, cellular tests have revealed specific T-cell and B-cell populations that are more abundant in food-allergic individuals with distinct mechanistic features. Awareness of clinical markers, such as the ability to eat baked forms of milk and egg, continues to inform the understanding of natural tolerance development. Mouse models have allowed for investigation into multiple mechanisms of food allergy including modification of epithelial metabolism, and the induction of regulatory cell subsets and the microbiome. Increasing numbers of children who underwent food immunotherapy enlarged the body of evidence on mechanisms and predictors of treatment success. Experimental immunological markers in conjunction with clinical determinants such as lower age and lower initial specific IgE appear to be of benefit. More research on the optimal dose, preparation, and route of application integrating a high-level safety and efficacy is demanded. Alternatively, biologics blocking TSLP, IL-33, IL-4 and IL-13, or IgE may help to achieve that.
Collapse
Affiliation(s)
- Thomas Eiwegger
- Translational Medicine Program Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program Departments of Paediatrics The Hospital for Sick Children University of Toronto Toronto ON Canada
| | - Lisa Hung
- Translational Medicine Program Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
| | | | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Julia Upton
- Translational Medicine Program Research Institute Hospital for Sick Children Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program Departments of Paediatrics The Hospital for Sick Children University of Toronto Toronto ON Canada
| |
Collapse
|