1
|
Vo MN, Kwon MH, Liu FY, Fridayana FR, Huang Y, Hong SS, Kang JH, Yin GN, Ryu JK. Exogenous administration of heparin-binding epidermal growth factor-like growth factor improves erectile function in mice with bilateral cavernous nerve injury. Asian J Androl 2025:00129336-990000000-00305. [PMID: 40247713 DOI: 10.4103/aja2024125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 04/19/2025] Open
Abstract
Prostate cancer is the second most common malignancy and the sixth leading cause of cancer-related death in men worldwide. Radical prostatectomy (RP) is the standard treatment for localized prostate cancer, but the procedure often results in postoperative erectile dysfunction (ED). The poor efficacy of phosphodiesterase 5 inhibitors after surgery highlights the need to develop new therapies to enhance cavernous nerve regeneration and improve the erectile function of these patients. In the present study, we aimed to examine the potential of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in preserving erectile function in cavernous nerve injury (CNI) mice. We found that HB-EGF expression was reduced significantly on the 1st day after CNI in penile tissue. Ex vivo and in vitro studies showed that HB-EGF promotes major pelvic ganglion neurite sprouting and neuro-2a (N2a) cell migration. In vivo studies showed that exogenous HB-EGF treatment significantly restored the erectile function of CNI mice to 86.9% of sham levels. Immunofluorescence staining showed that mural and neuronal cells were preserved by inducing cell proliferation and reducing apoptosis and reactive oxygen species production. Western blot analysis showed that HB-EGF upregulated protein kinase B and extracellular signal-regulated kinase activation and neurotrophic factor expression. Overall, HB-EGF is a major promising therapeutic agent for treating ED in postoperative RP.
Collapse
Affiliation(s)
- Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| | - Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Medicinal Toxicology Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| |
Collapse
|
2
|
Liu FY, Cho YL, Fridayana FR, Niloofar L, Vo MN, Huang Y, Limanjaya A, Kwon MH, Ock J, Lee SJ, Yin GN, Lee NK, Ryu JK. MT-100, a human Tie2-agonistic antibody, improves penile neurovasculature in diabetic mice via the novel target Srpx2. Exp Mol Med 2025; 57:104-117. [PMID: 39741183 PMCID: PMC11799434 DOI: 10.1038/s12276-024-01373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025] Open
Abstract
Diabetes is an incurable, chronic disease that can lead to many complications, including angiopathy, peripheral neuropathy, and erectile dysfunction (ED). The angiopoietin-Tie2 signaling pathway plays a critical role in blood vessel development, formation, remodeling, and peripheral nerve regeneration. Therefore, strategies for activating the Tie2 signaling pathway have been developed as potential therapies for neurovascular diseases. Here, we developed a human Tie2-agonistic antibody (MT-100) that not only resists Ang-2 antagonism and activates Tie2 signaling but also regulates a novel target, sushi repeat-containing protein X-linked 2 (Srpx2). This regulation led to the survival of vascular and neuronal cells, a reduction in the production of reactive oxygen species (ROS), activation of the PI3K/AKT/eNOS signaling pathway, increased expression of neurotrophic factors, and ultimately alleviation of ED in diabetic mice. Our findings not only provide conclusive evidence that MT-100 is a promising therapeutic strategy for the treatment of diabetic ED but also suggest it has substantial clinical applications for other complications associated with diabetes.
Collapse
Affiliation(s)
- Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Young-Lai Cho
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Lashkari Niloofar
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea.
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- MabTics Co., Ltd., Daejeon, Republic of Korea.
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
3
|
Fridayana FR, Ock J, Liu FY, Niloofar L, Vo MN, Huang Y, Yin GN, Ryu JK. Heparin-binding epidermal growth factor-like growth factor improves erectile function in streptozotocin-induced diabetic mice. J Sex Med 2024; 21:751-761. [PMID: 39033084 DOI: 10.1093/jsxmed/qdae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Heparin-binding epidermal growth factor-like growth factor (HB-EGF) serves as a pro-angiogenic factor; however, there is to our knowledge currently no reported research on the relationship between HB-EGF and diabetic erectile dysfunction (ED). AIM In this study we aimed to determine whether HB-EGF can improve the erectile function of streptozotocin-induced diabetic mice and to explore the related mechanisms. METHODS Eight-week-old male C57BL/6 mice were used for diabetes induction. Diabetes mellitus (DM) was induced by low-dose injections of streptozotocin (50 mg/kg) for 5 consecutive days. Eight weeks after streptozotocin injections, DM was determined by measuring blood glucose and body weight. Diabetic mice were treated with two intracavernous administrations of phosphate-buffered saline (20 μL) or various doses of HB-EGF (days -3 and 0; 1, 5, and 10 μg in 20 μL of phosphate-buffered saline). The angiogenesis effect of HB-EGF was confirmed by tube formation and migration assays in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was measured by electrical stimulation of the cavernous nerve, as well as histological examination and Western blot analysis for mechanism assessment. OUTCOMES In vitro angiogenesis, cell proliferation, in vivo intracavernous pressure, neurovascular regeneration, cavernous permeability, and survival signaling were the outcomes measured. RESULTS Expression of HB-EGF was reduced under diabetic conditions. Exogenous HB-EGF induced angiogenesis in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was decreased in the DM group, whereas administration of HB-EGF resulted in a significant improvement of erectile function (91% of the age-matched control group) in association with increased neurovascular content, including cavernous endothelial cells, pericytes, and neuronal cells. Histological and Western blot analyses revealed a significant increase in the permeability of the corpus cavernosum in DM mice, which was attenuated by HB-EGF treatment. The protein expression of phospho-Akt Ser473 and phosphorylated endothelial nitric oxide synthase Ser1177 increased after HB-EGF treatment. CLINICAL IMPLICATIONS The use of HB-EGF may be an effective strategy to treat ED associated with DM or other neurovascular diseases. STRENGTHS AND LIMITATIONS Similarly to other pro-angiogenic factors, HB-EGF has dual roles in vascular and neuronal development. Our study focused on broadly evaluating the role of HB-EGF in diabetic ED. In view of the properties of HB-EGF as an angiogenic factor, its dose concentration should be strictly controlled to avoid potential side effects. CONCLUSION In the diabetic ED mouse model in this study erectile function was improved by HB-EGF, which may provide new treatment strategies for patients with ED who do not respond to phosphodiesterase 5 Inhibitors.
Collapse
Affiliation(s)
- Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Lashkari Niloofar
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
4
|
Bae SG, Yin GN, Ock J, Suh JK, Ryu JK, Park J. Single-cell transcriptome analysis of cavernous tissues reveals the key roles of pericytes in diabetic erectile dysfunction. eLife 2024; 12:RP88942. [PMID: 38856719 PMCID: PMC11164535 DOI: 10.7554/elife.88942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.
Collapse
Affiliation(s)
- Seo-Gyeong Bae
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
- Program in Biomedical Science & Engineering, Inha UniversityIncheonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| |
Collapse
|
5
|
Ock J, Liu FY, Fridayana FR, Niloofar L, Vo MN, Huang Y, Piao S, Zhou T, Guonan Y. MicroRNA-148a-3p in pericyte-derived extracellular vesicles improves erectile function in diabetic mice by promoting cavernous neurovascular regeneration. BMC Urol 2023; 23:209. [PMID: 38104056 PMCID: PMC10725581 DOI: 10.1186/s12894-023-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND To investigate the regulatory role of microRNA (miR)-148a-3p in mouse corpus cavernous pericyte (MCPs)-derived extracellular vesicles (EVs) in the treatment of diabetes-induced erectile dysfunction (ED). METHODS Mouse corpus cavernous tissue was used for MCP primary culture and EV isolation. Small-RNA sequencing analysis was performed to assess the type and content of miRs in MCPs-EVs. Four groups of mice were used: control nondiabetic mice and streptozotocin-induced diabetic mice receiving two intracavernous injections (days - 3 and 0) of phosphate buffered saline, MCPs-EVs transfected with reagent control, or MCPs-EVs transfected with a miR-148a-3p inhibitor. miR-148a-3p function in MCPs-EVs was evaluated by tube-formation assay, migration assay, TUNEL assay, intracavernous pressure, immunofluorescence staining, and Western blotting. RESULTS We extracted EVs from MCPs, and small-RNA sequencing analysis showed miR-148a-3p enrichment in MCPs-EVs. Exogenous MCPs-EV administration effectively promoted mouse cavernous endothelial cell (MCECs) tube formation, migration, and proliferation, and reduced MCECs apoptosis under high-glucose conditions. These effects were significantly attenuated in miR-148a-3p-depleted MCPs-EVs, which were extracted after inhibiting miR-148a-3p expression in MCPs. Repetitive intracavernous injections of MCPs-EVs improved erectile function by inducing cavernous neurovascular regeneration in diabetic mice. Using online bioinformatics databases and luciferase report assays, we predicted that pyruvate dehydrogenase kinase-4 (PDK4) is a potential target gene of miR-148a-3p. CONCLUSIONS Our findings provide new and reliable evidence that miR-148a-3p in MCPs-EVs significantly enhances cavernous neurovascular regeneration by inhibiting PDK4 expression in diabetic mice.
Collapse
Affiliation(s)
- Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Fang-Yuan Liu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Fitri Rahma Fridayana
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Lashkari Niloofar
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Minh Nhat Vo
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Yan Huang
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Shuguang Piao
- Department of Urology, Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China.
| | - Tie Zhou
- Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, No. 1279 Sanmen Road, Shanghai, 200434, China.
| | - Yin Guonan
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea.
| |
Collapse
|
6
|
Argonaute 2 Restores Erectile Function by Enhancing Angiogenesis and Reducing Reactive Oxygen Species Production in Streptozotocin (STZ)-Induced Type-1 Diabetic Mice. Int J Mol Sci 2023; 24:ijms24032935. [PMID: 36769259 PMCID: PMC9918048 DOI: 10.3390/ijms24032935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Severe vascular and nerve damage from diabetes is a leading cause of erectile dysfunction (ED) and poor response to oral phosphodiesterase 5 inhibitors. Argonaute 2 (Ago2), a catalytic engine in mammalian RNA interference, is involved in neurovascular regeneration under inflammatory conditions. In the present study, we report that Ago2 administration can effectively improve penile erection by enhancing cavernous endothelial cell angiogenesis and survival under diabetic conditions. We found that although Ago2 is highly expressed around blood vessels and nerves, it is significantly reduced in the penis tissue of diabetic mice. Exogenous administration of the Ago2 protein restored erectile function in diabetic mice by reducing reactive oxygen species production-signaling pathways (inducing eNOS Ser1177/NF-κB Ser536 signaling) and improving cavernous endothelial angiogenesis, migration, and cell survival. Our study provides new evidence that Ago2 mediation may be a promising therapeutic strategy and a new approach for diabetic ED treatment.
Collapse
|
7
|
Tan X, Zhao L, Tang Y. The Function of BDNF and Its Receptor in the Male Genitourinary System and Its Potential Clinical Application. Curr Issues Mol Biol 2022; 45:110-121. [PMID: 36661494 PMCID: PMC9856797 DOI: 10.3390/cimb45010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF), as a member of the nerve growth factor family, has been mentioned more and more frequently in recent literature reports. Among them, content about the male genitourinary system is also increasing. Objective and Rationale: BDNF plays an important role in the male genitourinary system. At the same time, the literature in this field is constantly increasing. Therefore, we systematically summarized the literature in order to more intuitively show the function of BDNF and its receptor in the male genitourinary system and its potential clinical application. Search Methods: An electronic search of, e.g., PubMed, scholar.google and Scopus, for articles relating to BDNF and its receptor in the male genitourinary system. Outcomes: In the male genitourinary system, BDNF and its receptors TrkB and p75 participate in a series of normal physiological activities, such as the maturation and morphogenesis of testes and epididymis and maintenance of isolated sperm motility. Similarly, an imbalance of the circulating concentration of BDNF also mediates the pathophysiological process of many diseases, such as prostate cancer, benign prostatic hyperplasia, male infertility, diabetes erectile dysfunction, penile sclerosis, and bladder fibrosis. As a consequence, we conclude that BDNF and its receptor are key regulatory proteins in the male genitourinary system, which can be used as potential therapeutic targets and markers for disease diagnosis.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| |
Collapse
|
8
|
Yin GN, Kim DK, Kang JI, Im Y, Lee DS, Han AR, Ock J, Choi MJ, Kwon MH, Limanjaya A, Jung SB, Yang J, Min KW, Yun J, Koh Y, Park JE, Hwang D, Suh JK, Ryu JK, Kim HM. Latrophilin-2 is a novel receptor of LRG1 that rescues vascular and neurological abnormalities and restores diabetic erectile function. Exp Mol Med 2022; 54:626-638. [PMID: 35562586 PMCID: PMC9166773 DOI: 10.1038/s12276-022-00773-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia, which causes endothelial dysfunction and peripheral neuropathy, ultimately leading to multiple complications. One prevalent complication is diabetic erectile dysfunction (ED), which is more severe and more resistant to treatment than nondiabetic ED. The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1) is a modulator of TGF-β-mediated angiogenesis and has been proposed as a biomarker for a variety of diseases, including DM. Here, we found that the adhesion GPCR latrophilin-2 (LPHN2) is a TGF-β-independent receptor of LRG1. By interacting with LPHN2, LRG1 promotes both angiogenic and neurotrophic processes in mouse tissue explants under hyperglycemic conditions. Preclinical studies in a diabetic ED mouse model showed that LRG1 administration into the penile tissue, which exhibits significantly increased LPHN2 expression, fully restores erectile function by rescuing vascular and neurological abnormalities. Further investigations revealed that PI3K, AKT, and NF-κB p65 constitute the key intracellular signaling pathway of the LRG1/LPHN2 axis, providing important mechanistic insights into LRG1-mediated angiogenesis and nerve regeneration in DM. Our findings suggest that LRG1 can be a potential new therapeutic option for treating aberrant peripheral blood vessels and neuropathy associated with diabetic complications, such as diabetic ED.
Collapse
Affiliation(s)
- Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Do-Kyun Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Ji In Kang
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yebin Im
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Sun Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Min-Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Saet-Byel Jung
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jimin Yang
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Kwang Wook Min
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jeongwon Yun
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongjun Koh
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea.
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea.
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Ma JX, Wang B, Li HS, Yu J, Hu HM, Ding CF, Chen WQ. Uncovering the mechanisms of leech and centipede granules in the treatment of diabetes mellitus-induced erectile dysfunction utilising network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113358. [PMID: 32896625 DOI: 10.1016/j.jep.2020.113358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus-induced erectile dysfunction (DMED) is one of the most common complications of diabetes mellitus. Leech and centipede granules (LCG) have traditionally been used as blood-activating agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for promoting blood circulation, alleviating blood coagulation, activating meridians, and relieving stasis. AIM OF THE STUDY This study aimed to identify potential genes and mechanisms of LCG on DMED from the network pharmacological perspective. MATERIALS AND METHODS The active components of LCG were identified by UHPLC-Q-TOF-MS, TCMID, and the BATMAN-TCM databases, and the disease targets of DMED were obtained from the DisGeNET, CooLGeN, GeneCards databases. After identifying DMED targets of LCG, a protein-protein interaction (PPI) network was constructed. Hub genes and significant modules were identified via the MCODE plug-in of Cytoscape software. Then, significant signaling pathways of the modules were identified using the Metascape database. The probable interaction mode of compounds-hub genes is examined using Molecular Operating Environment (MOE) docking software. Besides, we investigated the effects and mechanisms of LCG on improving erectile function in the streptozotocin (STZ)-induced diabetic rats model. RESULTS Combined UHPLC-Q-TOF-MS analysis with network pharmacology study, 18 active compounds were selected for target prediction. There are 97 common target genes between LCG and DMED. Enrichment of the KEGG pathway mainly involves in the calcium signaling pathway, NF-kappa B signaling pathway, cGMP-PKG signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and mTOR signaling pathway. Nine hub genes were regulated by LCG in DMED, including CXCL8, NOS3, CRH, TH, BDNF, DRD4, ACE, CNR1, and HTR1A. The results of molecular docking analysis showed that the tyrosin, ursolic acid, and L-Histidine has a relatively stable interaction with corresponding hub genes via generating hydrogen bonds, H-π, and π-π interactions. Significantly, the results in docking predicted a higher affinity of vardenafil to the hub genes compared to the tyrosin, ursolic acid, and L-Histidine. Furthermore, LCG increased the testosterone, erection frequency, the ratio of ICP and MAP, SOD, cGMP, cAMP as well as decreased the MDA, and AGEs expression levels. And, LCG ameliorated the histological change of penile tissues in DMED rats. Hence, LCG attenuates oxidative stress, increases NO production; For the mechanism exploration, LCG could significantly upregulate the mRNA and protein expression of CNR1, NOS3, CRH, TH, BDNF, and DRD4, whereas CXCL8, ACE, and HTR1A levels were significantly higher than those in the DMED group. Moreover, LCG activates the NO/cGMP/PKG pathway, PI3K/Akt/nNOS pathway, cAMP/PKA pathway, and inhibits the HIF-1α/mTOR pathway to improve erectile function. CONCLUSIONS Our results suggest that LCG maybe offer a new therapeutic basis for the treatment of DMED via altering the gene expression of involved metabolic pathways.
Collapse
Affiliation(s)
- Jian Xiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China; Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hai Song Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Yu
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China
| | - Hui Min Hu
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China
| | - Cai Fei Ding
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China.
| | - Wang Qiang Chen
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China.
| |
Collapse
|
10
|
Yan H, Ding Y, Lu M. Current Status and Prospects in the Treatment of Erectile Dysfunction by Adipose-Derived Stem Cells in the Diabetic Animal Model. Sex Med Rev 2020; 8:486-491. [DOI: 10.1016/j.sxmr.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/08/2019] [Accepted: 09/21/2019] [Indexed: 12/19/2022]
|
11
|
The Complex Relationship Between Erectile Dysfunction and Hypogonadism in Diabetes Mellitus. CURRENT SEXUAL HEALTH REPORTS 2019. [DOI: 10.1007/s11930-019-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Zhang Z, Zhang HY, Zhang Y, Li H. Inactivation of the Ras/MAPK/PPARγ signaling axis alleviates diabetic mellitus-induced erectile dysfunction through suppression of corpus cavernosal endothelial cell apoptosis by inhibiting HMGCS2 expression. Endocrine 2019; 63:615-631. [PMID: 30460485 DOI: 10.1007/s12020-018-1810-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/30/2018] [Indexed: 01/30/2023]
Abstract
PURPOSE Diabetic mellitus-induced erectile dysfunction (DMED) represents a significant complication associated with diabetes mellitus (DM) that greatly affects human life quality. Various reports have highlighted the involvement of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) in the regulation of mitochondrial fatty acid oxidation, which has also been linked with DM. Through bioinformatics analysis, HMGCS2 was determined to be a novel target among DM patients suffering from erectile dysfunction (ED), and enriched in the Ras/ERK/PPAR signaling axis. Owing to the fact that the key mechanism HMGCS2 involved in DM remains largely unknown, we set out to investigate the role of the Ras/MAPK/PPARγ signaling axis and HMGCS2 in the corpus cavernosal endothelial cells (CCECs) of rats with DMED. METHODS Firstly, bioinformatics analysis was used to screen out differentially expressed genes in DMED. Then, to investigate the influence of the Ras/MAPK/PPARγ signaling axis and HMGCS2 on DMED, a rat model of DMED was established and injected with Simvastatin and si-Hmgcs2. The individual expression patterns of Ras, MAPK, PPARγ and HMGCS2 were determined by RT-qPCR, immunohistochemistry and western blot analysis methods. Afterwards, to investigate the mechanism of Ras/MAPK/PPARγ signaling axis and HMGCS2, CCECs were isolated from DMED rats and transfected with agonists and inhibitors of the Ras/MAPK/PPARγ signaling axis and siRNA of HMGCS2, with their respective functions in apoptosis and impairment of CCECs evaluated using TUNEL staining and flow cytometry. RESULTS Microarray analysis and KEGG pathway enrichment analysis revealed that Ras/ERK/PPAR signaling axis mediated HMGCS2 in DMED. Among the DMED rats, the Ras/MAPK/PPAR signaling axis was also activated while the expression of HMGCS2 was upregulated. The activation of Ras was determined to be capable of upregulating ERK expression which resulted in the inhibition of the transcription of PPARγ and subsequent upregulation of HMGCS2 expression. The inhibited activation of the Ras/ERK/PPAR signaling axis and silencing HMGCS2 were observed to provide an alleviatory effect on the injury of DMED while acting to inhibit the apoptosis of CCECs. CONCLUSION Collectively, the key findings suggested that suppression of the Ras/MAPK/PPARγ signaling axis could downregulate expression of HMGCS2, so as to alleviate DMED. This study defines the potential treatment for DMED through inhibition of the Ras/MAPK/PPARγ signaling axis and silencing HMGCS2.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China
| | - Hai-Yan Zhang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China
| | - Ying Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China.
| |
Collapse
|