1
|
Coskunlu B, Koroglu MK, Hersek I, Ertas B, Sen A, Sener G, Ercan F. Ameliorative effects of Myrtus communis L. extract involving the inhibition of oxidative stress on high fat diet-induced testis damage in rats. Biotech Histochem 2024; 99:157-173. [PMID: 38682543 DOI: 10.1080/10520295.2024.2344491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The possible protective effects of Myrtus communis L. (MC) extract on a high fat diet (HFD)-induced testicular injury in a rat model were investigated using histological and biochemical methods. Wistar albino rats were divided into three groups: a standard diet control group; a HFD group; and an HFD+MC group. The HFD and HFD+MC groups were fed with a HFD for 16 weeks. MC extract (100 mg/kg) was given orally five days a week to the rats in the HFD+MC group during the last four weeks of the experiment. Leptin, triglyceride, high-density lipoproteins, cholesterol, estrogen, testosterone, LH and FSH were analyzed in blood serum. Sperm parameters were evaluated from the epididymis. Testicular morphology, proliferative, apoptotic and NADPH oxidase-2 (NOX2)-positive cells were evaluated histologically. Testicular oxidative stress parameters were analyzed biochemically. In the HFD group, lipid and hormone profiles were changed, abnormal spermatozoa, degenerated seminiferous tubules with apoptotic and NOX2-positive cells were increased in number, and sperm motility and germinal proliferative cells decreased compared to the control group. Moreover, testicular malondialdehyde, 8-hydroxy-2-deoxyguanosine and myeloperoxidase levels increased, whereas glutathione and superoxide dismutase levels decreased in the HFD group compared to the control group. All these histological and biochemical features were ameliorated by MC treatment of HFD-fed rats. In conclusion, HFD caused alterations in sperm parameters and testicular morphology by increasing oxidative damage and apoptosis. MC extract may have potential protective effects by inhibiting oxidative damage.
Collapse
Affiliation(s)
- Busra Coskunlu
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - M Kutay Koroglu
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Irem Hersek
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Busra Ertas
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Ali Sen
- Department of Pharmacognosy, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Goksel Sener
- Department of Pharmacology, School of Pharmacy, Fenerbahçe University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
2
|
Alqahtani MJ, Negm WA, Saad HM, Salem EA, Hussein IA, Ibrahim HA. Fenofibrate and Diosmetin in a rat model of testicular toxicity: New insight on their protective mechanism through PPAR-α/NRF-2/HO-1 signaling pathway. Biomed Pharmacother 2023; 165:115095. [PMID: 37413905 DOI: 10.1016/j.biopha.2023.115095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
One of the most significant chemotherapeutic side effects of cisplatin (Cis) that limits its use and efficacy is testicular toxicity. Thus, the objective of the present study was to investigate the possible ameliorative effect of Fenofibrate (Fen), Diosmetin (D), and their combination against cis-mediated testicular damage. Fifty-four adult male albino rats were randomly allocated into nine groups (6 rats each): Control group, Fen (100 mg/kg), D20 (20 mg/kg), D40 (40 mg/kg), Cis group (7 mg/kg), Cis +Fen group (7 mg/kg+100 mg/kg), Cis+D20 group (7 mg/kg+20 mg/kg), Cis+D40 group (7 mg/kg+40 mg/kg), Cis+Fen+D40 treated group (7 mg/kg+100 mg/kg+40 mg/kg). Relative testicular weight, epididymal sperm count and viability, serum testosterone level, testicular oxidative stress indices, mRNA expression of peroxisome proliferator-activated receptor alpha (PPAR-α), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), histopathological, and immunohistochemical alterations were assessed. Our results revealed that cis administration induced testicular oxidative and inflammatory damage as indicated by a substantial reduction in relative testicular weight, sperm parameters, serum testosterone levels, the antioxidant enzyme activity of catalase, and Johnson's histopathological score, PPAR-α/NRF-2/HO-1 and proliferating cell nuclear antigen (PCNA) immunoexpression with marked increment in malondialdehyde (MDA), Cosentino's score, nuclear factor kappa B (NF-κβ p65), interleukin (IL)- 1β and caspase 3 in testicular tissue. Interestingly, Fen and D diminished the harmful effects of cis on testes via upregulation of the antioxidant activities and downregulation of lipid peroxidation, apoptosis, and inflammation. Moreover, the combination therapy Fen/D40 also exhibited a more pronounced enhancement of previous markers than either treatment alone. In conclusion, because of their antioxidant, anti-inflammatory, and anti-apoptotic properties, cotreatment with Fen or D or their combination could be beneficial in reducing the harmful impacts of cis on testicular tissue, particularly in patients that receive cis chemotherapy.
Collapse
Affiliation(s)
- Moneerah J Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of veterinary medicine, Matrouh University, Marsa Matrouh, Egypt.
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt.
| | - Ismail A Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tanta, Egypt.
| |
Collapse
|
3
|
Peng Z, Xin WZ, Sheng ZY, Zi T, Nan LY, Lin WZ, Jun LF, Xia LX. Melatonin alleviates cisplatin-induced mice spermatogenesis defects. Reprod Toxicol 2023; 119:108391. [PMID: 37149204 DOI: 10.1016/j.reprotox.2023.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Cisplatin (CDDP) is a chemotherapeutic drug that is used to treat many different types of tumors. However, it also has significant adverse effects on male reproduction, which are partially mediated oxidative damage. Melatonin (MLT) is a promising antioxidant that can be used for reproductive protection. In this paper, we investigated the effect of CDDP on spermatogenesis, as well as MLT's potential role in reproductive protection. CDDP (5 mg/kg BW) significantly reduced male mice testosterone levels and decreased sperm vitality and progressive motility. Additionally, a lower percentage of stage VII and VIII seminiferous tubules were observed in CDDP-treated mice. MLT administration significantly alleviated CDDP-induced testicular damages, CDDP-induced lowered male fertility in vivo, and enhanced in vitro embryonic development of two cells and blastocysts. These changes may be due to CDDP-mediated spermatogenesis defects in germ cell and Leydig cell proliferation, which are reflected in abnormal PCNA, SYCP3, and CYP11A1 expression levels and can be improved by MLT. CDDP treatment significantly decreased the total antioxidant capacity (TAC), as well as SOD and GSH levels, and increased MDA levels in mice testis, leading to increased apoptosis of germ cells and increased BAX/BCL2 ratios in mice testis. MLT treatment may reduce germ cell apoptosis by reducing oxidative damage in mice testis. This study demonstrated that CDDP affects sperm fertility by altering germ cell and Leydig cell proliferation via increased oxidative damage and that MLT can attenuate these damages. Our work provides potential information for further research on the toxic effects of CDDP and the protective effects of MLT on male reproduction.
Collapse
Affiliation(s)
- Zhu Peng
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wang Zhi Xin
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhang Yu Sheng
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Teng Zi
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Liu Ya Nan
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Wang Ze Lin
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Liu Fu Jun
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Liu Xue Xia
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
4
|
Sahin B, Acikel Elmas M, Bingol Ozakpinar O, Arbak S. The Effects of Apocynin on Monosodium Glutamate Induced Liver Damage of Rats. Heliyon 2023; 9:e17327. [PMID: 37449146 PMCID: PMC10336448 DOI: 10.1016/j.heliyon.2023.e17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Monosodium glutamate (MSG) is found in refined foods. Apocynin (APO) is a selective NADPH oxidase (NOX) inhibitor. The aim of this experimental study was to investigate possible effects of MSG and the curative effects of APO in rats. Twenty-eight male Sprague-Dawley rats were randomly divided into four groups (Normal control, APO, MSG and MSG + APO, n:7 for each group). The MSG and MSG + APO groups received 120 mg/kg MSG solution orally for 28 consecutive days. The APO and MSG + APO groups received 25 mg/kg APO solution orally for 5 days until the end of the experiment. At the end of the experiment, all rats were sacrificed and liver tissue and blood samples were taken for histological, ultrastructural, and biochemical analyses. In the MSG group, vacuolization and loss in glycogen content in the hepatocytes, leukocyte infiltration and fibrosis in the liver parenchyme and portal triads, were observed. Terminal deoxynucleotidyl transferase dUTP (TUNEL)-positivity and NADPH oxidase (NOX)-2-positivity were higher in the MSG group compared with the other experimental groups. The concentrations of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin, malondialdehyde (MDA), and myeloperoxidase (MPO) were higher, whereas albumin, glutathione (GSH), and superoxide (SOD) levels were lower in the MSG group. All these data has been reversed in MSG + APO group. The histological and biochemical criteria indicated the prominent ameliorating effect of APO on MSG -induced liver injury.
Collapse
Affiliation(s)
- Begum Sahin
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Merve Acikel Elmas
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Serap Arbak
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
5
|
Hassanein EHM, Bakr AG, El-Shoura EAM, Ahmed LK, Ali FEM. Acetovanillone augmented the cardioprotective effect of carvedilol against cadmium-induced heart injury via suppression of oxidative stress and inflammation signaling pathways. Sci Rep 2023; 13:5278. [PMID: 37002251 PMCID: PMC10066216 DOI: 10.1038/s41598-023-31231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Cardiac toxicity is a public health issue that can be caused by both environmental and occupational exposures. The current study aimed to investigate the effectiveness of carvedilol (CV), Acetovanillone (ACET), and their combination for ameliorating cadmium (Cd)-induced oxidative stress, inflammation, and necroptosis. Rats were assigned to; the normal group, Cd group (2 mg/kg; i.p., single dose), and the other three groups received orally CV (10 mg/kg), ACET (25 mg/kg), and CV plus ACET, respectively and a single dose of Cd. Oral administration of CV, ACET, and their combination significantly dampens cardiac oxidative injury by increasing antioxidants GSH and SOD levels, while it decreases MDA and NADPH oxidase levels mediated by decreasing cardiac abundance of Nrf2, HO-1, and SIRT1 and downregulating KEAP-1 and FOXO-3 levels. Also, they significantly attenuated inflammatory response as indicated by reducing MPO and NOx as well as proinflammatory cytokines TNF-α and IL-6 mediated by downregulating TLR4, iNOS, and NF-κB proteins expression as well as IκB upregulation. Moreover, they potently counteracted cardiac necroptosis by downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins expression. Of note, the combination of CV and ACET have marked protection that exceeded each drug alone. Conclusively, CV ad ACET potently mitigated Cd-induced cardiac intoxication by regulating NADPH oxidase, KEAP-1/Nrf2/HO-1, SIRT1/FOXO-3, TLR4/NF-κB/iNOS, and RIPK1/RIPK3/MLKL signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Lamiaa Khalaf Ahmed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
6
|
Acikel-Elmas M, Algilani SA, Sahin B, Bingol Ozakpinar O, Gecim M, Koroglu K, Arbak S. Apocynin Ameliorates Monosodium Glutamate Induced Testis Damage by Impaired Blood-Testis Barrier and Oxidative Stress Parameters. Life (Basel) 2023; 13:life13030822. [PMID: 36983977 PMCID: PMC10052003 DOI: 10.3390/life13030822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND the aim of this study was to investigate the effects of apocynin (APO) on hormone levels, the blood-testis barrier, and oxidative biomarkers in monosodium glutamate (MSG) induced testicular degeneration. METHODS Sprague Dawley male rats (150-200 g; n = 32) were randomly distributed into four groups: control, APO, MSG, and MSG + APO. MSG and MSG + APO groups were administered MSG (120 mg/kg) for 28 days. Moreover, the APO and MSG + APO groups received APO (25 mg/kg) during the last five days of the experiment. All administrations were via oral gavage. Finally, biochemical analyses were performed based on the determination of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), as well as light and transmission electron microscopic examinations, assessment of sperm parameters, ZO-1, occludin, NOX-2, and TUNEL immunohistochemistry were evaluated. RESULTS MSG increased both the oxidative stress level and apoptosis, decreased cell proliferation, and caused degeneration in testis morphology including in the blood-testis barrier. Administration of apocynin reversed all the deteriorated morphological and biochemical parameters in the MSG + APO group. CONCLUSIONS apocynin is considered to prevent testicular degeneration by maintaining the integrity of the blood-testis barrier with balanced hormone and oxidant/antioxidant levels.
Collapse
Affiliation(s)
- Merve Acikel-Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Salva Asma Algilani
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Begum Sahin
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Ozlem Bingol Ozakpinar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Basibuyuk Yolu, 4/A, Basibuyuk, Istanbul 34854, Turkey
| | - Mert Gecim
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Basibuyuk Yolu, 4/A, Basibuyuk, Istanbul 34854, Turkey
| | - Kutay Koroglu
- Department of Histology and Embryology, School of Medicine, Marmara University, Basibuyuk Yolu No. 9 D:2, Maltepe, Istanbul 34854, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| |
Collapse
|
7
|
Mahmoud NA, Hassanein EHM, Bakhite EA, Shaltout ES, Sayed AM. Apocynin and its chitosan nanoparticles attenuated cisplatin-induced multiorgan failure: Synthesis, characterization, and biological evaluation. Life Sci 2023; 314:121313. [PMID: 36565813 DOI: 10.1016/j.lfs.2022.121313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Cisplatin (CDDP) is an effective chemotherapeutic drug that has been used successfully in treating various tumors. Although its higher antineoplastic agent activity, CDDP exhibited severe side effects that limit its use. CDDP-induced toxicity is attributed to oxidative stress and inflammation. Apocynin (APO) is a bioactive phytochemical with potent antioxidant and anti-inflammatory properties. However, pharmaceutical experts face significant hurdles due to the limited bioavailability and quick elimination of APO. Therefore, we synthesized a chitosan (CTS)-based nano delivery system using the ionic gelation method to enhance APO bioactivity. CTS-APO-NPs were characterized using different physical and chemical approaches, including FTIR, XRD, TGA, Zeta-sizer, SEM, and TEM. In addition, the protective effect of CTS-APO-NPs against CDDP-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity in rats was evaluated. CTS-APO-NPs restored serum biomarkers and antioxidants to their normal levels. Also, histopathological examination was used to assess the recovery of heart, kidney, and liver tissues. CTS-APO-NPs attenuated the oxidative stress mediated by Nrf2 activation while it dampened inflammation mediated by NF-κB suppression. CTS-APO-NPs is a potentially attractive target for more therapeutic trials.
Collapse
Affiliation(s)
- Nahed A Mahmoud
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Eman S Shaltout
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
8
|
Liu Y, Zhai J, Qin F, Gao L, She Y, Wang M. Protective role of polyphenol extract from highland barley against cisplatin-induced renal toxicity and mitochondrial damage in rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2023. [DOI: 10.3136/fstr.fstr-d-21-00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yunfan Liu
- College of Biochemical Engineering, Beijing Union University
| | - Jiazhou Zhai
- Beijing Municipal Key Laboratory of Biologically Active Substances and Functional Food
| | - Fei Qin
- College of Biochemical Engineering, Beijing Union University
| | - Liping Gao
- College of Biochemical Engineering, Beijing Union University
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences
| | - Mengqiang Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences
| |
Collapse
|
9
|
Bakr AG, Hassanein EHM, Ali FEM, El-Shoura EAM. Combined apocynin and carvedilol protect against cadmium-induced testicular damage via modulation of inflammatory response and redox-sensitive pathways. Life Sci 2022; 311:121152. [PMID: 36336125 DOI: 10.1016/j.lfs.2022.121152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Testicular damage is considered a severe complication of cadmium (Cd) exposure which is associated with tissue oxidative stress damage, inflammation, and apoptosis. The present study investigated the antioxidant, anti-inflammatory, and anti-apoptotic activities of apocynin (APO) and carvedilol (CVD) against Cd-induced acute testicular damage. Rats were allocated into five groups as follows: normal control (received vehicle), Cd control group (2 mg/kg, i.p), APO-treated group (25 mg/kg, P.O.), CVD-treated group (10 mg/kg, P.O.), and combination group (APO + CVD). Blood, serum, and tissue samples were withdrawn for hematological, biochemical, molecular, and histological analyses. The present results confirmed testicular damage after cd exposure as indicated by alteration of serum hormonal levels, hematological defects, histopathological changes, and loss of steroidogenic functions. Besides, Cd injection-induced up-regulation of NADPH oxidase, MDA, NF-κB, IRF3, MPO, pro-inflammatory cytokines, Bax, and cleaved caspase-3 expression concomitant with down-regulation of Nrf2, GSH, SOD, and Bcl2 expression. Interestingly, pretreatment with APO and/or CVD significantly relieved Cd-induced testicular damage at cellular and molecular levels. Notably, the combined protective effect of APO plus CVD was higher than the protective effect of each drug alone. Overall, combined APO and CVD could serve as a good candidate for protection against Cd-induced testicular damage via suppression of inflammatory response and modulation of the redox-sensitive pathway.
Collapse
Affiliation(s)
- Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Ehab A M El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
10
|
Depciuch J, Jakubczyk P, Paja W, Sarzyński J, Pancerz K, Açıkel Elmas M, Keskinöz E, Bingöl Özakpınar Ö, Arbak S, Özgün G, Altuntaş S, Guleken Z. Apocynin reduces cytotoxic effects of monosodium glutamate in the brain: A spectroscopic, oxidative load, and machine learning study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121495. [PMID: 35700610 DOI: 10.1016/j.saa.2022.121495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, we examined the modulatory effects ofApocynum (APO) on Monosodium Glutamate (MSG)-induced oxidative damage on the brain tissue of rats after long-term consumption of blood serum components by biochemical assays, Fourier transform infrared spectroscopy(FTIR), and machine learning methods. Sprague-Dawley male rats were randomly divided into the Control, Control + APO, MSG, and MSG + APO groups (n = 8 per group). All administrations were made by oral gavage saline, MSG, or APO and they were repeated for 28 days of the experiments. Brain tissue and blood serum samples were collected and analyzed for measurement levels ofmalondialdehyde (MDA),glutathione (GSH),myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and Spectroscopic analysis. After 29 days, the results were evaluated using machine learning (ML). The levels of MDA and MPO showed changes in the MSG and MSG + APO groups, respectively. Changes in the proteins and lipids were observed in the FTIR spectra of the MSG groups. Additionally, APO in these animals improved the FTIR spectra to be similar to those in the Control group. The accuracy of the FTIR results calculated by ML was 100%. The findings of this study demonstrate that Apocynin treatment protectsagainst MSG-induced oxidative damage by inhibitingreactive oxygen speciesand upregulatingantioxidant capacity, indicating its potential in alleviatingthe toxic effects of MSG.
Collapse
Affiliation(s)
- Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, 31-342 Krakow, Poland.
| | | | - Wiesław Paja
- Institute of Computer Science, University of Rzeszów, Poland
| | | | - Krzysztof Pancerz
- Institute of Technology and Computer Science, Academy of Zamosc, Poland
| | - Merve Açıkel Elmas
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Elif Keskinöz
- Department of Anatomy, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Serap Arbak
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Gökçe Özgün
- Department of Medical Biotechnology, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Sevde Altuntaş
- Tissue Engineering Department, University of Health Sciences Turkey, Istanbul 34662, Turkey; Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, Istanbul 34662, Turkey
| | - Zozan Guleken
- Department of Physiology, Uskudar University, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
11
|
HERSEK İ, KÖROĞLU MK, COSKUNLU B, ERTAŞ B, ŞENER G, ERCAN F. Apocynin Ameliorates Testicular Toxicity in High-Fat Diet-Fed Rats By Regulating Oxidative Stress. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1035133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: The purpose of this study was to examine the effects of apocynin (APC), an inhibitor of NADPH oxidase (NOX), on high-fat diet (HF)-induced testis cytotoxicity.
Methods: Wistar albino rats were divided into three groups as control, HF and HF+APC groups. Rats in HF and HF+APC groups were fed using HF for 16 weeks and in the last four weeks of this period vehicle solution or APC (25 mg/kg) was administered orally five days a week, respectively. Control group was fed with standart lab chow for 16 weeks. Cholesterol, triglyceride, high-density lipoproteins, leptin, estrogen, testosterone, LH and FSH were estimated in blood serum. Sperm parameters were analysed from the epididymis. Testicular malondialdehyde, 8‐hydroxy‐2‐deoxyguanosine, glutathione, superoxide dismutase and myeloperoxidase levels were estimated biochemically. Testicular morphology, proliferative, apoptotic and NOX2-positive cells were analysed histologically. HF-induced obesity caused significant alterations in serum lipid and hormone profiles. Testicular malondialdehyde, 8‐hydroxy‐2‐deoxyguanosine, and myeloperoxidase levels increased, glutathione and superoxide dismutase levels decreased in this group. Moreover, altered sperm parameters, increased degenerated seminiferous tubules, apoptotic and NOX2- positive cells and decreased proliferative cells were observed in the HF group. All these biochemical and histological alterations improved in the HF+APC group.
Conclusion: HF-induced obesity causes altreations in lipid values, sperm parameters and testicular morphology by increasing oxidative stress through NOX2 activity. Apocynin might prevent testis damage via regulating oxidant/antioxidant balance.
Collapse
Affiliation(s)
| | | | | | | | - Göksel ŞENER
- FENERBAHÇE ÜNİVERSİTESİ, SAĞLIK HİZMETLERİ MESLEK YÜKSEKOKULU
| | | |
Collapse
|
12
|
Ozcan Yildirim S, Colakoglu N, Ozer Kaya S. Protective effects of
L
‐arginine against aluminium chloride‐induced testicular damage in rats. Andrologia 2022; 54:e14569. [DOI: 10.1111/and.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sena Ozcan Yildirim
- Department of Histology and Embryology, Fethi Sekin City Hospital University of Health Sciences Elazig Turkey
| | - Neriman Colakoglu
- Department of Histology and Embryology, Medical School Firat University Elazig Turkey
| | - Seyma Ozer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Firat University Elazig Turkey
| |
Collapse
|
13
|
The alterations of blood-testis barrier in experimental testicular ınjury models. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Jiang LY, Sun HZ, Guan RW, Shi F, Zhao FQ, Liu JX. Formation of Blood Neutrophil Extracellular Traps Increases the Mastitis Risk of Dairy Cows During the Transition Period. Front Immunol 2022; 13:880578. [PMID: 35572521 PMCID: PMC9092530 DOI: 10.3389/fimmu.2022.880578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
The current study was conducted to analyze the functions of blood neutrophils in transition cows and their association with postpartum mastitis risk as indicated by somatic cell counts (SCCs) in milk. Seventy-six healthy Holstein dairy cows were monitored from Week 4 prepartum to Week 4 postpartum. Five dairy cows with low SCCs (38 ± 6.0 × 103/mL) and five with high SCCs (3,753 ± 570.0 × 103/mL) were selected based on milk SCCs during the first three weeks of lactation. At Week 1 pre- and postpartum, serum samples were obtained from each cow to measure neutrophil extracellular trap (NET)-related variables, and blood neutrophils were collected for transcriptome analysis by RNA sequencing. The serum concentration of NETs was significantly higher (P < 0.05) in cows with high SCCs than in cows with low SCCs (36.5 ± 2.92 vs. 18.4 ± 1.73 ng/mL). The transcriptomic analysis revealed that the transcriptome differences in neutrophils between high- and low-SCC cows were mainly in cell cycle-related pathways (42.6%), including the cell cycle, DNA damage, and chromosomal conformation, at Week 1 prepartum. The hub genes of these pathways were mainly involved in both the cell cycle and NETosis. These results indicated that the formation of NETs in the blood of transition dairy cows was different between cows with low and high SCCs, which may be used as a potential indicator for the prognosis of postpartum mastitis risk and management strategies of perinatal dairy cows.
Collapse
Affiliation(s)
- Lu-Yi Jiang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruo-Wei Guan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fushan Shi
- Department of Veterinary Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Department of Animal & Veterinary Sciences, University of Vermont, Burlington, MA, United States
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Demir M, Altındağ F. Sinapic acid ameliorates cisplatin‐induced disruptions in testicular steroidogenesis and spermatogenesis by modulating androgen receptor, proliferating cell nuclear antigen and apoptosis in male rats. Andrologia 2022; 54:e14369. [DOI: 10.1111/and.14369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Murat Demir
- Department of Urology Faculty of Medicine Van Yüzüncü Yıl University Van Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology Faculty of Medicine Van Yüzüncü Yıl University Van Turkey
| |
Collapse
|
16
|
Sayed AM, Hassanein EHM, Ali FEM, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Abd El-Ghafar OAM. Regulation of Keap-1/Nrf2/AKT and iNOS/NF-κB/TLR4 signals by apocynin abrogated methotrexate-induced testicular toxicity: Mechanistic insights and computational pharmacological analysis. Life Sci 2021; 284:119911. [PMID: 34450167 DOI: 10.1016/j.lfs.2021.119911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
AIM Male reproductive toxicity is becoming of growing significance due to clinical chemotherapy usage. Methotrexate (MTX) is an anti-folate used on a large scale for different tumors and autoimmune conditions. Despite its wide clinical use, MTX is associated with severe testicular intoxication. The exact underlying mechanism is unclear. METHODS Our study was conducted to explore the pathogenesis mechanism of MTX-induced testicular damage and the potential testicular protective effects of apocynin (APO) on testicular injury induced by single i.p. MTX (20 mg/kg). APO was administered orally (100 mg/kg) for ten days. RESULTS As compared to rats given MTX alone, co-administration of MTX with APO demonstrated multiple beneficial effects evidenced by a marked increase in testosterone, FSH, and LH and significantly restored testes histopathological alterations. Mechanistically, APO restored antioxidant status through up-regulation of Nrf2, cytoglobin, PPAR-γ, SIRT1, AKT, and p-AKT, while effectively lowering Keap-1. Moreover, APO significantly attenuated inflammation by down-regulating NF-κB-p65, iNOS, and TLR4 expressions confirmed by in-silico evidence. Additionally, network pharmacology analysis, a bioinformatics approach, was used to decipher various cellular processes' molecular mechanisms. SIGNIFICANCE The current investigation proves the beneficial effects of APO in MTX-associated testicular damage through activation of cytoglobin, Keap-1/Nrf2/AKT, PPAR-γ, SIRT1, and suppressing of TLR4/NF-κB-p65 signal. Our data collectively encourage extending the investigation to the clinical setting to explore APO effects in MTX-treated patients.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka 42421, Saudi Arabia; Department of Physiology, College of Medicine, Al-Azhar University, Assuit 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
17
|
Bitter melon (Momordica charantia) fruit extract ameliorates methotrexate‐induced reproductive toxicity in male rats. MARMARA MEDICAL JOURNAL 2021. [DOI: 10.5472/marumj.988941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Rauf N, Nawaz A, Ullah H, Ullah R, Nabi G, Ullah A, Wahab F, Jahan S, Fu J. Therapeutic effects of chitosan-embedded vitamin C, E nanoparticles against cisplatin-induced gametogenic and androgenic toxicity in adult male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56319-56332. [PMID: 34050519 DOI: 10.1007/s11356-021-14516-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Cisplatin, an anticancer drug used in treating various types of cancers, can cause reproductive toxicities during chemotherapy. Keeping this in view, the present study was designed to investigate the possible protective effects of normal vitamin C and E and vitamin C and E nanoparticles (embedded in chitosan) against cisplatin-induced reproductive toxicities. Vitamins C, E, and their nanoparticles in this regard proved to be an effective therapy. The work aimed to treat cisplatin-induced reproductive toxicities through vitamin C and E and their nanoparticles. Cisplatin exposure caused significant reduction in the weight, testosterone level, and changed lipid profile. Similarly, cisplatin induced significant widespread testicular atrophy and testicular lesions as evidenced by the gaps in the epithelium and loss of differentiating germ cells. Vitamin C and E and their nanoparticles rescued the weight, testosterone level, and testicular disturbances, which is associated with improved histological view of testicular tissues. The current study highlights evidence that designing a medication of vitamin C and E nanoparticles is useful in mitigating cisplatin-induced reproductive toxicity in cancerous male patients underlying chemotherapy.
Collapse
Affiliation(s)
- Naveed Rauf
- Division of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, China
- Faculty of Biological Sciences, Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Nawaz
- Faculty of Biological Sciences, Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hizb Ullah
- Faculty of Biological Sciences, Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahim Ullah
- Division of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, China
| | - Ghulam Nabi
- Key Laboratory of Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Asad Ullah
- Faculty of Biological Sciences, Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fazal Wahab
- Cell and Molecular Genetic Lab, University of Science and Technology China, Hefei, China
| | - Sarwat Jahan
- Faculty of Biological Sciences, Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Junfen Fu
- Division of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, China.
| |
Collapse
|
19
|
Karakaya FB, Yavuz M, Sirvanci S. Histological analysis of the effects of thymoquinone on testicular damage in pentylenetetrazole-induced temporal lobe epilepsy model. Andrologia 2021; 53:e14130. [PMID: 34414592 DOI: 10.1111/and.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, it was aimed to investigate possible ameliorating effects of thymoquinone on testicular damage in an epilepsy model. Adult male Wistar rats were divided into 4 groups. The animals in sham-operated groups were given saline or thymoquinone (s.c.); and the animals in pentylenetetrazole (PTZ) group were applied PTZ. The animals in PTZ+thymoquinone group were given thymoquinone (i.p) for 6 days after applying PTZ. Hematoxylin-eosin, periodic acid-Schiff and TUNEL staining and PCNA, StAR, inhibin β-B immunohistochemistry and ZO-1 immunofluorescence methods were applied. Staining intensity and cell numbers were determined. Degeneration of seminiferous tubules was observed in PTZ group. Most of the tubules showed normal morphology in the PTZ+thymoquinone group. Apoptotic cell index was found to be increased and proliferative index decreased in PTZ group. Thymoquinone administration decreased apoptotic index and increased proliferation index. In PTZ group, ZO-1, StAR and inhibin β-B immunohistochemical staining intensity was observed to be decreased and after thymoquinone application, ZO-1 was increased. StAR and inhibin β-B-positive cell numbers were decreased in PTZ group and increased in the PTZ +thymoquinone group. In this study, it was observed that PTZ-induced epileptic seizures caused testicular damage in the rat and thymoquinone ameliorated these effects.
Collapse
Affiliation(s)
- Fatma Bedia Karakaya
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Melis Yavuz
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
20
|
Hassanein EHM, Abdel-Wahab BA, Ali FEM, Abd El-Ghafar OAM, Kozman MR, Sharkawi SMZ. Trans-ferulic acid ameliorates cisplatin-induced testicular damage via suppression of TLR4, P38-MAPK, and ERK1/2 signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41948-41964. [PMID: 33792844 DOI: 10.1007/s11356-021-13544-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/16/2021] [Indexed: 12/31/2022]
Abstract
Testicular damage has been described as a common side effect of cisplatin (CDDP), which limits its clinical uses. Since oxidative injury and inflammatory response are the most pathological impact, estimation of natural antioxidant and anti-inflammatory agents like trans-ferulic acid (TFA) could protect against CDDP-induced testicular damage. In the current investigation, rats were assigned into four groups: normal, TFA (50 mg/kg/day, P.O), CDDP (10 mg/kg) as single intraperitoneal (I.P) injection at the end of the 5th day, and TFA+CDDP where TFA was administered 5 days before CDDP injection and 5 days after. Interestingly, TFA significantly restored testosterone levels and abrogated oxidative stress injury. Additionally, TFA effectively suppressed inflammatory cytokines. It also counteracted the inflammation via downregulation of TLR4 and IRF3, P38-MAPK, NF-κB-p65, JAK1, STAT3, ERK1, and ERK2. Besides, TFA can modulate AKT and p-AKT protein expressions. In parallel, TFA mitigated the histopathological aberration of the testis and prevented spermatogenesis disruption. On the other hand, TFA augmented the in vitro CDDP cytotoxicity on Caco-2 and MCF-7 cells. Interestingly, TFA enhanced the cytotoxic effect of CDDP via apoptosis induction in both the early and late stages of apoptosis. Collectively, TFA exhibited a potential protective effect against CDDP-induced testicular injury by inhibiting oxidative stress as well as TLR4/IRF3/INF-γ, P38-MAPK/NF-κB-p65/TNF-α, and JAK1/STAT-3/ERK1/2 inflammatory signaling pathways with enhancing its in vitro cytotoxic activity.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, School of Pharmacy, Najran University, P.O. 1988, Najran, Saudi Arabia
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Magy R Kozman
- Clinical Pharmacology Department, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Altındağ F, Meydan İ. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia 2021; 53:e14189. [PMID: 34268770 DOI: 10.1111/and.14189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023] Open
Abstract
Cisplatin is an effective chemotherapeutic drug used to treat many types of tumours. However, it may cause male reproductive toxicity. Gallic acid exhibits beneficial effects such as antioxidant, anti-inflammatory and antitumor. The current study investigated the beneficial effects of gallic acid against testis and epididymis toxicity induced by cisplatin. Male rats were divided into 4 groups as follows (n = 7): Control, cisplatin (a single dose of 8 mg/kg), Gallic acid (50 mg/kg) and cisplatin +Gallic acid groups. Testis was examined morphometrically by stereological methods. In addition, apoptosis, DNA damage, oxidative stress parameters in testis and testosterone in serum were measured. Epididymis was histopathologically evaluated. As a result, a significant decrease was observed in the number of spermatogonia, Leydig and Sertoli cells, testicular volume, height of germinal epithelial, Bcl-2 immunopositive cell number, activity of CAT, GSH and SOD enzymes and serum testosterone levels compared with the cisplatin group control group, while a significant increase was observed in the number of Caspase-3, Bax and 8-OHdG immunopositive cells and the MDA levels. However, Gallic acid significantly restored these parameters. Our study reveals that Gallic acid may improve Cisplatin-induced male reproductive toxicity by reducing oxidative stress, suppressing apoptosis and DNA damage and restoring structural and functional deterioration.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Van Yüzüncü Yıl University, Van, Turkey
| | - İsmet Meydan
- Department of Biochemistry, Van Vocational Higher School of Healthcare Studies, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
22
|
Suleiman JB, Bakar ABA, Mohamed M. Review on Bee Products as Potential Protective and Therapeutic Agents in Male Reproductive Impairment. Molecules 2021; 26:molecules26113421. [PMID: 34198728 PMCID: PMC8201164 DOI: 10.3390/molecules26113421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
Bee products are sources of functional food that have been used in complementary medicine to treat a variety of acute and chronic illnesses in many parts of the world. The products vary from location to location as well as country to country. Therefore, the aim of this review was to identify various bee products with potential preventive and therapeutic values used in the treatment of male reproductive impairment. We undertook a vigorous search for bee products with preventive and therapeutic values for the male reproductive system. These products included honey, royal jelly, bee pollen, bee brood, apilarnil, bee bread, bee wax, and bee venom. We also explained the mechanisms involved in testicular steroidogenesis, reactive oxygen species, oxidative stress, inflammation, and apoptosis, which may cumulatively lead to male reproductive impairment. The effects of bee pollen, bee venom, honey, propolis, royal jelly, and bee bread on male reproductive parameters were examined. Conclusively, these bee products showed positive effects on the steroidogenic, spermatogenic, oxidative stress, inflammatory, and apoptotic parameters, thereby making them a promising possible preventive and therapeutic treatment of male sub/infertility.
Collapse
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.M.B. 1007, Afikpo, Ebonyi State, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
23
|
Makled MN, Said E. Tranilast abrogates cisplatin-induced testicular and epididymal injuries: An insight into its modulatory impact on apoptosis/proliferation. J Biochem Mol Toxicol 2021; 35:e22817. [PMID: 34047436 DOI: 10.1002/jbt.22817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin is a chemotherapeutic agent whose therapeutic use is greatly limited by the associated organs' toxicity and particularly, testicular toxicity. Cisplatin-induced testicular damage reported being mediated through mitochondria-mediated apoptosis, inflammation, and oxidative stress. Evidence showed that tranilast (TRN) has the ability to restore the oxidative status and modulate TRAIL/caspase-8 signaling. This led us to hypothesize that TRN could abrogate cisplatin-induced testicular and epididymal injuries via inhibiting oxidative stress and modulating proliferation and TRAIL/caspase-8/cJNK signaling. Cisplatin injection induced oligospermia and abnormalities in testicular and epididymal structure along with impaired oxidative status. TRN administration (100 or 300 mg/kg) for 7 days post-cisplatin injection preserved spermatogenesis and restored testicular and epididymal architecture, but restoration was more so in TRN300 than TRN100. This was in line with the restoration of balanced oxidative status as indicated by the increased total antioxidant capacity, glutathione and superoxide dismutase activity, and the decreased malondialdehyde content in testes (p < 0.05 vs. cisplatin). TRN increased the cell proliferation revealed by the increased expression of proliferating cell nuclear antigen in a dose-dependent manner (p < 0.05 vs. cisplatin) whereas only TRN300 decreased testicular cJNK, TRAIL, and caspase-8 expression (p < 0.05 vs. cisplatin). Moreover, TRN dose-dependently inhibited the pro-inflammatory transcription factor NF-kB and the cytokine TNF-α expressions in testes. In conclusion, TRN300 was more effective than TRN100 in alleviating cisplatin-induced testicular and epididymal injuries and in enhancing spermatogenesis. This curative effect of TRN might be mediated through its antioxidant and anti-inflammatory impacts along with its modulatory impact on cJNK/TRAIL/caspase-8 signaling favoring proliferation rather than apoptosis.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Abd El-Ghafar OAM, Hassanein EHM, Sayed AM, Rashwan EK, Shalkami AGS, Mahmoud AM. Acetovanillone prevents cyclophosphamide-induced acute lung injury by modulating PI3K/Akt/mTOR and Nrf2 signaling in rats. Phytother Res 2021; 35:4499-4510. [PMID: 33969557 DOI: 10.1002/ptr.7153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022]
Abstract
Cyclophosphamide (CP) is a medication used as an anticancer drug and to suppress the immune system. However, its clinical applications are restricted because of the toxic and adverse side effects. The present study investigated the protective effect of acetovanillone (AV), a natural NADPH oxidase inhibitor, against acute lung injury (ALI) induced by CP. Rats were administered AV (100 mg/kg) for 10 days and a single injection of CP (200 mg/kg) at day 7. At the end of the experiment, the animals were sacrificed, and lung samples were collected for analyses. CP caused ALI manifested by the histopathological alterations. Lipid peroxidation and NADPH oxidase activity were increased, whereas GSH and antioxidant enzymes were decreased in the lung of CP-intoxicated rats. Oral administration of AV prevented CP-induced lung injury and oxidative stress and enhanced antioxidant defenses. AV downregulated Keap1 and upregulated Nrf2, GCLC, HO-1, and SOD3 mRNA. In addition, AV boosted the expression of PI3K, Akt, mTOR, and cytoglobin. In vitro, AV showed a synergistic anticancer effect when combined with CP. In conclusion, AV protected against CP-induced ALI by attenuating oxidative stress and boosting Nrf2/HO-1 and PI3K/Akt/mTOR signaling. Therefore, AV might represent a promising adjuvant to prevent lung injury in patients receiving CP.
Collapse
Affiliation(s)
- Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakakah, Saudi Arabia.,Department of Physiology, College of Medicine, Al-Azhar University, Cairo, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
25
|
Wang L, He Y, Li Y, Pei C, Olatunji OJ, Tang J, Famurewa AC, Wang H, Yan B. Protective Effects of Nucleosides-Rich Extract from Cordyceps cicadae against Cisplatin Induced Testicular Damage. Chem Biodivers 2020; 17:e2000671. [PMID: 33007148 DOI: 10.1002/cbdv.202000671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Cisplatin (CISP) is an efficacious anticancer agent used in chemotherapy, however, the constraint to its clinical utility is the stray organ toxicity including testicular damage linked to oxidative and inflammatory cascades. This study aimed to explore the protective effect of nucleosides-rich extract from Cordyceps cicadae (NRCE) against CISP-induced testicular damage in rats. Rats were subjected to prophylactic oral administration of NRCE (50, 100 and 400 mg/kg body weight/day) for 7 days prior to testicular toxicity induced by CISP (10 mg/kg, ip) and were sacrificed after 72 h post-CISP injection. Cisplatin caused significant deficits in sperm count, viability and motility, testosterone and follicle stimulating hormone (FSH) compared to normal control. It depressed testicular activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), total antioxidant content (TAC), whereas malondialdehyde (MDA) increased remarkably. CISP considerably increased tumor necrosis factor-alpha (TNF-α) and interleukin-one beta (IL-1β) with alterations in testis histology compared to normal control. Interestingly, NRCE pretreatment inhibited the CISP-induced alterations in reproductive indices, restored the antioxidant activities in testes as well as inflammatory mediators and histology comparable to control. Our findings demonstrate that NRCE could prevent CISP testicular damage via inhibition of oxidative stress and pro-inflammation in rats.
Collapse
Affiliation(s)
- Ling Wang
- Department of Reproductive Center, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, P. R. China
| | - Yigang He
- Department of Health Service, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, P. R. China
| | - Yudi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, P. R. China
| | - Chengbin Pei
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Songkla, 90110, Thailand
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Bozhou, 236800, P. R. China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Hongyan Wang
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Bei Yan
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750004, P. R. China
| |
Collapse
|
26
|
Kavram Sarihan K, Yardimoğlu Yilmaz M, Eraldemir FC, Yazir Y, Acar E. Protective effects of apocynin on damaged testes of rats exposed to methotrexate. Turk J Med Sci 2020; 50:1409-1420. [PMID: 32394677 PMCID: PMC7491294 DOI: 10.3906/sag-1909-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Background/aim Methotrexate (MTX), widely used as a drug in cancer, has many adverse effects on tissues. Apocynin (APO) is a NADPH oxidase inhibitor and is known with many antioxidant properties. In this study, we aimed to evaluate the adverse effects of MTX on testicular tissue and the protective effects of APO at two different doses (20 mg/kg and 50 mg/kg) on MTX-induced testicular damage. Materials and methods Fifty adult male Wistar albino rats (8 weeks old and weighing 200–250 g) were divided into five groups of 10 rats each: 1. saline control, 2. dimethyl sulfoxide (DMSO) control, 3. MTX, 4. APO-20 + MTX, and 5. APO-50 + MTX. All injections were performed intraperitoneally. At the end of day 28, all rats were sacrificed under anesthesia. The testes were evaluated histologically and the blood samples were analyzed biochemically. Results According to histological and biochemical analyses, there was no significant difference between the DMSO and control groups. In terms of the histological findings, MTX group was significantly the worst affected group compared to the others, and in this group, apoptotic cell number (P = 0.011) was significantly increased in comparison with the control group. Except MTX, there was no significant difference in apoptotic cell number of the other groups compared to the control group. In the MTX group, malondialdehyde (MDA, P = 0.017) and myeloperoxidase (MPO, P < 0.001) levels were significantly increased in tissue and in blood (MDA P < 0.001, MPO P < 0.001), while tissue glutathione (GSH, P < 0.05) and serum testosterone levels (P < 0.01) were decreased compared with the control group. APO + MTX treatment groups exhibited better testis morphology, and apoptotic cells were also significantly decreased compared to MTX group (P < 0.001). Conclusion Our results suggest that MTX induced defects on testis via oxidative stress and APO reversed the effects of MTX with its antioxidant properties.
Collapse
Affiliation(s)
- Kübra Kavram Sarihan
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Melda Yardimoğlu Yilmaz
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Fatma Ceyla Eraldemir
- Department of Medical Biochemistry, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey,Stem Cell and Gene Therapies Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Esra Acar
- Department of Medical Biochemistry, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
27
|
Nna VU, Ujah GA, Suleiman JB, Mohamed M, Nwokocha C, Akpan TJ, Ekuma HC, Fubara VV, Kekung-Asu CB, Osim EE. Tert-butylhydroquinone preserve testicular steroidogenesis and spermatogenesis in cisplatin-intoxicated rats by targeting oxidative stress, inflammation and apoptosis. Toxicology 2020; 441:152528. [PMID: 32565124 DOI: 10.1016/j.tox.2020.152528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Cisplatin (Cis) is an effective chemotherapeutic intervention against many cancer types. However, the oxidative stress-related toxicities associated with cancer cell resistance-induced dose scaling has limited its long-term use. In the present study, we explored the benefits of the antioxidant, tert-butylhydroquinone (tBHQ; 50 mg/kg b.w./day, for 14 days) against Cis single dose injection (7 mg/kg b.w., i.p on Day 8), on testicular toxicity of male Wistar rats. Cis triggered testicular and epididymal oxidative stress, testicular inflammation (upregulated NF-κB, TNF-α and IL-1β mRNA levels, and downregulated IL-10 mRNA level), increased testicular apoptosis (increased Bax/Bcl2 and caspase-3 mRNA levels) and decreased testicular germ cells proliferation. Further, Cis decreased testicular steroidogenesis (decreased expression of StAR, CYP11A1, 3β-HSD and 17β-HSD mRNA and proteins) and decreased follicle stimulating hormone, luteinizing hormone and testosterone levels. Cis also decreased sperm count, motility, viability, normal morphology and Johnsen score. However, intervention with tBHQ significantly decreased oxidative stress by upregulating Nrf2 gene, suppressed inflammation, apoptosis and increased testicular germ cells proliferation. tBHQ also increased steroidogenesis and improved sperm parameters. Taken together, tBHQ improves steroidogenesis and spermatogenesis in Cis-intoxicated rats by improving antioxidant status, dampening inflammation and apoptosis, thus improving the proliferative capacity of spermatogenic cells.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria.
| | - Godwin Adakole Ujah
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Department of Science Laboratory, Technology, Akanu Ibiam Federal, Polytechnic, Unwana, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Unit of Integrative Medicine, Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences (Physiology Section). The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Timothy Joe Akpan
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Hope Chinaza Ekuma
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Victoria Victor Fubara
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Catherine Barong Kekung-Asu
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Eme Efiom Osim
- Department of Physiology, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| |
Collapse
|
28
|
Arıcan EY, Gökçeoğlu Kayalı D, Ulus Karaca B, Boran T, Öztürk N, Okyar A, Ercan F, Özhan G. Reproductive effects of subchronic exposure to acetamiprid in male rats. Sci Rep 2020; 10:8985. [PMID: 32488017 PMCID: PMC7265391 DOI: 10.1038/s41598-020-65887-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/11/2020] [Indexed: 11/09/2022] Open
Abstract
Acetamiprid, a selective agonist of nicotinic acetylcholine recetors, is one of the most widely used neonicotinoids. There is limited data about toxicity of acetamiprid on male reproductive system. Therefore, the study aimed to investigate the reproductive toxic potential of acetamiprid in male rats orally treated with acetamiprid with low (12.5 mg/kg) medium (25 mg/kg) or high dose (35 mg/kg) for 90 days. According to our results, sperm concentration and plasma testosterone levels decreased in dose dependent manner. Gonadotropin-releasing hormone (GnRH), follicle-stimulating hormeone (FSH), luteinizing hormone (LH) levels increased at low and medium dose groups and acetamiprid caused lipid peroxidation and glutathione (GSH) depletion in the testes. Histologic examinations revealed that acetamiprid induced apoptosis in medium and high dose groups and proliferation index dramatically decreased in high dose group. In conclusion, acetamiprid caused toxicity on male reproductive system in the high dose. The mechanism of the toxic effect may be associated with oxidative stress, hormonal disruptions and apoptosis.
Collapse
Affiliation(s)
- Emre Yağmur Arıcan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Istanbul, Turkey
| | - Damla Gökçeoğlu Kayalı
- Marmara University, Faculty of Medicine, Department of Histology and Embryology, 34854, Istanbul, Turkey
| | - Bahar Ulus Karaca
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Istanbul, Turkey
| | - Tuğçe Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Istanbul, Turkey
| | - Narin Öztürk
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, 34116, Turkey
| | - Alper Okyar
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, 34116, Turkey
| | - Feriha Ercan
- Marmara University, Faculty of Medicine, Department of Histology and Embryology, 34854, Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Istanbul, Turkey.
| |
Collapse
|
29
|
Hu W, Yu Z, Gao X, Wu Y, Tang M, Kong L. Study on the damage of sperm induced by nickel nanoparticle exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1715-1724. [PMID: 31278585 DOI: 10.1007/s10653-019-00364-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
As a new type of nanomaterials, nickel nanoparticles (Ni NPs) have been widely used by human beings, whose exposure probability was greatly increasing. Many studies have shown that Ni NPs can induce apoptosis, oxidative stress and DNA damage. Nowadays, male reproductive health is an important public health problem, which is a hot topic in toxicological research. In the present study, to protect reproductive health, the effect of Ni NPs exposure on spermatogenesis injury was assessed, understanding the toxicity and safety of Ni NPs. Sixty ICR male mice with 20 ± 2 g were randomly divided into five groups. The experimental groups were treated with 5 mg/kg, 15 mg/kg and 45 mg/kg Ni NPs. The reproductive toxicity of Ni NPs on male mice was evaluated by the indexes of testicular organ coefficient, testicular marker enzyme, sperm motility and histopathology. As a result, the somatic index of testis and epididymis increased in each group. Compared with the control group, the activity of testicular markers increased and the sperm motility index decreased in the low-, middle- and high-dose groups. Pathological results indicated that various cell apoptosis and disordered arrangement of cells occurred in the seminiferous tubules of the exposed groups. In conclusion, the findings of this study suggest that Ni NPs have certain damage to spermatogenesis in mice.
Collapse
Affiliation(s)
- Wangcheng Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhou Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaojie Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Korkmaz HI, Hahn NE, Jansen KM, Musters R, van Bezu J, van Wieringen WN, van Zuijlen P, Ulrich M, Niessen H, Krijnen P. Homocysteine-induced inverse expression of tissue factor and DPP4 in endothelial cells is related to NADPH oxidase activity. Physiol Int 2019; 106:29-38. [PMID: 30888218 DOI: 10.1556/2060.106.2019.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We previously found that homocysteine (Hcy)-induced apoptosis in endothelial cells coincided with increased NADPH oxidase (NOX) activity. In addition, in ischemic endothelial cells present in the heart, we showed that loss of serine protease dipeptidyl peptidase IV (DPP4) expression was correlated with induction of tissue factor (TF) expression. Since Hcy can initiate thrombosis through the induction of TF expression, in this study, we evaluated whether the inverse relation of TF and DPP4 is also Hcy-dependent and whether NOX-mediated reactive oxygen species (ROS) is playing a role herein. METHODS Human umbilical vein endothelial cells (HUVECs) were incubated with 2.5 mM Hcy for 3 and 6 h. The effects of Hcy on DPP4 and TF expression and NOX2/p47phox-mediated nitrotyrosine (ROS) production were studied using digital-imaging microscopy. RESULTS In HUVECs, high levels of Hcy showed a significant increase of TF expression and a concomitant loss of DPP4 expression after 6 h. In addition, NOX subunits NOX2 and p47phox were also significantly increased after 6 h of Hcy incubation and coincided with nitrotyrosine (ROS) expression. Interestingly, inhibition of NOX-mediated nitrotyrosine (ROS) with the use of apocynin not only reduced these effects, but also counteracted the effects of Hcy on TF and DPP4 expression. CONCLUSION These results indicate that the inverse relation of TF and DPP4 in endothelial cells is also Hcy-dependent and related to NOX activity.
Collapse
Affiliation(s)
- H I Korkmaz
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - N E Hahn
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - K M Jansen
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Rjp Musters
- 3 Department of Physiology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - J van Bezu
- 3 Department of Physiology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - W N van Wieringen
- 4 Department of Epidemiology and Biostatistics, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,5 Department of Mathematics, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Ppm van Zuijlen
- 6 Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,7 Department of Plastic and Reconstructive Surgery, Burn Center, Red Cross Hospital , Beverwijk, The Netherlands.,8 Preclinical Research, Association of Dutch Burn Centres (ADBC) , Beverwijk, The Netherlands
| | - Mmw Ulrich
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,8 Preclinical Research, Association of Dutch Burn Centres (ADBC) , Beverwijk, The Netherlands.,9 Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Hwm Niessen
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,10 Department of Cardiac Surgery, Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| | - Paj Krijnen
- 1 Department of Pathology, Amsterdam UMC, VUmc , Amsterdam, The Netherlands.,2 Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VUmc , Amsterdam, The Netherlands
| |
Collapse
|