1
|
Ehlers M, Jönsson F. Pathogenic and Nonpathogenic Antibody Responses in Allergic Diseases. Eur J Immunol 2025; 55:e202249978. [PMID: 40071673 PMCID: PMC11898564 DOI: 10.1002/eji.202249978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 03/15/2025]
Abstract
Allergen-specific antibodies, particularly of the IgE class, are a hallmark of many allergic diseases. Yet paradoxically, (1) a proportion of healthy individuals possess allergen-specific IgE without clinical signs of allergy; (2) some, but not all, allergic individuals develop a more severe disease over time or fail to respond to allergen-specific immunotherapy; and (3) allergen-specific IgG antibodies can inhibit IgE-mediated responses but they can also induce allergic reactions. In this review, we discuss the occurrence of and transition between nonpathogenic and pathogenic allergen-specific antibody responses in the light of a two-stage model. We recapitulate different factors and scenarios that may induce different inflammatory conditions and qualitatively distinct allergen-specific T- and B-cell responses, influencing IgE origins and affinities, IgE/IgG(4) ratios, IgG effector functions, antibody glycosylation patterns, Fc and glycan-binding receptor expression and involvement, and ultimately their propensity to elicit allergic responses. Differences in these antibody characteristics may determine the onset of symptomatic allergy and the severity or remission of the disease.
Collapse
Affiliation(s)
- Marc Ehlers
- Laboratories of Immunology and Antibody Glycan AnalysisInstitute of Nutritional MedicineUniversity of Lübeck and University Medical Center of Schleswig‐HolsteinLübeckGermany
- Airway Research Center NorthGerman Center for Lung Research (DZL)University of LübeckLübeckGermany
| | - Friederike Jönsson
- Institut PasteurUniversité de Paris Cité, Unit of Antibodies in Therapy and PathologyParisFrance
- CNRSParisFrance
| |
Collapse
|
2
|
Matricardi PM, van Hage M, Custovic A, Korosec P, Santos AF, Valenta R. Molecular allergy diagnosis enabling personalized medicine. J Allergy Clin Immunol 2025:S0091-6749(25)00065-X. [PMID: 39855360 DOI: 10.1016/j.jaci.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Allergic patients are characterized by complex and patient-specific IgE sensitization profiles to various allergens, which are accompanied by different phenotypes of allergic disease. Molecular allergy diagnosis establishes the patient's IgE reactivity profile at a molecular allergen level and has moved allergology into the era of precision medicine. Molecular allergology started in the late 1980s with the isolation of the first allergen-encoding DNA sequences. Already in 2002, the first allergen microarrays were developed for the assessment of complex IgE sensitization patterns. Recombinant allergens are used for a precise definition of personal IgE reactivity profiles, identification of genuine IgE sensitization to allergen sources for refined prescription of allergen-specific immunotherapy and allergen avoidance diagnosis of co- versus cross-sensitization, epidemiologic studies, and prediction of symptoms, phenotypes, and development of allergic disease. For example, molecular IgE sensitization patterns associated with more severe respiratory allergies, severe food allergy, and allergy to honeybee or vespids are already established. The implementation of molecular allergy diagnosis into daily clinical practice requires continuous medical education and training doctors in molecular allergy diagnosis, and may be facilitated by clinical decision support systems such as diagnostic algorithms that may take advantage of artificial intelligence.
Collapse
Affiliation(s)
- Paolo Maria Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Respiratory Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter Korosec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia; Karl Landsteiner University, Krems an der Donau, Austria; National Research Center, National Research Center Institute of Immunology Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
3
|
McKenzie CI, Reinwald S, Averso B, Spurrier B, Satz A, von Borstel A, Masinovic S, Varese N, Aui PM, Wines BD, Hogarth PM, Hew M, Rolland JM, O'Hehir RE, van Zelm MC. Subcutaneous immunotherapy for bee venom allergy induces epitope spreading and immunophenotypic changes in allergen-specific memory B cells. J Allergy Clin Immunol 2024; 154:1511-1522. [PMID: 39218358 DOI: 10.1016/j.jaci.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only disease-modifying treatment for allergic disorders. We have recently discovered that allergen-specific memory B cells (Bmem) are phenotypically altered after 4 months of sublingual AIT for ryegrass pollen allergy. Whether these effects are shared with subcutaneous allergen immunotherapy (SCIT) and affect the epitope specificity of Bmem remain unknown. OBJECTIVE The study aimed to evaluate the phenotype and antigen receptor sequences of Bmem specific to the major bee venom (BV) allergen Api m 1 before and after ultra-rush SCIT for BV allergy. METHODS Recombinant Api m 1 protein tetramers were generated to evaluate basophil activation in a cohort of individuals with BV allergy before and after BV SCIT. Comprehensive flow cytometry was performed to evaluate and purify Api m 1-specific Bmem. Immunoglobulin genes from single Api m 1-specific Bmem were sequenced and structurally modeled onto Api m 1. RESULTS SCIT promoted class switching of Api m 1-specific Bmem to IgG2 and IgG4 with increased expression of CD23 and CD29. Furthermore, modeling of Api m 1-specific immunoglobulin from Bmem identified a suite of possible new and diverse allergen epitopes on Api m 1 and highlighted epitopes that may preferentially be bound by immunoglobulin after SCIT. CONCLUSIONS AIT induces shifting of epitope specificity and phenotypic changes in allergen-specific Bmem.
Collapse
Affiliation(s)
- Craig I McKenzie
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Simone Reinwald
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | | | | | | | - Anouk von Borstel
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Sabina Masinovic
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Nirupama Varese
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - Pei Mun Aui
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - P Mark Hogarth
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jennifer M Rolland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Robyn E O'Hehir
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Menno C van Zelm
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Hossain FMA, Atif SM, Athari SS, Panaitescu C. Editorial: Immune responses in the progression of allergy and asthma. Front Immunol 2024; 15:1503497. [PMID: 39660146 PMCID: PMC11628529 DOI: 10.3389/fimmu.2024.1503497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Affiliation(s)
| | - Shaikh M. Atif
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Seyyed Shamsadin Athari
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Carmen Panaitescu
- Victor Babes University of Medicine and Pharmacy, Timisoara, Timis, Romania
| |
Collapse
|
5
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S. Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, NY
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
6
|
Van der Borght K, Brimnes J, Haspeslagh E, Brand S, Neyt K, Gupta S, Knudsen NPH, Hammad H, Andersen PS, Lambrecht BN. Sublingual allergen immunotherapy prevents house dust mite inhalant type 2 immunity through dendritic cell-mediated induction of Foxp3 + regulatory T cells. Mucosal Immunol 2024; 17:618-632. [PMID: 38570140 DOI: 10.1016/j.mucimm.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Sublingual allergen immunotherapy (SLIT) is an emerging treatment option for allergic asthma and a potential disease-modifying strategy for asthma prevention. The key cellular events leading to such long-term tolerance remain to be fully elucidated. We administered prophylactic SLIT in a mouse model of house dust mite (HDM)-driven allergic asthma. HDM extract was sublingually administered over 3 weeks followed by intratracheal sensitization and intranasal challenges with HDM. Prophylactic SLIT prevented allergic airway inflammation and hyperreactivity with a low lab-to-lab variation. The HDM-specific T helper (Th)2 (cluster of differentiation 4 Th) response was shifted by SLIT toward a regulatory and Th17 response in the lung and mediastinal lymph node. By using Derp1-specific cluster of differentiation 4+ T cells (1-DER), we found that SLIT blocked 1-DER T cell recruitment to the mediastinal lymph node and dampened IL-4 secretion following intratracheal HDM sensitization. Sublingually administered Derp1 protein activated 1-DER T cells in the cervical lymph node via chemokine receptor7+ migratory dendritic cells (DC). DCs migrating from the oral submucosa to the cervical lymph node after SLIT-induced Foxp3+ regulatory T cells. When mice were sensitized with HDM, prior prophylactic SLIT increased Derp1 specific regulatory T cells (Tregs) and lowered Th2 recruitment in the lung. By using Foxp3-diphtheria toxin receptor mice, Tregs were found to contribute to the immunoregulatory prophylactic effect of SLIT on type 2 immunity. These findings in a mouse model suggest that DC-mediated functional Treg induction in oral mucosa draining lymph nodes is one of the driving mechanisms behind the disease-modifying effect of prophylactic SLIT.
Collapse
Affiliation(s)
- Katrien Van der Borght
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jens Brimnes
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Eline Haspeslagh
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stephanie Brand
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Katrijn Neyt
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Shashank Gupta
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Peter S Andersen
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Zemelka-Wiacek M, Agache I, Akdis CA, Akdis M, Casale TB, Dramburg S, Jahnz-Różyk K, Kosowska A, Matricardi PM, Pfaar O, Shamji MH, Jutel M. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy 2024; 79:823-842. [PMID: 37984449 DOI: 10.1111/all.15945] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
The importance of allergen immunotherapy (AIT) is multifaceted, encompassing both clinical and quality-of-life improvements and cost-effectiveness in the long term. Key mechanisms of allergen tolerance induced by AIT include changes in memory type allergen-specific T- and B-cell responses towards a regulatory phenotype with decreased Type 2 responses, suppression of allergen-specific IgE and increased IgG1 and IgG4, decreased mast cell and eosinophil numbers in allergic tissues and increased activation thresholds. The potential of novel patient enrolment strategies for AIT is taking into account recent advances in biomarkers discoveries, molecular allergy diagnostics and mobile health applications contributing to a personalized approach enhancement that can increase AIT efficacy and compliance. Artificial intelligence can help manage and interpret complex and heterogeneous data, including big data from omics and non-omics research, potentially predict disease subtypes, identify biomarkers and monitor patient responses to AIT. Novel AIT preparations, such as synthetic compounds, innovative carrier systems and adjuvants, are also of great promise. Advances in clinical trial models, including adaptive, complex and hybrid designs as well as real-world evidence, allow more flexibility and cost reduction. The analyses of AIT cost-effectiveness show a clear long-term advantage compared to pharmacotherapy. Important research questions, such as defining clinical endpoints, biomarkers of patient selection and efficacy, mechanisms and the modulation of the placebo effect and alternatives to conventional field trials, including allergen exposure chamber studies are still to be elucidated. This review demonstrates that AIT is still in its growth phase and shows immense development prospects.
Collapse
Affiliation(s)
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Thomas B Casale
- Departments of Medicine and Pediatrics and Division of Allergy and Immunology, Joy McCann Culverhouse Clinical Research Center, University of South Florida, Tampa, Florida, USA
| | - Stephanie Dramburg
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karina Jahnz-Różyk
- Department of Internal Diseases, Pneumonology, Allergology and Clinical Immunology, Military Institute of Medicine-National Research Institute, Warsaw, Poland
| | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Mohamed H Shamji
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
8
|
Kumar B, Deshmukh R. A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis. Curr Pharm Des 2024; 30:887-901. [PMID: 38486383 DOI: 10.2174/0113816128295952240306072100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Allergic rhinitis (AR) is an IgE-mediated atopic disease that occurs due to inhaled antigens in the immediate phase. Misdiagnosis, insufficient treatment, or no treatment at all are frequent problems associated with the widespread condition known as chronic allergic rhinitis. AR symptoms include runny, itchy, stuffy, and sneezing noses. Asthma and nasal polyps, for example, sometimes occur simultaneously in patients. In order for people living with AR to be as comfortable and productive as possible, treatment should center on reducing their symptoms. The online sources and literature, such as Pubmed, ScienceDirect, and Medline, were reviewed to gather information regarding therapeutic modalities of AR and evidence-based treatments for the disease as the objectives of the present study. An increasing number of people are suffering from AR, resulting in a heavy financial and medical burden on healthcare systems around the world. Undertreating AR frequently results in a decline in quality of life. Treatment compliance is a critical challenge in the administration of AR. Innovative therapies are needed for RA to provide patients with symptom alleviation that is less expensive, more effective, and longer duration of action. Evidence-based guidelines are helpful for managing AR illness. Treating AR according to evidence-based standards can help in disease management. AR treatment includes allergen avoidance, drug therapy, immunotherapy, patient education, and follow-up. However, AR treatment with intranasal corticosteroids is more popular. Hence, in this review article, treatment options for AR are discussed in depth. We also discussed the incidence, causes, and new treatments for this clinical condition.
Collapse
Affiliation(s)
- Bhupendra Kumar
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rohitas Deshmukh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
9
|
Layhadi JA, Lalioti A, Palmer E, van Zelm MC, Wambre E, Shamji MH. Mechanisms and Predictive Biomarkers of Allergen Immunotherapy in the Clinic. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:59-66. [PMID: 37996041 DOI: 10.1016/j.jaip.2023.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Allergen immunotherapy (AIT) remains to be the only disease-modifying treatment for IgE-mediated allergic diseases such as allergic rhinitis. It can provide long-term clinical benefits when given for 3 years or longer. Mechanisms of immune tolerance induction by AIT are underscored by the modulation of several compartments within the immune system. These include repair of disruption in epithelial barrier integrity, modulation of the innate immune compartment that includes regulatory dendritic cells and innate lymphoid cells, and adaptive immune compartments such as induction of regulatory T and B cells. Altogether, these are also associated with the dampening of allergen-specific TH2 and T follicular helper cell responses and subsequent generation of blocking antibodies. Although AIT is effective in modifying the immune response, there is a lack of validated and clinically relevant biomarkers that can be used to monitor desensitization, efficacy, and the likelihood of response, all of which can contribute to accelerating personalized medication and increasing patient care. Candidate biomarkers comprise humoral, cellular, metabolic, and in vivo biomarkers; however, these are primarily studied in small trials and require further validation. In this review, we evaluate the current candidates of biomarkers of AIT and how we can implement changes in future studies to help us identify clinically relevant biomarkers of safety, compliance, and efficacy.
Collapse
Affiliation(s)
- Janice A Layhadi
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anastasia Lalioti
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Elizabeth Palmer
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Menno C van Zelm
- Department of Immunology, Monash University and Alfred Health, Melbourne, Victoria, Australia; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Erik Wambre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
Shigehara K, Kamekura R, Ikegami I, Sakamoto H, Yanagi M, Kamiya S, Kodama K, Asai Y, Miyajima S, Nishikiori H, Uno E, Yamamoto K, Takano K, Chiba H, Ohnishi H, Ichimiya S. Circulating T follicular helper 2 cells, T follicular regulatory cells and regulatory B cells are effective biomarkers for predicting the response to house dust mite sublingual immunotherapy in patients with allergic respiratory diseases. Front Immunol 2023; 14:1284205. [PMID: 38111589 PMCID: PMC10726700 DOI: 10.3389/fimmu.2023.1284205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
The relationships between T follicular helper (Tfh) cells and antigen-specific immunoglobulins (sIgs) in patients with allergic respiratory diseases who are receiving antigen immunotherapy (AIT) have not been fully clarified. Therefore, we started to perform house dust mite sublingual immunotherapy (HDM-SLIT) for 20 patients with atopic asthma comorbid with allergic rhinitis (AA+AR) who were already receiving ordinary treatments including inhaled corticosteroid (ICS). We examined percentages of circulating T follicular helper (cTfh) and regulatory (cTfr) cells and percentages of circulating regulatory T (cTreg) and B (cBreg) cells by FACS and we examined levels of Der-p/f sIgs by ELISA. Based on the symptom score (asthma control questionnaire: ACQ) and medication score ((global initiative for asthma: GINA) treatment step score) in patients with AA, the patients were divided into responders and non-responders. The percentage of cTfh2 cells significantly decreased and the percentage of cTfh1 cells significantly increased within the first year. Der-p/f sIgEs decreased after a transient elevation at 3 months in both groups. Notably, the percentage of cTfh2 cells and the ratio of cTfh2/cBreg cells and Der-p/f sIgEs greatly decreased in responders from 6 months to 12 months. The percentages of cTfr and cTreg cells showed significant negative correlations with the percentage of cTfh2 cells. The percentage of IL-4+ cTfh cells were significantly decreased and the percentage of IFN-γ+ cTfh cells were increased before treatment to 24 months in 6 patients examined (4 responders and 2 non-responders). We performed multi plelogistic regression analysis based on these results, the ratios of cTfh2/cTfr cells and cTfh2/cBreg cells at the start of therapy were statistically effective biomarkers for predicting the response to HDM-SLIT in patients with AA+AR.
Collapse
Affiliation(s)
- Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Ai Medical Clinic, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Sakamoto
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Kodama
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuichiro Asai
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satsuki Miyajima
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiji Uno
- Ai Medical Clinic, Sapporo, Japan
| | - Keisuke Yamamoto
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takano
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Ohnishi
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Kappen J, Diamant Z, Agache I, Bonini M, Bousquet J, Canonica GW, Durham SR, Guibas GV, Hamelmann E, Jutel M, Papadopoulos NG, Roberts G, Shamji MH, Zieglmayer P, Gerth van Wijk R, Pfaar O. Standardization of clinical outcomes used in allergen immunotherapy in allergic asthma: An EAACI position paper. Allergy 2023; 78:2835-2850. [PMID: 37449468 DOI: 10.1111/all.15817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION In allergic asthma patients, one of the more common phenotypes might benefit from allergen immunotherapy (AIT) as add-on intervention to pharmacological treatment. AIT is a treatment with disease-modifying modalities, the evidence for efficacy is based on controlled clinical trials following standardized endpoint measures. However, so far there is a lack of a consensus for asthma endpoints in AIT trials. The aim of a task force (TF) of the European Academy of Allergy and Clinical Immunology (EAACI) is evaluating several outcome measures for AIT in allergic asthma. METHODS The following domains of outcome measures in asthmatic patients have been evaluated for this position paper (PP): (i) exacerbation rate, (ii) lung function, (iii) ICS withdrawal, (iv) symptoms and rescue medication use, (v) questionnaires (PROMS), (vi) bronchial/nasal provocation, (vii) allergen exposure chambers (AEC) and (viii) biomarkers. RESULTS Exacerbation rate can be used as a reliable objective primary outcome; however, there is limited evidence due to different definitions of exacerbation. The time after ICS withdrawal to first exacerbation is considered a primary outcome measure. Besides, the advantages and disadvantages and clinical implications of further domains of asthma endpoints in AIT trials are elaborated in this PP. CONCLUSION This EAACI-PP aims to highlight important aspects of current asthma measures by critically evaluating their applicability for controlled trials of AIT.
Collapse
Affiliation(s)
- Jasper Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
| | - Zuzana Diamant
- Departmentt of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | | | - Matteo Bonini
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Clinical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Jean Bousquet
- Charite Universitatsmedizin Berlin Campus Berlin Buch, MASK-air, Montpellier, France
| | - G Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic Humanitas University & Research Hospital-IRCCS, Milan, Italy
| | - Stephen R Durham
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - George V Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, UK
| | - Eckard Hamelmann
- Children's Center Bethel, University Hospital Bielefeld, University Bielefeld, Bielefeld, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | | | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, UK
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Petra Zieglmayer
- Karl Landsteiner University, Competence Center for Allergology and Immunology, Krems, Austria
| | - Roy Gerth van Wijk
- Section of Allergology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
12
|
Okamoto Y, Kato M, Ishii K, Sato Y, Hata T, Asaka Y. Safety and effectiveness of a 300 IR house dust mite sublingual tablet: descriptive 4-year final analysis of a post-marketing surveillance in Japan. Immunotherapy 2023; 15:1401-1414. [PMID: 37727966 DOI: 10.2217/imt-2023-0100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Background: Data are limited for clinical outcomes with house dust mite (HDM) allergen immunotherapy beyond 2 years' observation. Materials & methods: A post-marketing drug-use survey assessed the safety and effectiveness of the 300 index of reactivity (IR) HDM tablet during use for up to 4 years in Japan. Results: 538 patients were evaluable for safety and 383 for effectiveness. Most adverse drug reactions (ADRs) occurred early and were local reactions; 5.6% of 249 total events were reported during years 2 to 4 as new ADRs after the interim analysis. The CAP-RAST score was identified as a potential risk factor for ADRs. The proportion of evaluable patients with severe allergic rhinitis symptoms decreased from 46.4% at baseline (n = 317) to 1.0% at 4 years (n = 104). Patients (n = 16) who discontinued 300 IR HDM tablet due to symptomatic improvement had sustained improvement relative to baseline 1 to 2 years later. Conclusion: Long-term use of the 300 IR HDM tablet is safe and effective.
Collapse
Affiliation(s)
- Yoshitaka Okamoto
- Chiba University, Chiba, 260-8670 & Chiba Rosai Hospital, Chiba, 290-0003, Japan
| | - Moe Kato
- Shionogi Pharmacovigilance Center Co., Ltd, Osaka, 541-0045, Japan
| | - Kiyonori Ishii
- Shionogi Pharmacovigilance Center Co., Ltd, Osaka, 541-0045, Japan
| | - Yumi Sato
- Medical Affairs Department, Shionogi & Co., Ltd, Osaka, 541-0045, Japan
| | - Tomohisa Hata
- Pharmacovigilance Department, Shionogi & Co., Ltd, Osaka, 541-0042, Japan
| | - Yuta Asaka
- Pharmacovigilance Department, Shionogi & Co., Ltd, Osaka, 541-0042, Japan
| |
Collapse
|
13
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
14
|
Current advances in house dust mite allergen immunotherapy (AIT): Routes of administration, biomarkers and molecular allergen profiling. Mol Immunol 2023; 155:124-134. [PMID: 36806944 DOI: 10.1016/j.molimm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Allergy to house dust mites (HDM) is a perennial respiratory disease that affect more than half a billion people worldwide. Dermatophagoides pteronyssinus and D. farinae, two HDM species, are major sources of indoor allergens triggering allergic inflammation. Although symptomatic drugs are widely used to block the allergic reaction, allergen immunotherapy is the only curative treatment of IgE-mediated type I respiratory allergies. In this article, we review recent advances in various routes of allergen immunotherapy. We particularly focus on subcutaneous (SCIT) and sublingual (SLIT) immunotherapy, used as a reference therapy since they have transformed allergic treatments by improving symptoms (asthma and rhinitis) as well as the quality of life of patients. We also highlight recent data in more exploratory routes (i.e., oral, intralymphatic, epicutaneous and intradermal) and discuss respective advantages of various route, as well as their foreseen modes of action. Finally, we provide an update on biomarkers as well as on the relevance of the molecular profiling of allergic individuals related to treatment efficacy or asthma prediction.
Collapse
|
15
|
Berjont N, Floch VVBL, O'Hehir RE, Canonica WG, van Zelm MC, Batard T, Mascarell L. Early increase in serum specific IgG2 upon allergen immunotherapy with a 300 IR sublingual house dust mite tablet. Allergy 2023. [PMID: 36809660 DOI: 10.1111/all.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Affiliation(s)
| | | | - Robyn E O'Hehir
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
| | - Walter G Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Menno C van Zelm
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
16
|
Liu D, Li J, Gao Y, Cao F, Xiong W, Wang C, Zhang Y, Zhang L. Clinical response to subcutaneous immunotherapy at 3 years in allergic rhinitis patients is predicted by short-term treatment effectiveness. Clin Transl Allergy 2023; 13:e12223. [PMID: 36825515 PMCID: PMC9911623 DOI: 10.1002/clt2.12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Dong Liu
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina,Department of Otolaryngology Head and Neck SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijingChina,Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| | - Jingyun Li
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina,Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| | - Yunbo Gao
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Feifei Cao
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Wei Xiong
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Chengshuo Wang
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina,Department of Otolaryngology Head and Neck SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijingChina,Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina,Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Yuan Zhang
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Luo Zhang
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina,Department of Otolaryngology Head and Neck SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijingChina,Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina,Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
17
|
Su Q, Ren N, Feng M, Zeng X, Dong Y, Xian M, Shi X, Luo T, Liu G, Li J. Specific immunoglobulin G4 correlates with Th2 cytokine reduction in patients with allergic asthma treated by Dermatophagoides pteronyssinus subcutaneous immunotherapy. World Allergy Organ J 2023; 16:100715. [PMID: 36820309 PMCID: PMC9937843 DOI: 10.1016/j.waojou.2022.100715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 01/27/2023] Open
Abstract
Background The modulations of lymphocyte subsets and cytokine production due to subcutaneous allergen immunotherapy (SCIT) are not fully clarified. Objective We investigated the changes in T-lymphocyte subsets and serum Dermatophagoides pteronyssinus-specific immunoglobulin G4 (Der-p sIgG4), as well as cytokine production during Der-p SCIT, in patients with allergic asthma. Methods This study involved 20 patients with allergic asthma who were receiving 156-week Der-p SCIT and 20 patients without SCIT (non-SCIT). We measured symptom and medication scores (SMS), serum Der-p sIgG4 levels, CD4+CD25+Foxp3+ T regulatory (Treg), CD4+IL-4-IFN-γ+ T-helper (Th) 1, and CD4+IL-4+IFN-γ- Th2 lymphocyte percentages in peripheral blood mononuclear cells (PBMCs) with/without Der-p extract stimulation at weeks 0, 4, 12, 16, 52, 104, and 156. Cytokine release inhibition assays were performed by incubation with serum from SCIT and non-SCIT patients, Der-p allergen, and PBMCs. Levels of interleukin (IL)-4, IL-5, IL-10, IL-13, IL-17, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were evaluated in supernatant. Results We found that SCIT patients had significantly lower SMS after week 52. Der-p sIgG4 levels in SCIT patients significantly increased at week 16 compared with non-SCIT subjects. CD4+IL-4+IFN-γ- Th2% in SCIT patients showed a significant decrease from weeks 104-156 compared with week 0, while no change was observed in CD4+CD25+Foxp3+ Treg and CD4+IL-4-IFN-γ+ Th1 percentages. IL-5, IL-13, IL-4, IL-17, and TNF-α levels in supernatant of PBMCs cultured with serum of SCIT patients after 16 weeks showed significant lower levels compared with non-SCIT patients, and showed significant reverse associations with Der-p sIgG4 levels. Conclusion SCIT induced Dep-p sIgG4 may be involved in downregulating Th2 cytokine production in Der-p allergic asthma patients.
Collapse
Affiliation(s)
- Qiujuan Su
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nina Ren
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mulin Feng
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, China
| | - Xueni Zeng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Dong
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, China,Corresponding author. Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
18
|
Rahman RS, Wesemann DR. Immunology of allergen immunotherapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac022. [PMID: 36530352 PMCID: PMC9749131 DOI: 10.1093/immadv/ltac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 10/17/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying therapy for allergic disease. Through repeated inoculations of low doses of allergen-either as whole proteins or peptides-patients can achieve a homeostatic balance between inflammatory effectors induced and/or associated with allergen contact, and mediators of immunologic non-responsiveness, potentially leading to sustained clinical improvements. AIT for airborne/respiratory tract allergens and insect venoms have traditionally been supplied subcutaneously, but other routes and modalities of administration can also be effective. Despite differences of allergen administration, there are some similarities of immunologic responses across platforms, with a general theme involving the restructuring and polarization of adaptive and innate immune effector cells. Here we review the immunology of AIT across various delivery platforms, including subcutaneous, sublingual, epicutaneous, intradermal, and intralymphatic approaches, emphasizing shared mechanisms associated with achieving immunologic non-responsiveness to allergen.
Collapse
Affiliation(s)
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
19
|
Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022; 77:3309-3319. [PMID: 35892225 DOI: 10.1111/all.15454] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Allergic rhinitis (AR) is a global health problem with increasing prevalence and association with an enormous medical and socioeconomic burden. New recognition of immune cells such as type 2 innate lymphocytes (ILC2s), T helper (Th2) 2 cells, follicular helper T cells, follicular regulatory T cells, regulatory T cells, B cells, dendritic cells, and epithelial cells in AR pathogenesis has been updated in this review paper. An in-depth understanding of the mechanisms underlying AR will aid the identification of biomarkers associated with disease and ultimately provide valuable parameters critical to guide personalized targeted therapy. As the only etiological treatment option for AR, allergen-specific immunotherapy (AIT) has attracted increasing attention, with evidence for effectiveness of AIT recently demonstrated in several randomized controlled trials and long-term real-life studies. The exploration of biologics as therapeutic options has only involved anti-IgE and anti-type 2 inflammatory agents; however, the cost-effectiveness of these agents remains to be elucidated precisely. In the midst of the currently on-going COVID-19 pandemic, a global life-threatening disease, although some studies have indicated that AR is not a risk factor for severity and mortality of COVID-19, this needs to be confirmed in multi-centre, real-life studies of AR patients from different parts of the world.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Potapova E, Bordas-Le Floch V, Schlederer T, Vrtala S, Huang HJ, Canonica GW, Valenta R, Matricardi PM, Mascarell L. Molecular reactivity profiling upon immunotherapy with a 300 IR sublingual house dust mite tablet reveals marked humoral changes towards major allergens. Allergy 2022; 77:3084-3095. [PMID: 35474582 DOI: 10.1111/all.15327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Molecular antibody reactivity profiles have not yet been studied in depth in patients treated by sublingual house dust mite (HDM) tablet immunotherapy. Humoral immune responses to a large panel of HDM mite allergens were studied using allergen microarray technology in a subset of clinically defined high and low responder patients from a double-blind placebo-controlled allergen-specific immunotherapy (AIT) trial using sublingual 300 IR HDM tablets. METHODS Serum levels of IgE, IgG and IgG4 to 13 Dermatophagoides pteronyssinus molecules were measured at baseline and after 1-year AIT, using allergen microarrays in 100 subjects exhibiting high or low clinical benefit. RESULTS Der p 1, Der p 2 and Der p 23 were the most frequently recognized allergens in the study population. Patients with HDM-related asthma had significantly higher allergen-specific IgE levels to Der p 1 and Der p 23. No significant difference in the distribution of allergen sensitization pattern was observed between high and low responders. An increase in serum allergen-specific IgG and IgG4 occurred upon AIT, in particular to allergens Der p 1, Der p 2 and Der p 23 (p < 0.0001). CONCLUSIONS We confirm for our study population that Der p 1- and Der p 23-specific IgE levels are associated with asthma. IgE reactivity profiles were not predicitive of sublingual AIT outcomes, with 300 IR tablets as efficacious in pauci- and multi-sensitized subjects. Our study is the first to demonstrate the induction of IgG and IgG4 specific for the HDM allergens Der p 1, Der p 2 and Der p 23 by sublingual AIT.
Collapse
Affiliation(s)
- Ekaterina Potapova
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Thomas Schlederer
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria
| | - Huey-Jy Huang
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria
| | - Giorgio W Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria.,NRC Institute of Immunology, Federal Biomedical Agency of Russia, Moscow, Russia.,Department of Clinical Immunology and Allergy, Sechenov First State Medical University, Moscow, Russia.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Paolo M Matricardi
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
21
|
Fernandez JC, Luce S, Floch VBL, Canonica WG, Batard T, Mascarell L. Correlation of serum vitamin D concentration with humoral-specific IgG2 and IgG4 levels in high responders to immunotherapy with a 300 IR sublingual house dust mite tablet. Clin Exp Allergy 2022; 52:1219-1224. [PMID: 35861410 DOI: 10.1111/cea.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | - Walter G Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | | |
Collapse
|
22
|
Gazi U, Bahceciler NN. Immune mechanisms induced by sublingual immunotherapy in allergic respiratory diseases. Clin Exp Immunol 2022; 209:262-269. [PMID: 35975953 PMCID: PMC9521660 DOI: 10.1093/cei/uxac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023] Open
Abstract
Allergic respiratory diseases (ARDs) are still a major burden on global public health. Sublingual immunotherapy (SLIT) is a mode of allergen immunotherapy (AIT) which involves administration of the allergen under the tongue, and benefits from tolerogenic properties of the oral mucosa. Studies revealed reduced levels of eosinophilia and eosinophil-dominated inflammation in airways of both animals and humans after SLIT. SLIT was also suggested to lower basophil responsiveness and innate lymphoid cell-2 function in blood samples collected from patients with ARD. Moreover, apart from shifting pathogenic type 2 (TH2) to a type 1 (TH1) and protective regulatory (Treg) polarization of helper T-cell immune response, antibody isotype switch from IgE to IgG1, IgG2, IgG4 and IgA was also reported in patients with ARD receiving SLIT. Today, the literature on SLIT-mediated activities is still scarce and more studies are required to further enlighten the mechanisms utilized by SLIT for the induction of tolerance. The aim of this review is to summarize the current knowledge about the immune-regulatory mechanisms induced by SLIT against ARDs.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Nerin Nadir Bahceciler
- Department of Pediatrics, Division of Allergy and Immunology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
23
|
Ridolo E, Incorvaia C, Heffler E, Cavaliere C, Paoletti G, Canonica GW. The Present and Future of Allergen Immunotherapy in Personalized Medicine. J Pers Med 2022; 12:jpm12050774. [PMID: 35629196 PMCID: PMC9143661 DOI: 10.3390/jpm12050774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases are particularly suitable for personalized medicine, because they meet the needs for therapeutic success, which include a known molecular mechanism of the disease, a diagnostic tool for that disease and a treatment that blocks this mechanism. A range of tools is available for personalized allergy diagnosis, including molecular diagnostics, treatable traits and omics (i.e., proteomics, epigenomics, metabolomics, transcriptomics and breathomics), to predict patient response to therapies, detect biomarkers and mediators and assess disease control status. Such tools enhance allergen immunotherapy. Higher diagnostic accuracy results in a significant increase (based on a greater performance achieved with personalized treatment) in efficacy, further increasing the known and unique characteristics of a treatment designed to work on allergy causes.
Collapse
Affiliation(s)
- Erminia Ridolo
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, 43121 Parma, Italy;
- Correspondence:
| | - Cristoforo Incorvaia
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, 43121 Parma, Italy;
| | - Enrico Heffler
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Carlo Cavaliere
- Department of Sense Organs, Sapienza University, 00185 Rome, Italy;
| | - Giovanni Paoletti
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Giorgio Walter Canonica
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| |
Collapse
|