1
|
Mansour MF, Behairy A, Mostafa M, Khamis T, Alsemeh AE, Ahmed NMQ, El-Emam MMA. Quercetin-loaded PEGylated liposomes alleviate testicular dysfunction in alloxan-induced diabetic rats: The role of Kisspeptin/Neurokinin B/Dynorphin pathway. Toxicol Appl Pharmacol 2025; 499:117337. [PMID: 40239742 DOI: 10.1016/j.taap.2025.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that can lead to serious complications, including testicular dysfunction. This dysfunction is considered a significant cause of male infertility. Quercetin (Que), a naturally existing flavonoid with versatile biological functions, has limited water solubility and low bioavailability. The current study was designed to develop a bioavailable formulation of Que. via encapsulating it in PEGylated liposomes (Que-PEG-Lip) and determine whether this formulation is effective in the treatment of alloxan-induced testicular injury via targeting Kisspeptin/Neurokinin B/Dynorphin/steroidogenesis signaling pathway. Thirty-two male Sprague Dawley rats were randomly divided into four groups: Control, alloxan-induced diabetes with testicular dysfunction (ALX), ALX + metformin (MET) and ALX + Que-PEG-Lip. The results showed that treatment of ALX group with Que-PEG-Lip significantly improved the alteration of glycemic index, serum reproductive hormones, testicular antioxidant status, testicular Kiss-1, androgen receptor (AR), and proliferation marker protein (ki67) immunoexpression in compared to ALX group. Moreover, the treatment of ALX group with Que-PEG-Lip regulated the Kisspeptin/Neurokinin B/Dynorphin/steroidogenesis pathway gene expression. Interestingly, the outcomes of the molecular docking analysis revealed a strong agonistic effect of Que. on the kisspeptin, neurokinin, and dynorphin receptors. In conclusion, Que-PEG-Lip mitigated the testicular dysfunction in alloxan-induced diabetic rats via regulation of hypothalamic-pituitary-gonadal axis signaling pathway and alleviation the testicular oxidative stress.
Collapse
Affiliation(s)
- Mohamed Fouad Mansour
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amira Ebrahim Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Abdou HM, Elmageed GMA, Hussein HK, Yamari I, Chtita S, El-Samad LM, Hassan MA. Antidiabetic Effects of Quercetin and Silk Sericin in Attenuating Dysregulation of Hepatic Gluconeogenesis in Diabetic Rats Through Potential Modulation of PI3K/Akt/FOXO1 Signaling: In Vivo and In Silico Studies. J Xenobiot 2025; 15:16. [PMID: 39846548 PMCID: PMC11755466 DOI: 10.3390/jox15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus sought to probe the effectiveness and uncover the potential mechanism of quercetin (QCT) and silk sericin (SS) in mitigating hyperglycemia-induced hepatic gluconeogenesis disorder, which remains obscure. Administration of QCT and SS to diabetic male albino rats markedly restored the levels of glucose, insulin, advanced glycation end-products (AGEs), liver function enzymes, alpha-fetoprotein (AFP), globulin, and glycogen, in addition to hepatic carbohydrate metabolizing enzymes and gluconeogenesis in comparison with diabetic rats. Furthermore, treatment with QCT and SS modulated hepatic malondialdehyde (MD), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), nitric oxide, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β), in addition to serum interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), implying their effectiveness in safeguarding cells against oxidative impairment and inflammation. Remarkably, QCT and SS treatments led to the upregulation of expression of phosphatidylinositol 3-kinases (PI3K), phospho-Akt (p-Akt), and forkhead box-O1 (FOXO1) genes in hepatic tissues compared to diabetic rats, orchestrating these singling pathways for curtailing hyperglycemia and pernicious consequences in hepatic tissues. Importantly, immunohistochemical investigations exhibited downregulation of caspase-3 expression in rats treated with QCT and SS compared to diabetic animals. Beyond that, the histopathological results of hepatic tissues demonstrated notable correlations with biochemical findings. Interestingly, the in silico results supported the in vivo findings, showing notable binding affinities of QCT and SS to PI3K, GPx, and TNF-α proteins. These results imply that QCT and SS could mitigate oxidative stress and inflammation and regulate hepatic gluconeogenesis in diabetic rats. However, QCT revealed greater molecular interactions with the studied proteins than SS. Overall, our results emphasize that QCT and SS have significant therapeutic effects on attenuating hyperglycemia-induced hepatic gluconeogenesis, with QCT showing superior effectiveness.
Collapse
Affiliation(s)
- Heba M. Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Ghada M. Abd Elmageed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Hussein K. Hussein
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca P. O. Box 7955, Morocco; (I.Y.); (S.C.)
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca P. O. Box 7955, Morocco; (I.Y.); (S.C.)
| | - Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| |
Collapse
|
3
|
Türedi S, Çelik H, Dağlı ŞN, Taşkın S, Şeker U, Deniz M. An Examination of the Effects of Propolis and Quercetin in a Rat Model of Streptozotocin-Induced Diabetic Peripheral Neuropathy. Curr Issues Mol Biol 2024; 46:1955-1974. [PMID: 38534744 DOI: 10.3390/cimb46030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The purpose of this study was to reveal the combined effects of propolis (P) and quercetin (Q) against diabetic peripheral neuropathy developing with streptozotocin-induced diabetes in rats. Sixty-four adult male rats were divided into eight equal groups: control, P (100 mg/kg/day), Q (100 mg/kg/day), P + Q (100 mg/day for both), diabetes mellitus (DM) (single-dose 60 mg/kg streptozotocin), DM + P, DM + Q, and DM + P + Q. The rats were sacrificed, and blood and sciatic nerve tissues were collected. Blood glucose and malondialdehyde (MDA) levels increased, while IL-6 and total antioxidant status decreased in the DM group (p = 0.016 and p = 0.047, respectively). Ultrastructural findings showed degeneration of the axon and myelin sheath. The apoptotic index (AI %), TNF-α, and IL-1β immunopositivity increased significantly in the DM group (p < 0.001). Morphological structures approaching those of the controls were observed in the DM + P, DM + Q, and DM + P + Q groups. Morphometric measurements increased markedly in all treatment groups (p < 0.001), while blood glucose and MDA levels, AI (%), TNF-α, and IL-1β immunopositivity decreased. In conclusion, the combined effects of propolis and quercetin in diabetic neuropathy may provide optimal morphological protection with neuroprotective effects by reducing hyperglycemia, and these may represent a key alternative supplement in regenerative medicine.
Collapse
Affiliation(s)
- Sibel Türedi
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Hakim Çelik
- Department of Physiology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Şeyda Nur Dağlı
- Department of Physiology, Faculty of Medicine, İstinye University, İstanbul 34000, Turkey
| | - Seyhan Taşkın
- Department of Physiology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Uğur Şeker
- Department of Histology and Embryology, Faculty of Medicine, Mardin Artuklu University, Mardin 47100, Turkey
| | - Mustafa Deniz
- Department of Anatomy, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| |
Collapse
|
4
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
5
|
Naderi R, Pourheydar B, Moslehi A. Tropisetron improved testicular inflammation in the streptozotocin-induced diabetic rats: The role of toll-like receptor 4 (TLR4) and mir146a. J Biochem Mol Toxicol 2023; 37:e23272. [PMID: 36504472 DOI: 10.1002/jbt.23272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/20/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
As a serotonin antagonist, tropisetron positively affects blood glucose lowering, insulin synthesis, pancreas inflammation, and apoptosis in diabetes. Reproductive disorders are one of the diabetes-induced chronic complications. The present study aimed to evaluate the effect of tropisetron on diabetes-induced testicular inflammation, its signaling pathway, and mir146a. To this end, animals were assigned to the control, tropisetron, diabetes (DM), DM-tropisetron, and DM-glibenclamide groups. Streptozotocin (50 mg/kg) was intraperitoneally injected to provide diabetes. Tropisetron and glibenclamide were then administrated intraperitoneally for 2 weeks after diabetes induction. Testes histology, real-time polymerase chain reaction, western blot analysis, ELISA, and immunohistochemistry assays were also performed. The finding revealed that tropisetron significantly improved diabetes-induced testis damages, lowered TLR4, TRAF6, IRAK1, NF-κB, and caspase3 protein expressions, and decreased TNF-α and IL-1 levels. Moreover, the mir146a expression declined following the tropisetron treatment. This study demonstrated that the significant role of tropisetron in lowering testicular inflammation and apoptosis might have been due to the inhibition of the TLR4/IRAK1/TRAF6 signaling pathway and thereby the attenuation of NF-κB and caspase3 expression and inflammatory cytokines. Furthermore, the downregulation of mir146a, as an inflammatory microRNA interacting with TLR4, showed another pathway, through which tropisetron improved diabetes-induced testicular injuries.
Collapse
Affiliation(s)
- Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Azam Moslehi
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Quercetin Ameliorates Testicular Damage in Zucker Diabetic Fatty Rats through Its Antioxidant, Anti-Inflammatory and Anti-Apoptotic Properties. Int J Mol Sci 2022; 23:ijms232416056. [PMID: 36555696 PMCID: PMC9781092 DOI: 10.3390/ijms232416056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats. Furthermore, a significant stabilization of the antioxidant capacity (p < 0.05), superoxide dismutase and catalase activity (p < 0.01), with a concomitant decrease in lipid peroxidation (p < 0.05) were observed in Obese ZDF animals exposed to QUE. Our data also indicate a significant decline in the levels of interleukin (IL)-1 (p < 0.05), IL-6 (p < 0.01) and tumor necrosis factor alpha (p < 0.001) following QUE supplementation to Obese ZDF rats in comparison with their respective control. Finally, a significant down-regulation of the pro-apoptotic BAX protein (p < 0.0001) was observed in Obese ZDF rats administered with QUE, while a significant Bcl-2 protein overexpression (p < 0.0001) was recorded in Lean ZDF animals when compared to their untreated control. As such, our results suggest that QUE is a potentially beneficial agent to reduce testicular damage in ZDF rats with Type 2 diabetes mellitus by decreasing oxidative stress, chronic inflammation, and excessive cell loss through apoptosis.
Collapse
|
7
|
Mohammadzadeh A, Gol A. Synergistic properties of garlic and Citrullus colocynthis on reproductive injury caused by diabetes in male rats: Structural and molecular evidence. J Food Biochem 2022; 46:e14467. [PMID: 36219760 DOI: 10.1111/jfbc.14467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 01/14/2023]
Abstract
This study evaluates the synergistic effect of garlic and Citrullus colocynthis on diabetic reproductive damage by suppressing the AGEs/RAGE/Nox-4 signaling pathway. Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic+G (Garlic, 1 mL/100 g b.w), Diabetic+C (C. colocynthis, 10 mg/kg b.w) and Diabetic+GC (Garlic, 1 mL/100 g b.w and C. colocynthis, 10 mg/kg b.w) groups. At the end of the experimental period (30 days), in diabetic rats, glucose increased, and body & testis weight, luteinizing hormone (LH) and testosterone levels, and sperm count decreased significantly and histopathological injuries were observed. In addition, they have increased testicular apoptosis and oxidative stress. Also, the mechanism based on advanced glycation end products (AGEs)/receptors for advanced glycation end products (RAGE)/NADPH oxidase-4 (Nox-4) was activated in diabetic rats. Separate consumption of garlic and C. colocynthis in Diabetic+G and Diabetic+C groups alleviated the negative adverse effect of diabetes to some extent, but when they were used in the combination form (Diabetic+GC) improvement was profound. Testis histopathology, increased body and testis weight, and enhanced capacity in protecting diabetic reproductive injury was seen. Decreases in testosterone and LH concentration and sperm count in diabetic rats were also reversed by combined administration of garlic and C. colocynthis. It regulated oxidative stress markers, meanwhile reducing caspase-3 immunoexpression. In addition, overexpression of RAGE, Nox-4 and nuclear transcription factor-κB (NF-κB) was inhibited by the combination of garlic and C. colocynthis. PRACTICAL APPLICATIONS: Diabetes mellitus is wide spread all around the world with variety of complications in body including reproductive system in which patients suffer from physical and psychological aspects. Despite many efforts in providing agents for controlling diabetes and its complications, economic conditions of some countries make it difficult for people to provide costly medicine and as a result, they have to bear the complications until they pass away. However, traditional medicine is still finding its way, especially in poor countries with emphasis on medicinal plants. There have been many studies on plants to alleviate diabetes or its side effects. But, using one plant for long term, may be not so effective. Here, we attempted to find whether two plants from two different species can show more efficacy than each one alone. We noticed garlic and Citrullus colocynthis despite having beneficial effects when used alone, they could show synergistic effects in combination.
Collapse
Affiliation(s)
- Aghileh Mohammadzadeh
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Gol
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
8
|
Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia 2022; 54:e14602. [PMID: 36161318 DOI: 10.1111/and.14602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022] Open
Abstract
Several processes including oxidative stress, apoptosis, inflammation and autophagy are related to testicular function. Recent studies indicate that a crosstalk between apoptosis and autophagy is essential in regulating testicular function. Autophagy and apoptosis communicate with each other in a complex way, allowing them to work for or against each other in testicular cell survival and death. Several xenobiotics especially endocrine-disrupting chemicals (EDCs) have caused reproductive toxicity because of their potential to modify the rate of autophagy and trigger apoptosis. Therefore, the purpose of the present review was to shed light on how autophagy and apoptosis interact together in the testis.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Quercetin Attenuates Quinocetone-Induced Cell Apoptosis In Vitro by Activating the P38/Nrf2/HO-1 Pathway and Inhibiting the ROS/Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11081498. [PMID: 36009217 PMCID: PMC9405464 DOI: 10.3390/antiox11081498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Quinocetone (QCT), a member of the quinoxaline 1,4-di-N-oxides (QdNOs) family, can cause genotoxicity and hepatotoxicity, however, the precise molecular mechanisms of QCT are unclear. This present study investigated the protective effect of quercetin on QCT-induced cytotoxicity and the underlying molecular mechanisms in human L02 and HepG2 cells. The results showed that quercetin treatment (at 7.5–30 μM) significantly improved QCT-induced cytotoxicity and oxidative damage in human L02 and HepG2 cells. Meanwhile, quercetin treatment at 30 μM significantly inhibited QCT-induced loss of mitochondrial membrane potential, an increase in the expression of the CytC protein and the Bax/Bcl-2 ratio, and an increase in caspases-9 and -3 activity, and finally improved cell apoptosis. Quercetin pretreatment promoted the expression of the phosphorylation of p38, Nrf2, and HO-1 proteins. Pharmacological inhibition of p38 significantly inhibited quercetin-mediated activation of the Nrf2/HO-1 pathway. Consistently, pharmacological inhibitions of the Nrf2 or p38 pathways both promoted QCT-induced cytotoxicity and partly abolished the protective effects of quercetin. In conclusion, for the first time, our results reveal that quercetin could improve QCT-induced cytotoxicity and apoptosis by activating the p38/Nrf2/HO-1 pathway and inhibiting the ROS/mitochondrial apoptotic pathway. Our study highlights that quercetin may be a promising candidate for preventing QdNOs-induced cytotoxicity in humans or animals.
Collapse
|
10
|
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE, Rahman A, Jafrin UH, Hannan JMA, Abdel-Wahab YHA. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081146. [PMID: 36013325 PMCID: PMC9409999 DOI: 10.3390/life12081146] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are costly and present adverse side effects. Several cellular, animal, and clinical studies have provided compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the molecular level. This review demonstrates the therapeutic potential of quercetin in the management of T2DM.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-132-387-9720
| | - Samara T. Choudhury
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Akib Bin Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Md. Abdul Aziz
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Anika E. Richi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Ayesha Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Umme H. Jafrin
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | | |
Collapse
|
11
|
Ashrafizadeh M, Kumar AP, Aref AR, Zarrabi A, Mostafavi E. Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. Int J Nanomedicine 2022; 17:1229-1253. [PMID: 35340823 PMCID: PMC8943613 DOI: 10.2147/ijn.s350250] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is among the chronic metabolic disorders that its incidence rate has shown an increase in developed and wealthy countries due to lifestyle and obesity. The treatment of DM has always been of interest, and significant effort has been made in this field. Exosomes belong to extracellular vesicles with nanosized features (30-150 nm) that are involved in cell-to-cell communication and preserving homeostasis. The function of exosomes is different based on their cargo, and they may contain lipids, proteins, and nucleic acids. The present review focuses on the application of exosomes in the treatment of DM; both glucose and lipid levels are significantly affected by exosomes, and these nanostructures enhance lipid metabolism and decrease its deposition. Furthermore, exosomes promote glucose metabolism and affect the level of glycolytic enzymes and glucose transporters in DM. Type I DM results from the destruction of β cells in the pancreas, and exosomes can be employed to ameliorate apoptosis and endoplasmic reticulum (ER) stress in these cells. The exosomes have dual functions in mediating insulin resistance/sensitivity, and M1 macrophage-derived exosomes inhibit insulin secretion. The exosomes may contain miRNAs, and by transferring among cells, they can regulate various molecular pathways such as AMPK, PI3K/Akt, and β-catenin to affect DM progression. Noteworthy, exosomes are present in different body fluids such as blood circulation, and they can be employed as biomarkers for the diagnosis of diabetic patients. Future studies should focus on engineering exosomes derived from sources such as mesenchymal stem cells to treat DM as a novel strategy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Zou M, Chi J, Jiang Z, Zhang W, Hu H, Ju R, Liu C, Xu T, Wang S, Feng Z, Liu W, Han B. Functional thermosensitive hydrogels based on chitin as RIN-m5F cell carrier for the treatment of diabetes. Int J Biol Macromol 2022; 206:453-466. [PMID: 35247418 DOI: 10.1016/j.ijbiomac.2022.02.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 12/19/2022]
Abstract
Herein, the thermosensitive hydroxypropyl chitin (HPCT) hydrogel was prepared and the chemical structures, microstructures, rheological properties and degradation in vitro were investigated. The HPCT hydrogel possessed satisfactory biocompatibility in mouse fibroblast cells and Sprague Dawley rats. On the other hand, N-acetylglucosamine (NAG) and carboxymethyl chitosan (CMCS) provided favorable capacity for promoting cell proliferation, delaying cell apoptosis, and facilitating the insulin secretion of rat pancreatic beta cells (RIN-m5F) in three-dimensional culture. Most importantly, the effects of HPCT/NAG and HPCT/CMCS thermosensitive hydrogels as RIN-m5F cells carriers were evaluated via injection into different areas of diabetic rats. Our results demonstrated that HPCT/NAG and HPCT/CMCS hydrogels loaded RIN-m5F cells could keep cells survival, maintain insulin secretion and reduce blood glucose for one week. Overall, the functional thermosensitive hydrogels based on HPCT were effective cell carriers for RIN-m5F cells and might provide novel strategy for the treatment of diabetes via cell engineering.
Collapse
Affiliation(s)
- Mingyu Zou
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Wei Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Huiwen Hu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenqi Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Tianjiao Xu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhilong Feng
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
13
|
Quercetin and vitamin E ameliorate cardio-apoptotic risks in diabetic rats. Mol Cell Biochem 2022; 477:793-803. [PMID: 35048283 DOI: 10.1007/s11010-021-04332-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023]
Abstract
Apoptosis is upregulated in all forms of diabetes, and the mitochondria act as target in diabetes pathophysiology. Quercetin and vitamin E have both shown usefulness in the delay of progression of diabetes-induced complications. However, their effect on the apoptotic process in diabetes mellitus is unknown. We hypothesize that quercetin treatment in diabetes may decrease the propensity for cardiomyocytic death via regulation of the mitochondria permeability transition (mPT) pore opening. Hearts from normal and streptozotocin-induced diabetic rats were used for the study. Low ionic strength heart mitochondria were used for swelling assay and mitochondrial lipid peroxidation (mLPO) activity was spectrophotometrically assessed. Levels of cytochrome c and caspase 3 and 9 were determined by immunohistochemistry, while lesions assessed by histology. Diabetic heart mPT pore showed larger amplitude swelling than control, while mLPO levels were increased in diabetic rats relative to control, this resulted in cytochrome c release. This initiated increased caspase 3 and 9 activity in diabetic rats (p < 0.05). Histology showed hemorrhagic lesions in diabetic rat hearts. Quercetin and vitamin E treatment reversed these effects, suggestive of their anti-apoptotic effect. Quercetin and vitamin E protection in diabetes is mediated by mPT pore inhibition and modulation of mitochondrial-mediated apoptosis.
Collapse
|
14
|
Sun J, Pan Y, Li X, Wang L, Liu M, Tu P, Wu C, Xiao J, Han Q, Da W, Ma Y, Guo Y. Quercetin Attenuates Osteoporosis in Orchiectomy Mice by Regulating Glucose and Lipid Metabolism via the GPRC6A/AMPK/mTOR Signaling Pathway. Front Endocrinol (Lausanne) 2022; 13:849544. [PMID: 35547008 PMCID: PMC9082363 DOI: 10.3389/fendo.2022.849544] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Quercetin, a flavonoid found in natural medicines, has shown a role in disease prevention and health promotion. Moreover, because of its recently identified contribution in regulating bone homeostasis, quercetin may be considered a promising agent for improving bone health. This study aimed to elucidate the role of quercetin in androgen deprivation therapy-induced osteoporosis in mice. C57BL/6 mice were subjected to orchiectomy, followed by quercetin treatment (75 and 150 mg/kg/d) for 8 weeks. Bone microstructure was then assessed by micro-computed tomography, and a three-point bending test was used to evaluate the biomechanical parameters. Hematoxylin and eosin (H&E) staining was used to examine the shape of the distal femur, gastrocnemius muscle, and liver. The balance motion ability in mice was evaluated by gait analysis, and changes in the gastrocnemius muscle were observed via Oil red O and Masson's staining. ELISA and biochemical analyses were used to assess markers of the bone, glucose, and lipid metabolism. Western blotting analyses of glucose and lipid metabolism-related protein expression was performed, and expression of the GPCR6A/AMPK/mTOR signaling pathway-related proteins was also assessed. After 8 weeks of quercetin intervention, quercetin-treated mice showed increased bone mass, bone strength, and improved bone microstructure. Additionally, gait analysis, including stride length and frequency, were significantly increased, whereas a reduction of the stride length and gait symmetry was observed. H&E staining of the gastrocnemius muscle showed that the cross-sectional area of the myofibers had increased significantly, suggesting that quercetin improves balance, motion ability, and muscle mass. Bone metabolism improvement was defined by a reduction of serum levels of insulin, triglycerides, total cholesterol, and low-density lipoprotein, whereas levels of insulin-like growth factor-1 and high-density lipoprotein were increased after quercetin treatment. Expression of proteins involved in glucose uptake was increased, whereas that of proteins involved in lipid production was decreased. Moreover, the GPRC6A and the phospho-AMPK/AMPK expression ratio was elevated in the liver and tibia tissues. In contrast, the phospho-mTOR/mTOR ratio was reduced in the quercetin group. Our findings indicate that quercetin can reduce the osteoporosis induced by testosterone deficiency, and its beneficial effects might be associated with the regulation of glucose metabolism and inhibition of lipid metabolism via the GPCR6A/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Li
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jirimutu Xiao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Qiuge Han
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Da
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Weiwei Da, ; Yong Ma, ; Yang Guo,
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Weiwei Da, ; Yong Ma, ; Yang Guo,
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Weiwei Da, ; Yong Ma, ; Yang Guo,
| |
Collapse
|