1
|
Khalil WA, Hassan MAE, Hegazy MM, Fathy K, El-Harairy MA, Ismail AA, Alfattah MA, Sindi RA, Abdelnour SA. Effects of Curcumin Oil Nano-Emulsion on Buffalo Sperm Cryopreservation: Insights on Sperm Quality, Kinematic Parameters, Sperm Ultrastructure, Oxidative Stress, Apoptosis, Microbiota, and Molecular Docking Analysis and Fertilising Capacity. Reprod Domest Anim 2025; 60:e70062. [PMID: 40265647 DOI: 10.1111/rda.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the potential of incorporating curcumin oil nano-emulsion (CONE) into a Tris-based freezing extender to relieve cryodamage effects and enhance sperm cryo-resistance in buffalo bulls. Pooled semen from five fertile buffalo bulls (n = 40 ejaculates) was divided and supplemented with 0.5% CONE (CONE0.5), 1% CONE (CONE1), or without CONE (CONE0, control), then extended and packaged. Post-thaw assessments included sperm kinematic parameters, oxidative stress markers, apoptosis levels, microbial load, ultrastructural integrity, molecular docking interactions, and conception rates. The CONE0.5 group exhibited significantly higher sperm viability, progressive motility, and membrane integrity, as well as significantly lower nitric oxide and MDA levels, compared to the CONE0 and CONE1 groups (p < 0.05), indicating reduced oxidative stress. Compared to the CONE0 group, the CONE0.5 group exhibited a significantly higher percentage of viable and early apoptotic sperm, and a significantly lower percentage of late apoptotic sperm (p < 0.05). Both CONE-treated groups demonstrated significantly lower post-thaw total bacterial, spore-forming bacterial, and coliform bacterial counts (p < 0.05). Conception rates were higher in the CONE0.5 group (80.0%) compared to the CONE0 group (68.0%) (p > 0.05). Molecular docking analysis revealed strong binding affinities between curcumin and caspase-3 (-7.87 kcal/mol), HSP70 (-8.52 kcal/mol), and PRDX-1 (-8.90 kcal/mol), suggesting potential mechanisms of action. In summary, the inclusion of 0.5% CONE as a cryoprotective additive in buffalo semen freezing media demonstrates a potential for improving post-thaw semen quality parameters, suggesting a possible enhancement of reproductive efficiency.
Collapse
Affiliation(s)
- Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Mahmoud A E Hassan
- Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Giza, Egypt
| | - Mohamed M Hegazy
- Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Giza, Egypt
| | - Khaled Fathy
- Electron Microscopy Unit, Mansoura University, El Mansoura, Egypt
| | - Mostafa A El-Harairy
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Aya A Ismail
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Ramya Ahmad Sindi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2025; 32:261-277. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Moselhy OA, Abdel-Aziz N, El-Bahkery A, Moselhy SS, Ibrahim EA. Curcumin nanoparticles alleviate brain mitochondrial dysfunction and cellular senescence in γ-irradiated rats. Sci Rep 2025; 15:3857. [PMID: 39890961 PMCID: PMC11785741 DOI: 10.1038/s41598-025-87635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Despite the diverse applications of γ radiation in radiotherapy, industrial processes, and sterilization, it causes hazardous effects on living organisms, such as cellular senescence, persistent cell cycle arrest, and mitochondrial dysfunction. This study evaluated the efficacy of curcumin nanoparticles (CNPs) in mitigating mitochondrial dysfunction and cellular senescence induced by γ radiation in rat brain tissues. Four groups of male Wistar albino rats (n = 8 per group) were included: (Gr1) the control group; (Gr2) the CNPs group (healthy rats receiving oral administration of curcumin nanoparticles at a dose of 10 mg/kg/day, three times per week for eight weeks); (Gr3) the irradiated group (rats exposed to a single dose of 10 Gy head γ irradiation); and (Gr4) the irradiated + CNPs group (irradiated rats treated with CNPs). The data obtained demonstrated that oral administration of CNPs for eight weeks attenuated oxidative stress in γ-irradiated rats by lowering the brain's lipid peroxidation level [malondialdehyde (MDA)] and enhancing antioxidant markers [superoxide dismutase (SOD), reduced glutathione (GSH), and total antioxidant capacity (TAC)] (P < 0.05). In addition, CNPs significantly increased mitochondrial function by improving complex I, complex II, and ATP production levels compared to the irradiated group. In irradiated rats, CNPs also showed anti-neuroinflammatory effects by reducing brain interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-ĸB) levels (P < 0.05). Moreover, CNPs administered to irradiated rats significantly reduced brain β-galactosidase activity and the expression levels of p53, p21, and p16 genes (P < 0.05) while concurrently inducing a significant increase in AMPK mRNA expression compared to the irradiated group. In conclusion, CNPs ameliorated the neurotoxicity of γ radiation and hold promise as a novel agent to delay cellular senescence via their combined antioxidant, anti-inflammatory, and mitochondrial-enhancing properties.
Collapse
Affiliation(s)
- Omnia A Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nahed Abdel-Aziz
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Azza El-Bahkery
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Liao TL, He CM, Xiao D, Zhang ZR, He Z, Yang XP. Icariin targets PDE5A to regulate viability, DNA synthesis and DNA damage of spermatogonial stem cells and improves reproductive capacity. Asian J Androl 2025:00129336-990000000-00274. [PMID: 39774071 DOI: 10.4103/aja2024106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Icariin is a pure compound derived from Epimedium brevicornu Maxim, and it helps the regulation of male reproduction. Nevertheless, the role and underlying mechanisms of Icariin in mediating male germ cell development remain to be clarified. Here, we have demonstrated that Icariin promoted proliferation and DNA synthesis of mouse spermatogonial stem cells (SSCs). Furthermore, surface plasmon resonance iron (SPRi) and molecular docking (MOE) assays revealed that phosphodiesterase 5A (PDE5A) was an important target of Icariin in mouse SSCs. Mechanically, Icariin decreased the expression level of PDE5A. Interestingly, hydrogen peroxides (H2O2) enhanced the expression level of phosphorylation H2A.X (p-H2A.X), whereas Icariin diminished the expression level of p-H2A.X and DNA damage caused by H2O2 in mouse SSCs. Finally, our in vivo animal study indicated that Icariin protected male reproduction. Collectively, these results implicate that Icariin targets PDE5A to regulate mouse SSC viability and DNA damage and improves male reproductive capacity. This study thus sheds new insights into molecular mechanisms underlying the fate decisions of mammalian SSCs and offers a scientific basis for the clinical application of Icariin in male reproduction.
Collapse
Affiliation(s)
- Tian-Long Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Cardiology, Zhuzhou Hospital, The Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou 412001, China
| | - Cai-Mei He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zhi-Rong Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zuping He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Xiao-Ping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| |
Collapse
|
5
|
Russo GI, Saleh R, Finocchi F, Juma AR, Durairajanayagam D, Kahraman O, Söğütdelen E, Sokolakis I, Vishwakarma RB, Bahar F, Harraz AM, Kavoussi P, Atmoko W, Chung E, Kumar N, Zohdy W, Rambhatla A, Arafa M, Phuoc NHV, Salvio G, Calogero AE, Toprak T, Pinggera GM, Cannarella R, Colpi G, Hamoda TAAAM, Shah R, Agarwal A. Impact of Varicocele on Testicular Oxidative Stress and Sperm Parameters in Experimental Animals: A Systematic Review and Meta-Analysis. World J Mens Health 2024; 42:563-573. [PMID: 38449451 PMCID: PMC11216963 DOI: 10.5534/wjmh.230260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 03/08/2024] Open
Abstract
PURPOSE Varicocele has been associated with high seminal oxidative stress (OS), impaired semen quality, and reduced male fertility potential. However, the exact mechanism(s) underlying the development of varicocele-mediated infertility and the cause-effect relationship between varicocele and testicular dysfunction are not fully understood. The aim of this systematic review and meta-analysis (SRMA) is to investigate the impact of varicocele on testicular OS markers and sperm parameters in experimental animals with varicocele as compared to animals without varicocele. MATERIALS AND METHODS A literature search was performed using the Scopus and PubMed databases on studies that investigated testicular OS markers and sperm parameters in animals with varicocele. The primary outcomes included malondialdehyde (MDA) (nmol/mg) levels whereas the secondary outcomes included total sperm count (×106), sperm vitality (%), total sperm motility (%), and sperm DNA fragmentation (SDF) (%). Standardized mean difference (SMD) (95% confidence interval [CI]) was chosen to express the effect size. The quality of the included studies was evaluated using the Cambridge Quality Checklist. RESULTS Out of 76 identified articles, 6 studies on rats were included in the meta-analysis. The analysis showed a significant increase of MDA (SMD: 15.61 [1.93, 29.29]; p=0.03) in rats with varicocele vs. controls. We also observed a significant decrease in total sperm count (SMD: -17.45 [-28.97, -5.93]; p<0.01), sperm vitality (SMD: -16.41 [-26.30, -6.52]; p<0.01), total sperm motility (SMD: -17.67 [-24.90, -10.44]; p<0.01), and a significant increase of SDF (SMD: 7.41 [1.23, 13.59]; p=0.02), in rats with varicocele vs. controls. The quality of the included studies was ranked as high. CONCLUSIONS This SRMA indicates a significant increase in levels of testicular MDA and SDF and a reduction of sperm quality in experimental animals with varicocele. These findings support the potential role of testicular OS in the development of varicocele-induced testicular damage.
Collapse
Affiliation(s)
- Giorgio Ivan Russo
- Urology Section, Department of Surgery, University of Catania, Catania, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Federica Finocchi
- Global Andrology Forum, Moreland Hills, OH, USA
- Division of Endocrinology, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | - Almas Ramadhani Juma
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Reproductive Health and Biology, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Damayanthi Durairajanayagam
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Oguzhan Kahraman
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Faculty of Medicine, Baskent University, Konya, Turkey
| | - Emrullah Söğütdelen
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ioannis Sokolakis
- Global Andrology Forum, Moreland Hills, OH, USA
- 2nd Department of Urology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ranjit B Vishwakarma
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Fahmi Bahar
- Global Andrology Forum, Moreland Hills, OH, USA
- Andrology Section, Faculty of Medicine, Universitas Muhammadiyah Palembang, Palembang, Indonesia
- Andrology Section, Siloam Sriwijaya Hospital, Palembang, Indonesia
| | - Ahmed M Harraz
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
- Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | - Parviz Kavoussi
- Global Andrology Forum, Moreland Hills, OH, USA
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Widi Atmoko
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Faculty of Medicine, Universitas Indonesia Dr. Ciptomangunkusumo Hospital, Jakarta, Indonesia
| | - Eric Chung
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | - Naveen Kumar
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Wael Zohdy
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Andrology and STDs, Cairo University, Cairo, Egypt
| | - Amarnath Rambhatla
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI, USA
| | - Mohamed Arafa
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Andrology and STDs, Cairo University, Cairo, Egypt
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar Doha, Doha, Qatar
| | - Nguyen Ho Vinh Phuoc
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology and Andrology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
| | - Gianmaria Salvio
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Aldo E Calogero
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Tuncay Toprak
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Germar-Michael Pinggera
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Rossella Cannarella
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Giovanni Colpi
- Global Andrology Forum, Moreland Hills, OH, USA
- Andrology & IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | - Taha Abo-Almagd Abdel-Meguid Hamoda
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rupin Shah
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
6
|
Pavuluri H, Bakhtiary Z, Panner Selvam MK, Hellstrom WJG. Oxidative Stress-Associated Male Infertility: Current Diagnostic and Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1008. [PMID: 38929625 PMCID: PMC11205999 DOI: 10.3390/medicina60061008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Infertility is a prevalent global issue affecting approximately 17.5% of adults, with sole male factor contributing to 20-30% of cases. Oxidative stress (OS) is a critical factor in male infertility, disrupting the balance between reactive oxygen species (ROS) and antioxidants. This imbalance detrimentally affects sperm function and viability, ultimately impairing fertility. OS also triggers molecular changes in sperm, including DNA damage, lipid peroxidation, and alterations in protein expression, further compromising sperm functionality and potential fertilization. Diagnostic tools discussed in this review offer insights into OS markers, antioxidant levels, and intracellular ROS concentrations. By accurately assessing these parameters, clinicians can diagnose male infertility more effectively and thus tailor treatment plans to individual patients. Additionally, this review explores various treatment options for males with OS-associated infertility, such as empirical drugs, antioxidants, nanoantioxidants, and lifestyle modifications. By addressing the root causes of male infertility and implementing targeted interventions, clinicians can optimize treatment outcomes and enhance the chances of conception for couples struggling with infertility.
Collapse
Affiliation(s)
| | | | | | - Wayne J. G. Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.P.); (Z.B.); (M.K.P.S.)
| |
Collapse
|
7
|
Koohpeyma F, Khodaparast Z, Salehi S, Danesh S, Gheshlagh FM, Naseri A, Montazeri-Najafabady N. The ameliorative effects of curcumin nanomicelle on testicular damage in the mouse model of multiple sclerosis. BMC Complement Med Ther 2024; 24:200. [PMID: 38778296 PMCID: PMC11110313 DOI: 10.1186/s12906-024-04423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND This study investigated the effect of curcumin nanomicelle (CUR-n) on the structure of testis tissue, the process of spermatogenesis, LH, FSH, testosterone, and oxidative stress in a model of multiple sclerosis. METHODS Twenty-four male mice C57BL/6 were randomly allocated into 4 groups of 6 (1: group receiving 2% CPZ diet, 2: group receiving the diet of 2% CPZ + CUR-n with a dose of 50 mg/kg, 3: group receiving the diet of 2% CPZ + CUR-n with a dose of 100 mg/kg). The concentration of hormones (testosterone, LH and FSH), was measured by the special hormone assay ELISA kits. Measuring total antioxidant capacity (TAC) and Malondialdehyde (MDA) levels was done by spectrophotometry and calorimetric methods, respectively. Stereological analysis was done in order to explore the number of spermatogenesis cells, testis and sperm properties. RESULTS The results indicated that CUR-n (100 mg/kg) significantly enhanced the concentration of LH, FSH, testosterone, and TAC but reduced MDA levels. It also notably increased the quantity of spermatogonia, spermatocyte, round spermatids, long spermatids and LCs, augmented testis weight and volume, and germinal epithelium volume, improved sperm count, morphology, viability, and motility. In addition, a considerable decrease in the amount of wrinkling and disruption of the germinal epithelium was observed after intervention with CUR-n (100 mg/kg). Furthermore, a significant increase in the number of germ cells compared to the group receiving CPZ was detected. CONCLUSION This study proposes that CUR-n could be a therapeutic agent for decreasing the adverse effects of MS on testis.
Collapse
Affiliation(s)
- Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Zahra Khodaparast
- Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Salehi
- Trauma research center, Rajaei hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Danesh
- Trauma research center, Rajaei hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Arzhang Naseri
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran.
| |
Collapse
|
8
|
Nasiri-Foomani N, Ebadi M, Hassani S, Zeinoaldini S, Saedi A, Samadi F. Preparation, characterization, and ex-vivo evaluation of curcumin-loaded niosomal nanoparticles on the equine sperm quality during cooled storage. Int J Biol Macromol 2024; 264:130620. [PMID: 38447838 DOI: 10.1016/j.ijbiomac.2024.130620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Oxidative damage to sperm during cooled storage is a significant issue, and curcumin, with its antioxidant properties, could be a solution. However, its low bioavailability presents a challenge that this study aims to address. The primary objective of this study was to investigate the potential of curcumin-loaded niosomal nanoparticles (Cur-LNN) to enhance the antioxidant properties of curcumin and its effect on sperm quality during 72 h cooled storage. The thin-film hydration procedure was applied to prepare Cur-LNN. The fabricated noisomal nanocarriers were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy. Moreover, the encapsulation and loading efficiency, in vitro release study, and ex-vivo antioxidant functionality of Cur-LNN on the stallion sperm preserved under cooled storage conditions were assessed. The fabricated Cur-LNN was spherical in shape and had an average particle size of 163.1 ± 1.8 nm, a zeta potential of -34.1 ± 1.9 mV, a poly-dispersity index of 0.339 ± 0.045, an encapsulation efficiency of 92.34 ± 0.18 %, and a loading efficiency of 35.57 ± 1.36 %. Ex-vivo evaluation revealed that supplementation of the semen extender with Cur-LNN has the potential to enhance sperm quality by improving total and progressive motility, plasma membrane functionality, and lipid peroxidation. These results demonstrate that Cur-LNN exhibited stronger antioxidant and protective effects than curcumin. Although further in vivo investigations are warranted, our ex-vivo results suggest that Cur-LNN has the potential to attenuate oxidative damage and can be used to fortify the antioxidant capacity of equine semen under cooled storage conditions.
Collapse
Affiliation(s)
- Niloofar Nasiri-Foomani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Ebadi
- Department of Chemistry, Faculty of Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Saeed Hassani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Saeed Zeinoaldini
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Aria Saedi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
9
|
Godse S, Zhou L, Sakshi S, Singla B, Singh UP, Kumar S. Nanocarrier-mediated curcumin delivery: An adjuvant strategy for CNS disease treatment. Exp Biol Med (Maywood) 2023; 248:2151-2166. [PMID: 38058006 PMCID: PMC10800127 DOI: 10.1177/15353702231211863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Neurological disorders are a major global challenge, which counts for a substantial slice of disease burden around the globe. In these, the challenging landscape of central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuro-AIDS, demands innovative and novel therapeutic approaches. Curcumin, a versatile natural compound with antioxidant and anti-inflammatory properties, shows great potential as a CNS adjuvant therapy. However, its limited bioavailability and suboptimal permeability to the blood-brain barrier (BBB) hamper the therapeutic efficacy of curcumin. This review explores how nanocarrier facilitates curcumin delivery, which has shown therapeutic efficacy for various non-CNS diseases, for example, cancers, and can also revolutionize the treatment outcomes in patients with CNS diseases. Toward this, intranasal administration of curcumin as a non-invasive CNS drug delivery route can also aid its therapeutic outcomes as an adjuvant therapy for CNS diseases. Intranasal delivery of nanocarriers with curcumin improves the bioavailability of curcumin and its BBB permeability, which is instrumental in promoting its therapeutic potential. Furthermore, curcumin's inhibitory effect on efflux transporters will help to enhance the BBB and cellular permeability of various CNS drugs. The therapeutic potential of curcumin as an adjuvant has the potential to yield synergistic effects with CNS drugs and will help to reduce CNS drug doses and improve their safety profile. Taken together, this approach holds a promise for reshaping CNS disease management by maximizing curcumin's and other drugs' therapeutic benefits.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swarna Sakshi
- Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Yönden Z, Bonyadi F, Yousefi Y, Daemi A, Hosseini ST, Moshari S. Nanomicelle curcumin-induced testicular toxicity: Implications for altered mitochondrial biogenesis and mitophagy following redox imbalance. Biomed Pharmacother 2023; 166:115363. [PMID: 37660650 DOI: 10.1016/j.biopha.2023.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
The purpose of this study was to examine the effects of nano-micelle curcumin (NMC)-induced redox imbalance on mitochondrial biogenesis and mitophagy. For this purpose, 24 mature male Wistar rats were divided into control and NMC-received groups (7.5, 15, and 30 mg/kg) groups. After 48 days, the Nrf1, Nrf2, and SOD (Cu/Zn) expression levels, as well as GSH/GSSG, NADP+ /NADPH relative balances (elements involved in redox homeostasis) were analyzed. Moreover, to explore the effect of NMC on mitochondrial biogenesis, the expression levels of Mfn1, Mfn2, OPA1, Fis1, and Drp1 were investigated. Finally, the expression levels of Parkin/PARK and PINK (genes involved in mitochondrial quality control), as well as LC3-I/II (mitophagy marker), were analyzed. Observations showed that NMC, dose-dependently, altered GSH/GSSG, NADP+ /NADPH relative balances, suppressed SOD expression and diminished its biochemical level, and repressed Nrf1 and Nrf2 expression levels. Moreover, it could change the Mfn1, Mfn2, OPA1, Fis1, and Drp1 expression pattern and stimulate the Parkin/PARK and PINK as well as LC3-I/II expression levels, dose-dependently. In conclusion, chronic and high-dose NMC is able to suppress the redox capacity by down-regulating the Nrf1 and Nrf2 expression. Finally, at high-dose levels, it is able to trigger mitophagy signaling in the testicles.
Collapse
Affiliation(s)
- Zafer Yönden
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Farzaneh Bonyadi
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran
| | | | - Amin Daemi
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Seyyedeh Touran Hosseini
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, Adana, Turkey
| | - Sana Moshari
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
11
|
San Valentin EMD, Barcena AJR, Klusman C, Martin B, Melancon MP. Nano-embedded medical devices and delivery systems in interventional radiology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1841. [PMID: 35946543 PMCID: PMC9840652 DOI: 10.1002/wnan.1841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
Nanomaterials research has significantly accelerated the development of the field of vascular and interventional radiology. The incorporation of nanoparticles with unique and functional properties into medical devices and delivery systems has paved the way for the creation of novel diagnostic and therapeutic procedures for various clinical disorders. In this review, we discuss the advancements in the field of interventional radiology and the role of nanotechnology in maximizing the benefits and mitigating the disadvantages of interventional radiology theranostic procedures. Several nanomaterials have been studied to improve the efficacy of interventional radiology interventions, reduce the complications associated with medical devices, improve the accuracy and efficiency of drug delivery systems, and develop innovative imaging modalities. Here, we summarize the recent progress in the development of medical devices and delivery systems that link nanotechnology in vascular and interventional radiology. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- St. Luke's Medical Center College of Medicine-William H. Quasha Memorial, Quezon City, Philippines
| | | | - Carleigh Klusman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin Martin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Marites P Melancon
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
12
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|