1
|
Kim JH, Lee JH, Koo YJ, Song JW. N-actylcysteine inhibits diethyl phthalate-induced inflammation via JNK and STAT pathway in RAW264.7 macrophages. BMC Mol Cell Biol 2025; 26:12. [PMID: 40240934 PMCID: PMC12001441 DOI: 10.1186/s12860-025-00537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Phthalates are plasticizers that cause inflammation in several cell types and adversely affect the health of humans and animals. Nacetylcysteine (NAC) has been shown to exert antioxidant effects in various diseases. However, the effect of NAC on diethyl phthalate (DEP)-induced toxicity in macrophages has not yet been elucidated. In this study, we investigated the effect and underlying mechanisms of NAC on DEP-induced inflammation in RAW264.7 macrophages. RAW264.7 macrophages were pretreated with NAC for 2 h followed by exposure to DEP. We investigated the effect of NAC on NO, reactive oxygen species (ROS), prostaglandin E2 (PGE2), and glutathione (GSH) levels following DEP exposure. In addition, pathway-related genes including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), mitogen-activated protein kinase (MAPK), and signal transducer and activator of transcription (STAT) were evaluated using western blot. RESULTS Treatment with 100 and 300 µM DEHP, DBP, and DEP significantly increased the protein levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) compared with those in the control group. However, NAC pretreatment downregulated the levels of NO, PGE2, and ROS, elevated GSH levels, and suppressed the mRNA levels of inflammatory cytokines such as interleukin (IL)-1β, IL-6, COX-2, and iNOS compared with those in the DEP-treated group. In addition, NAC significantly reduced the levels of p-JNK and p-STAT1/3 in RAW264.7 macrophages treated with DEP. CONCLUSIONS NAC pretreatment inhibits DEP-induced inflammation via the MAPK/JNK and STAT1/3 pathways in macrophages.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei- ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Hoon Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei- ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoon Jung Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei- ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei- ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Ogunmiluyi OE, Naiho AO, Emojevwe VO, Oladele TS, Adebisi KA, Siyanbade JA, Akinola AO. Zinc or/and Vitamin E Supplementation Mitigates Oxidative Stress, Neuroinflammation, Neurochemical Changes and Behavioural Deficits in Male Wistar Rats Exposed to Bonny Light Crude Oil. J Toxicol 2024; 2024:9317271. [PMID: 39734606 PMCID: PMC11681987 DOI: 10.1155/jt/9317271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Background: Crude oil, a major key economic driver in developing countries, is also of environmental concern, linked to neurotoxicity and behavioural problems. Despite the known neurotoxic effects of crude oil and the potential benefits of zinc and vitamin E, there is a paucity of research specifically addressing their combined efficacy in mitigating neurochemical changes and behavioural deficits induced by crude oil. Current studies have largely focussed on the individual effects of these supplements in different contexts, but their synergistic potential in a crude oil exposure model remains underexplored. This study investigated the potential effects of zinc and vitamin E on neurobehavioural alterations in male Wistar rats fed with Bonny light crude oil (BLCO)-contaminated diet. Methods: Thirty (30) male Wistar rats (160 ± 10 g) were assigned into five groups (n = 6). Group 1 received standard rat feed, Group 2 was exposed to BLCO (0.1 mL/g of rat feed) for 3 weeks, and groups 3-5 were treated with zinc (50 mg/kg/day), vitamin E (400 IU/kg), or both [vitamin E (400 IU/kg) + zinc (50 mg/kg/day)], respectively for 1 week after BLCO exposure for 3 weeks. Locomotive, anxiolytic, depressive-like behaviours and spatial memory were assessed using the open-field test, elevated plus maze, forced swim test and Y-maze. Rats were sacrificed and the brain samples were collected for biochemical assays at the end of the behavioural tests. Results: Zinc and vitamin E supplementation (individually or combined) significantly increased brain total antioxidant capacity and superoxide dismutase (SOD) activity, reduced inflammatory markers (TNF-alpha) and lipid peroxidation, normalized neurotransmitter levels in the brain and improved behavioural performance. Conclusion: Treatment with Zn and/or vitamin E reverses BLCO-induced neurobehavioural alterations via modulation of oxidative stress, inflammation and neurotransmitters.
Collapse
Affiliation(s)
| | - Alexander Obidike Naiho
- Department of Physiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, University of Delta, Agbor, Delta, Nigeria
- Department of Physiology, Delta State University, Abraka, Delta, Nigeria
| | | | | | | | | | | |
Collapse
|
3
|
Xia LZ, Liu LL, Yue JZ, Lu ZY, Deng RY, He X, Li CC, Hu B, Gao HT. Ameliorative effects of zinc and vitamin E against phthalates-induced reproductive toxicity in male rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:3330-3340. [PMID: 38440903 DOI: 10.1002/tox.24191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Phthalates (PEs) could cause reproductive harm to males. A mixture of three widely used PEs (MPEs) was used to investigate the ameliorative effects of zinc (Zn) and vitamin E (VE) against male reproductive toxicity. METHODS Fifty male SD rats were randomly divided into five groups (n = 10). Rats in MPEs group were orally treated with 160 mg/kg/d MPEs, while rats in MPEs combined Zn and/or VE groups were treated with 160 mg/kg/d MPEs plus 25 mg/kg/d Zn and/or 25 mg/kg/d VE. After intervention for 70 days, it's was measured of male reproductive organs' weight, histopathological observation of sperms and testes, serum hormones, PIWI proteins and steroidogenic proteins. RESULTS Compared with control, anogenital distance, testes weight, epididymides weight, and sex hormones were significantly decreased, while the sperm malformation rate was markedly increased in MPEs group (p < .05); the testicular tissues were injured in MPEs group with disordered and decreased spermatids, and arrested spermatogenesis. PIWIL1, PIWIL2, StAR, CYP11A1 and CYP19A1 were down-regulated in MPEs group (p < .05). However, the alterations of these parameters were restored in MPEs combined Zn and/or VE groups (p < .05). CONCLUSION Zn and/or VE improved steroid hormone metabolism, and inhibited MPEs' male reproductive toxicity.
Collapse
Affiliation(s)
- Ling-Zi Xia
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Zhejiang, China
| | - Li-Lan Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Zhejiang, China
| | - Jun-Zhe Yue
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Zhejiang, China
| | - Zhen-Yu Lu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Zhejiang, China
| | - Ru-Ya Deng
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
| | - Xi He
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
| | - Can-Can Li
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
| | - Burong Hu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Zhejiang, China
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
| | - Hai-Tao Gao
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
4
|
Szopa A, Herbet M, Poleszak E, Serefko A, Czylkowska A, Piątkowska-Chmiel I, Kasperek K, Wróbel A, Prewencka P, Szewczyk B. Evaluation of Antidepressive-like Behaviours and Oxidative Stress Parameters in Mice Receiving Imipramine-Zinc Complex Compound. Int J Mol Sci 2023; 24:14157. [PMID: 37762458 PMCID: PMC10531591 DOI: 10.3390/ijms241814157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The study aimed to evaluate the antidepressant-like effects of an imipramine-zinc (IMI-Zn) complex compound on mice and assess the level of oxidative stress parameters. The research also investigated whether the IMI-Zn complex showed superior antidepressant activity compared to individual treatments of both compounds at effective doses and their joint administration at subtherapeutic doses. The study was conducted on mice. Forced swim (FST), tail suspension (TST), and locomotor activity tests were used for behavioral studies. The results demonstrated the IMI-Zn complex's dose-dependent antidepressant potential when orally administered to mice. Its efficacy was similar to the separate administration of therapeutic doses of imipramine (IMI) and zinc (Zn) and their joint administration at subtherapeutic doses. Moreover, subjecting mice to acute stress did not significantly affect the activity of on glutathione peroxidase (GPX), glutathione reductase (GR), and total antioxidant status (TAS), possibly due to the short exposure time to the stress stimulus. By developing the IMI-Zn complex, it might be possible to simplify the treatment approach, potentially improving patient compliance by combining the therapeutic effects of both IMI and Zn within a single compound, thus addressing one of the contributing factors to non-compliance in depression therapy. The IMI-Zn complex could be a valuable strategy to optimize therapeutic outcomes and balance efficacy and tolerability.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Mariola Herbet
- Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland; (M.H.); (I.P.-C.); (K.K.)
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland;
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland; (M.H.); (I.P.-C.); (K.K.)
| | - Kamila Kasperek
- Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland; (M.H.); (I.P.-C.); (K.K.)
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland;
| | - Paulina Prewencka
- Scientific Circle, Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
5
|
Mega OO, Oghenetega OB, Victor E, Faith FY, Uchechukwu JG. Quercetin Protects against Levetiracetam induced gonadotoxicity in rats. Toxicology 2023; 491:153518. [PMID: 37098359 DOI: 10.1016/j.tox.2023.153518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
The purpose of this study was to determine whether quercetin may counteract the negative effects of levetiracetam on rat reproductive capabilities by examining its influence on a few reproductive parameters following levetiracetam administration. Twenty (20) experimental rats were employed, with five (n = 5) animals per treatment group. Rats in group 1 received saline (10mL/kg, p.o.) which served as control. Quercetin (20mg/kg, p.o./day) was given to groups 2 and 4 for 28 days starting from 29 to 56 days, respectively. However, animals in groups 3-4 received LEV (300mg/kg) once daily for 56 days with a 30-minute break in between treatments. All rats had their serum sex hormone levels, sperm characteristics, testicular antioxidant capability, and levels of oxido-inflammatory/apoptotic mediators evaluated. Additionally, the expression of proteins associated to BTB, autophagy, stress response was examined in rat testes. LEV increased sperm morphological defects and decreased sperm motility, sperm viability, sperm count body weight and testes weight, MDA and 8OHdG levels in the testis of LEV-treated rats were elevated, while antioxidant enzyme expression was concurrently decreased. Additionally, it reduced the levels of serum gonadotropins, testosterone, mitochondrial membrane potential, and cytochrome C liberation into the cytosol from the mitochondria. Caspase-3 and Caspase-9 activity increased. While Bcl-2, Cx-43, Nrf2, HO-1, mTOR, and Atg-7 levels were lowered, NOX-1, TNF-α, NF-kß, IL-1ß, and tDFI levels increased. Histopathological scoring provided further support for the decreased spermatogenesis. In contrast to all of these gonadotoxic effects of LEV, improvements in LEV-induced gonadal damage were seen through upregulation of Nrf2/ HO-1, Cx-43/NOX-1, mTOR/Atg-7 expression and attenuation of hypogonadism, poor sperm quality, mitochondria-mediated apoptosis, and oxidative inflammation due to quercetin post-treatment. The modulation of Nrf2/HO-1, /mTOR/Atg-7 and Cx-43/NOX-1 levels and the inhibition of mitochondria-mediated apoptosis and oxido-inflammation in LEV-induced gonadotoxicity in rats suggest that quercetin may hold promise as a possible therapeutic treatment.
Collapse
Affiliation(s)
- Oyovwi O Mega
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria; Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria.
| | - Onome B Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock University, Illisan- Ogun State; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Emojevwe Victor
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Falajiki Y Faith
- Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Joseph Gregory Uchechukwu
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|