1
|
Salehi P, Sheibak N, Amjadi F, Nejatbakhsh R, Zandieh Z. The effect of myo-inositol antioxidant activity on human sperm parameters and DNA damage in ultra-rapid and conventional freezing methods. Cryobiology 2024; 117:104978. [PMID: 39389224 DOI: 10.1016/j.cryobiol.2024.104978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Male fertility preservation is still challenged by cell damage induced during sperm cryopreservation and impaired sperm structure and function. Sperm ultra-rapid freezing, despite a higher protective effect compared to conventional freezing method, is still associated with suboptimal sperm cryosurvival and needs to be modified to increase its efficiency in sperm protection. Sperm freezing media supplemented with antioxidants can improve sperm parameters following freezing-warming process. In this study, we aimed to investigate the effect of employing ultra-rapid freezing and myo-inositol on sperm cryosurvival. Thirty semen samples with normal sperm parameters were collected and each one was divided into four portions to cryopreserve by conventional freezing, ultra-rapid freezing, conventional freezing + myo-inositol 2 mg/ml, and ultra-rapid freezing + myo-inositol 2 mg/ml. Sperm samples warmed after at least 24 h of freezing and sperm cryosurvival were analyzed by evaluation of sperm motility, viability, morphology and DNA fragmentation index (DFI). Freezing method had a significant influence on post-thaw sperm DFI and morphology (p < 0.05) and the interaction between freezing method and antioxidant supplementation significantly affected sperm morphology (p < 0.05). The highest percentage of sperm normal morphology and minimal DFI was achieved using ultra-rapid freezing supplemented by myo-inositol antioxidant compared to other groups (P < 0.05). The highest sperm DNA damage after freezing-warming was observed following the conventional freezing method. In conclusion, sperm freezing method was identified as factor strongly influencing sperm DFI and morphology after thawing/warming. Sperm samples can be rapidly frozen using the modified freezing media supplemented by myo-inositol without impacting sperm DNA and morphology.
Collapse
Affiliation(s)
- Parastoo Salehi
- Anatomy Department, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Nadia Sheibak
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nejatbakhsh
- Anatomy Department, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran.
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Taoto C, Tangsrisakda N, Thukhammee W, Phetcharaburanin J, Iamsaard S, Tanphaichitr N. Rats Orally Administered with Ethyl Alcohol for a Prolonged Time Show Histopathology of the Epididymis and Seminal Vesicle Together with Changes in the Luminal Metabolite Composition. Biomedicines 2024; 12:1010. [PMID: 38790972 PMCID: PMC11117629 DOI: 10.3390/biomedicines12051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Prolonged ethanol (EtOH) consumption is associated with male infertility, with a decreased spermatogenesis rate as one cause. The defective maturation and development of sperm during their storage in the cauda epididymis and transit in the seminal vesicle can be another cause, possibly occurring before the drastic spermatogenesis disruption. Herein, we demonstrated that the cauda epididymis and seminal vesicle of rats, orally administered with EtOH under a regimen in which spermatogenesis was still ongoing, showed histological damage, including lesions, a decreased height of the epithelial cells and increased collagen fibers in the muscle layer, which implicated fibrosis. Lipid peroxidation (shown by malondialdehyde (MDA) levels) was observed, indicating that reactive oxygen species (ROS) were produced along with acetaldehyde during EtOH metabolism by CYP2E1. MDA, acetaldehyde and other lipid peroxidation products could further damage cellular components of the cauda epididymis and seminal vesicle, and this was supported by increased apoptosis (shown by a TUNEL assay and caspase 9/caspase 3 expression) in these two tissues of EtOH-treated rats. Consequently, the functionality of the cauda epididymis and seminal vesicle in EtOH-treated rats was impaired, as demonstrated by a decreases in 1H NMR-analyzed metabolites (e.g., carnitine, fructose), which were important for sperm development, metabolism and survival in their lumen.
Collapse
Affiliation(s)
- Chayakorn Taoto
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Nareelak Tangsrisakda
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Wipawee Thukhammee
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| |
Collapse
|
3
|
Dinicola S, Unfer V, Soulage CO, Margarita Yap-Garcia MI, Bevilacqua A, Benvenga S, Barbaro D, Wdowiak A, Nordio M, Dewailly D, Appetecchia M, Aragona C, Bezerra Espinola MS, Bizzarri M, Cavalli P, Colao A, D’Anna R, Vazquez-Levin MH, Marin IH, Kamenov Z, Laganà AS, Monastra G, Oliva MM, Özay AC, Pintaudi B, Porcaro G, Pustotina O, Pkhaladze L, Prapas N, Roseff S, Salehpour S, Stringaro A, Tugushev M, Unfer V, Vucenik I, Facchinetti F. <sc>d</sc>-Chiro-Inositol in Clinical Practice: A Perspective from the Experts Group on Inositol in Basic and Clinical Research (EGOI). Gynecol Obstet Invest 2024; 89:284-294. [PMID: 38373412 PMCID: PMC11309080 DOI: 10.1159/000536081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND d-Chiro-inositol is a natural molecule that, in association with its well-studied isomer myo-inositol, may play a role in treating various metabolic and gynecological disorders. OBJECTIVES This perspective seeks to explore the mechanisms and functions of d-chiro-inositol, laying the foundations to discuss its use in clinical practice, across dysmetabolism, obesity, and hormonal dysregulation. METHODS A narrative review of all the relevant papers known to the authors was conducted. OUTCOME d-Chiro-inositol acts through a variety of mechanisms, acting as an insulin sensitizer, inhibiting the transcription of aromatase, in addition to modulating white adipose tissue/brown adipose tissue transdifferentiation. These different modes of action have potential applications in a variety of therapeutic fields, including PCOS, dysmetabolism, obesity, hypoestrogenic/hyperandrogenic disorders, and bone health. CONCLUSIONS d-Chiro-inositol mode of action has been studied in detail in recent years, resulting in a clear differentiation between d-chiro-inositol and its isomer myo-inositol. The insulin-sensitizing activities of d-chiro-inositol are well understood; however, its potential applications in other fields, in particular obesity and hyperestrogenic/hypoandrogenic disorders in men and women, represent promising avenues of research that require further clinical study.
Collapse
Affiliation(s)
- Simona Dinicola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- UniCamillus – Saint Camillus International University of Health Sciences, Rome, Italy
| | - Christophe O. Soulage
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- INSERM U1060, INSA de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maria Isidora Margarita Yap-Garcia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- St. Luke’s Medical Center College of Medicine, William H. Quasha Memorial, Quezon, Philippines
| | - Arturo Bevilacqua
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Dynamic, Clinical Psychology and Health, Sapienza University of Rome, Rome, Italy
| | - Salvatore Benvenga
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Daniele Barbaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Director of U.O. Endocrinology in Livorno Hospital, Livorno, Italy
| | - Artur Wdowiak
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.S.L. RMF, Civitavecchia, Italy
| | - Didier Dewailly
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine Henri Warembourg, University of Lille, Lille Cedex, France
| | - Marialuisa Appetecchia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Cesare Aragona
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Maria Salomè Bezerra Espinola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Mariano Bizzarri
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pietro Cavalli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Annamaria Colao
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Italian Society of Endocrinology, Federico II University of Naples, Naples, Italy
| | - Rosario D’Anna
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Mónica Hebe Vazquez-Levin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Council of Scientific and Technical Research, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Imelda Hernàndez Marin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Human Reproduction Department, Hospital Juárez de México, and Universidad Nacional Autónoma de México (UNAM), México, Mexico
| | - Zdravko Kamenov
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Internal Medicine, University Hospital “Alexandrovska”, Clinic of Endocrinology and Metabolism, Medical University, Sofia, Bulgaria
| | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giovanni Monastra
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, Rome, Italy
| | - Ali Cenk Özay
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Basilio Pintaudi
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppina Porcaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Women's Health Centre, USL UMBRIA 2, Terni, Italy
| | - Olga Pustotina
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology with Reproductive Medicine, F.I. Inozemtsev Academy of Medical Education, Saint Petersburg, Russia
| | - Lali Pkhaladze
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi, Georgia
| | - Nikos Prapas
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Third Department of OB-GYNAE, Aristotle University of Thessaloniki, and IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | - Scott Roseff
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Jupiter, FL, USA
| | - Saghar Salehpour
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Annarita Stringaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome, Italy
| | - Marat Tugushev
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Reproductive Medicine, Clinical Embryology and Genetics of Samara State Medical University, Samara, Russia
| | - Virginia Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.G.Un.Co. Obstetrics and Gynecology Center, Rome, Italy
| | - Ivana Vucenik
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Medical and Research Technology and Pathology, University of Maryland School of Medicine in Baltimore, Baltimore, MD, USA
| | - Fabio Facchinetti
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- University of Modena and Reggio Emilia, Modena, Italy
- President Italian Society of Perinatal Medicine (SIMP), Modena, Italy
| |
Collapse
|
4
|
Etrusco A, Laganà AS, Chiantera V, Buzzaccarini G, Unfer V. Myo-inositol in assisted reproductive technology from bench to bedside. Trends Endocrinol Metab 2024; 35:74-83. [PMID: 37798243 DOI: 10.1016/j.tem.2023.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Inositols are insulin-sensitizing compounds of promising efficacy in the management of polycystic ovary syndrome (PCOS). On the one hand, myo-inositol (myo-ins) plays a regulatory role in male and female reproductive function, influencing the development of oocytes, spermatozoa, and embryos. On the other hand, high concentrations of D-chiro-inositol (D-chiro-ins) in the ovary may adversely affect oocyte quality. This review analyses the available literature, which encourages the clinical use of myo-ins in assisted reproductive technologies (ARTs) due to its beneficial effects on female and male reproduction.
Collapse
Affiliation(s)
- Andrea Etrusco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Unit of Obstetrics and Gynecology, 'Paolo Giaccone' Hospital, Palermo, Italy
| | - Antonio Simone Laganà
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Unit of Obstetrics and Gynecology, 'Paolo Giaccone' Hospital, Palermo, Italy; The Experts Group on Inositol in Basic and Clinical Research (EGOI)
| | - Vito Chiantera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Unit of Gynecologic Oncology, National Cancer Institute - IRCCS - Fondazione 'G. Pascale', Naples, Italy
| | - Giovanni Buzzaccarini
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI); UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy.
| |
Collapse
|
5
|
Bashiri Z, Sheibak N, Amjadi F, Zandieh Z. The role of myo-inositol supplement in assisted reproductive techniques. HUM FERTIL 2023; 26:1044-1060. [PMID: 35730666 DOI: 10.1080/14647273.2022.2073273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/20/2021] [Indexed: 11/04/2022]
Abstract
Assisted reproductive techniques can help many infertile couples conceive. Therefore, there is a need for an effective method to overcome the widespread problems of infertile men and women. Oocyte and sperm quality can increase the chances of successful in vitro fertilisation. The maturation environment in which gametes are present can affect their competency for fertilisation. It is well established that myo-inositol (MI) plays a pivotal role in reproductive physiology. It participates in cell membrane formation, lipid synthesis, cell proliferation, cardiac regulation, metabolic alterations, and fertility. This molecule also acts as a direct messenger of insulin and improves glucose uptake in various reproductive tissues. Evidence suggests that MI regulates events such as gamete maturation, fertilisation, and embryo growth through intracellular Ca2 + release and various signalling pathways. In addition to the in-vivo production of MI from glucose in the reproductive organs, its synthesis by in vitro-cultured sperm and follicles has also been reported. Therefore, MI is suggested as a therapeutic approach to maintain sperm and oocyte health in men and women with reproductive disorders and individuals of reproductive age.
Collapse
Affiliation(s)
- Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Nadia Sheibak
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mai H, Ke J, Zheng Z, Luo J, Li M, Qu Y, Jiang F, Cai S, Zuo L. Association of diet and lifestyle factors with semen quality in male partners of Chinese couples preparing for pregnancy. Reprod Health 2023; 20:173. [PMID: 37996913 PMCID: PMC10666430 DOI: 10.1186/s12978-023-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Semen quality significantly influences conception, and its preservation is crucial for couples seeking pregnancy. We investigated dietary and lifestyle risk factors impacting semen quality. METHODS A total of 466 males from the Guangzhou Women and Children's Medical Center's pre-pregnancy consultation clinic were recruited between January 2021 and March 2023 for inclusion. Semen analysis was performed, and diet and lifestyle data were gathered via questionnaire. Logistic regression was utilized to examine the link between diet, lifestyle variables, and semen quality. RESULTS Smoking worsened progressive sperm motility (38.0% vs. 36.0%, t = 2.262; P = 0.049). Alcohol consumption impaired progressive motility (40.5 ± 17.8% vs. 34.7 ± 16.1%, t = 3.396; P < 0.001) and total motility (56.0% vs. 64.0%; P = 0.001). Using plastic beverage bottles for oil or seasonings lowered sperm concentrations (40.4% vs. 59.0% vs. 65.5%; P = 0.032). A sweet diet correlated with higher total sperm motility (55.0% vs. 60.0%, 62.0% vs. 63.2%; P = 0.017). Higher milk product intake improved sperm concentration (41.6106 vs. 63.7106 vs. 66.1*106; P = 0.021) and motility (54.5% vs. 56.0% vs. 63.0%; P = 0.033). More frequent egg consumption increased semen volume (3.1 mL vs. 3.8 mL vs. 4.0 mL; P = 0.038). Roughage intake enhanced sperm concentration (160.8106 vs. 224.6106; P = 0.027), and adequate sleep improved progressive sperm motility rate (35.4% ± 18.2% vs. 40.2 ± 16.3%, F = 3.747; P = 0.024) and total motility (52.7% vs. 61.5%; P = 0.013). The regression model showed that using plastic containers for condiments was a protective factor for semen volume (OR: 0.12; CI 0.03-0.55; P = 0.006), sperm concentration (OR: 0.001, CI 0.00-0.30; P = 0.012), and count (OR: 0.12, CI 0.03-0.48; P = 0.003). Milk and egg consumption were also protective for semen volume (OR: 0.18, CI 0.06-0.51; P = 0.001 and OR: 0.11, CI 0.03-0.55; P = 0.006, respectively), while sufficient sleep benefitted total sperm motility (OR: 0.47, CI 0.24-0.95; P = 0.034). CONCLUSIONS Smoking and drinking, type of condiment container, diet preference, sleep duration, and milk, roughage, and egg consumption may reduce semen quality.
Collapse
Affiliation(s)
- Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Junyi Ke
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zilin Zheng
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jieyi Luo
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Miaomiao Li
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Yanxia Qu
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Simian Cai
- Department of Science, Education and Data Management, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
7
|
Lettieri G, Marinaro C, Brogna C, Montano L, Lombardi M, Trotta A, Troisi J, Piscopo M. A Metabolomic Analysis to Assess the Responses of the Male Gonads of Mytilus galloprovincialis after Heavy Metal Exposure. Metabolites 2023; 13:1168. [PMID: 38132850 PMCID: PMC10744773 DOI: 10.3390/metabo13121168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, metabolomics has become a valuable new resource in environmental monitoring programs based on the use of bio-indicators such as Mytilus galloprovincialis. The reproductive system is extremely susceptible to the effects of environmental pollutants, and in a previous paper, we showed metabolomic alterations in mussel spermatozoa exposed to metal chlorides of copper, nickel, and cadmium, and the mixture with these metals. In order to obtain a better overview, in the present work, we evaluated the metabolic changes in the male gonad under the same experimental conditions used in the previous work, using a metabolomic approach based on GC-MS analysis. A total of 248 endogenous metabolites were identified in the male gonads of mussels. Statistical analyses of the data, including partial least squares discriminant analysis, enabled the identification of key metabolites through the use of variable importance in projection scores. Furthermore, a metabolite enrichment analysis revealed complex and significant interactions within different metabolic pathways and between different metabolites. Particularly significant were the results on pyruvate metabolism, glycolysis, and gluconeogenesis, and glyoxylate and dicarboxylate metabolism, which highlighted the complex and interconnected nature of these biochemical processes in mussel gonads. Overall, these results add new information to the understanding of how certain pollutants may affect specific physiological functions of mussel gonads.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility S.r.l., 20091 Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84084 Salerno, Italy
| | - Martina Lombardi
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Alessio Trotta
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Jacopo Troisi
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| |
Collapse
|
8
|
Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1769. [PMID: 37893487 PMCID: PMC10608597 DOI: 10.3390/medicina59101769] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Oxidative stress is a significant factor in male infertility, compromising sperm function and overall reproductive health. As male infertility garners increasing attention, effective therapeutic interventions become paramount. This review investigates the therapeutic role of antioxidants in addressing male infertility. A detailed examination was conducted on antioxidants such as vitamin C, E, B12, D, coenzyme Q10, zinc, folic acid, selenium, l-carnitine, l-arginine, inositols, and alpha-lipoic acid. This analysis examines the methodologies, outcomes, and constraints of current clinical studies. Antioxidants show notable potential in counteracting the negative effects of oxidative stress on sperm. Based on the evidence, these antioxidants, individually or synergistically, can enhance sperm health and reproductive outcomes. However, certain limitations in the studies call for careful interpretation. Antioxidants are integral in tackling male infertility attributed to oxidative stress. The current findings underscore their therapeutic value, yet there's a pressing need for deeper, comprehensive research. Future studies should focus on refining dosage guidelines, identifying potential side effects, and discerning the most efficacious antioxidant combinations for male infertility solutions.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Iuliano S, Greco F, Seminara G, Zagari MC, Sgrò P, DI Gennaro G, Greco EA, Aversa A. Positive effects of dietary supplementation with nutraceuticals on male subclinical hypogonadism: a pilot study. Minerva Endocrinol (Torino) 2023; 48:274-281. [PMID: 37158812 DOI: 10.23736/s2724-6507.23.04024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lifestyle modifications (i.e., physical activity [PA] and lower dietary intake) often are not sufficient to improve testosterone (TE) levels and promote weight loss in men with metabolic hypogonadism. The aim of the study was to investigate the effects of a nutraceutical formulation containing myoinositol, alpha lipoic acid, folic acid and SelectSIEVE® as add-on treatment to lifestyle modifications in improving obesity-related subclinical hypogonadism. METHODS Body composition, insulin resistance, testicular and erectile function were investigated in 15 males (age=39.5±14.5 years; Body Mass Index [BMI]=30.2±3.8 kg/m2, with subclinical hypogonadism (TE levels <14 and normal luteinizing hormone [LH]). After a run-in three months unsupervised PA period (T1), the nutraceutical supplement was administered two-times per day for three additional months (T2). RESULTS BMI, the percentage fat mass, insulinemia and Homeostasis Model Assessment Index (P<0.01) along with glycemia (P<0.05) were significantly reduced at T2 compared to T1, respectively; fat free mass (FFM) was significantly higher at T2 compared to T1 (P<0.01). Also, TE, LH and 5-item international index of erectile function score were significantly increased at T2 compared to T1 (P<0.01), respectively. CONCLUSIONS The combination of unsupervised PA and nutraceutical supplement improves body composition, insulin sensitivity and TE production in overweight-obese men with metabolic hypogonadism. Further controlled studies in the long-term are warranted to elucidate potential changes in fertility.
Collapse
Affiliation(s)
- Stefano Iuliano
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Francesca Greco
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
| | - Giuseppe Seminara
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Maria C Zagari
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Paolo Sgrò
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
| | - Gianfranco DI Gennaro
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | - Antonio Aversa
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy -
| |
Collapse
|
10
|
Osman R, Lee S, Almubarak A, Han JI, Yu IJ, Jeon Y. Antioxidant Effects of Myo-Inositol Improve the Function and Fertility of Cryopreserved Boar Semen. Antioxidants (Basel) 2023; 12:1673. [PMID: 37759976 PMCID: PMC10525680 DOI: 10.3390/antiox12091673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
During cryopreservation, sperm undergoes structural and molecular changes such as ice crystal formation, DNA fragmentation, and reactive oxygen species (ROS) production, leading to decreased sperm quality after thawing. Antioxidants play a crucial role in preventing these damages, both in vivo and in vitro. One potent antioxidant is myo-inositol, known for its protective effects on sperm against ROS. This study aimed to investigate the protective effect of myo-inositol on cryopreserved boar semen. The semen was diluted, cooled, and cryopreserved using a BF5 extender. It was then divided into five groups: control and different concentrations of myo-inositol (0.5, 1, 1.5, and 2 mg/mL). The post-thaw evaluation included assessments of motility, viability, acrosome integrity, mitochondrial membrane potential (MMP), caspase activity, gene expression, ROS levels, apoptosis, and IVF with treated semen. Results showed that myo-inositol at 0.5 mg/mL improved motility, acrosome integrity, and fertilization ability. It also reduced the expression of pro-apoptotic genes and increased SMCP expression. Lower concentrations also demonstrated improved viability and reduced apoptosis and ROS levels. In conclusion, myo-inositol treatment during cryopreservation improved sperm quality, reduced apoptosis and ROS levels, and enhanced fertility rates in boar semen.
Collapse
Affiliation(s)
- Rana Osman
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Seongju Lee
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North 11111, Sudan
| | - Jae-Ik Han
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| |
Collapse
|
11
|
Dellino M, Cascardi E, Leoni C, Fortunato F, Fusco A, Tinelli R, Cazzato G, Scacco S, Gnoni A, Scilimati A, Loizzi V, Malvasi A, Sapino A, Pinto V, Cicinelli E, Di Vagno G, Cormio G, Chiantera V, Laganà AS. Effects of Oral Supplementation with Myo-Inositol and D-Chiro-Inositol on Ovarian Functions in Female Long-Term Survivors of Lymphoma: Results from a Prospective Case-Control Analysis. J Pers Med 2022; 12:1536. [PMID: 36143320 PMCID: PMC9505907 DOI: 10.3390/jpm12091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
The progressive improvement of lymphoma treatment has led to an important prolongation of patient survival and life expectancy. The principal international scientific societies of oncology now therefore recommend that long-term survivors of lymphoma join fertility programs. Specifically, fertile-age patients should be assisted by a multidisciplinary team, including specialists dedicated to fertility preservation in oncology, in order to support the completion of their reproductive project. In the general population, the use of Myo-Inositol and D-Chiro-Inositol (MI/DCI) has been demonstrated to be an effective choice to treat ovarian dysfunctions, with a consequent improvement in reproductive outcomes, so it may represent an adjuvant strategy for this purpose. We therefore conducted a pilot prospective case-control study to evaluate the potentialities of this nutritional supplement, with the aim of optimizing reproductive function in female long-term survivors of lymphoma. One group underwent oral supplementation with MI 1200 mg and DCI 135 mg per day for 12 months, compared with controls who underwent no treatment in the same period. After 12 months, FSH, LH, and progesterone levels, as well as oligomenorrhea and antral follicle count (AFC), were significantly improved in the MI/DCI group. In addition, a significantly higher mean value in FSH and LH and a significantly lower mean AFC value in the right ovary were observed in controls compared to the MI/DCI group. Despite the need for further investigation, MI/DCI could be considered a potential adjuvant strategy to restore ovarian function in female long-term survivors of lymphoma.
Collapse
Affiliation(s)
- Miriam Dellino
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Clinic of Obstetrics and Gynecology, “San Paolo” Hospital, 70132 Bari, Italy
| | - Eliano Cascardi
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Pathology Unit, FPO-IRCCS Candiolo Cancer Institute, 10060 Candiolo, Italy
| | - Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Francesca Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Annarita Fusco
- Department of Obstetrics and Gynecology, University Medical School of Bari, 70121 Bari, Italy
| | - Raffaele Tinelli
- Department of Obstetrics and Gynecology, “Valle d’Itria” Hospital, 74015 Martina Franca, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences and Neurosciences, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Antonio Gnoni
- Department of Basic Medical Sciences and Neurosciences, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Vera Loizzi
- Interdisciplinar Department of Medicine, Obstetrics and Gynecology Unit, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Pathology Unit, FPO-IRCCS Candiolo Cancer Institute, 10060 Candiolo, Italy
| | - Vincenzo Pinto
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
| | - Ettore Cicinelli
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
| | - Giovanni Di Vagno
- Clinic of Obstetrics and Gynecology, “San Paolo” Hospital, 70132 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Department of interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Vito Chiantera
- Unit of Gynecologic Oncology, ARNAS “Civico—Di Cristina—Benfratelli”, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS “Civico—Di Cristina—Benfratelli”, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
12
|
Azizi M, Cheraghi E, Soleimani Mehranjani M. Effect of Myo-inositol on sperm quality and biochemical factors in cryopreserved semen of patients with Asthenospermia. Andrologia 2022; 54:e14528. [PMID: 35841196 DOI: 10.1111/and.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, the influence of myoinositol (MYO) as an antioxidant on the inhibition of the negative impacts of cryopreservation on sperm quality in men with Asthenospermia was investigated. In this prospective study, each semen sample from 25 cases was separated into three groups: Fresh, Control (with freezing medium), Myoinositol (2 mg/ml). According to the World Health Organization criteria (WHO) (2010), total motility, progressive sperm motility, viability, normal morphology, and DNA integrity were assessed. In addition, the hypo-osmotic swelling (HOS) test and mitochondrial membrane potential (MMP) were used. Total antioxidant capacity (TAC), malondialdehyde (MDA), and antioxidant enzyme activity were determined by the ELISA method. In contrast to the fresh samples, lipid peroxidation, DNA integrity damage, DNA fragmentation, HOST, and MMP had significant enhancement in the control samples. Sperm quality was significantly decreased (p < 0.05). Mean percentage viability, normal morphology, total motility, progressive motility, and DNA integrity were significantly enhanced in the MYO group in comparison to the control group (p < 0.05). The MDA and TAC levels and DNA damage in the MYO group were significantly lower compared to the control group (p < 0.05). The findings confirm that sperm quality in patients with Asthenospermia is improved by the administration of 2 mg/ml of myoinositol together with the freezing medium after sperm cryopreservation.
Collapse
Affiliation(s)
- Maryam Azizi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran
| | | |
Collapse
|
13
|
de Ligny W, Smits RM, Mackenzie-Proctor R, Jordan V, Fleischer K, de Bruin JP, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022; 5:CD007411. [PMID: 35506389 PMCID: PMC9066298 DOI: 10.1002/14651858.cd007411.pub5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The inability to have children affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to half of the infertility cases with between 25% to 87% of male subfertility considered to be due to the effect of oxidative stress. Oral supplementation with antioxidants is thought to improve sperm quality by reducing oxidative damage. Antioxidants are widely available and inexpensive when compared to other fertility treatments, however most antioxidants are uncontrolled by regulation and the evidence for their effectiveness is uncertain. We compared the benefits and risks of different antioxidants used for male subfertility. OBJECTIVES To evaluate the effectiveness and safety of supplementary oral antioxidants in subfertile men. SEARCH METHODS The Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, AMED, and two trial registers were searched on 15 February 2021, together with reference checking and contact with experts in the field to identify additional trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment, or treatment with another antioxidant, among subfertile men of a couple attending a reproductive clinic. We excluded studies comparing antioxidants with fertility drugs alone and studies that included men with idiopathic infertility and normal semen parameters or fertile men attending a fertility clinic because of female partner infertility. DATA COLLECTION AND ANALYSIS We used standard methodological procedures recommended by Cochrane. The primary review outcome was live birth. Clinical pregnancy, adverse events and sperm parameters were secondary outcomes. MAIN RESULTS We included 90 studies with a total population of 10,303 subfertile men, aged between 18 and 65 years, part of a couple who had been referred to a fertility clinic and some of whom were undergoing medically assisted reproduction (MAR). Investigators compared and combined 20 different oral antioxidants. The evidence was of 'low' to 'very low' certainty: the main limitation was that out of the 67 included studies in the meta-analysis only 20 studies reported clinical pregnancy, and of those 12 reported on live birth. The evidence is current up to February 2021. Live birth: antioxidants may lead to increased live birth rates (odds ratio (OR) 1.43, 95% confidence interval (CI) 1.07 to 1.91, P = 0.02, 12 RCTs, 1283 men, I2 = 44%, very low-certainty evidence). Results in the studies contributing to the analysis of live birth rate suggest that if the baseline chance of live birth following placebo or no treatment is assumed to be 16%, the chance following the use of antioxidants is estimated to be between 17% and 27%. However, this result was based on only 246 live births from 1283 couples in 12 small or medium-sized studies. When studies at high risk of bias were removed from the analysis, there was no evidence of increased live birth (Peto OR 1.22, 95% CI 0.85 to 1.75, 827 men, 8 RCTs, P = 0.27, I2 = 32%). Clinical pregnancy rate: antioxidants may lead to increased clinical pregnancy rates (OR 1.89, 95% CI 1.45 to 2.47, P < 0.00001, 20 RCTs, 1706 men, I2 = 3%, low-certainty evidence) compared with placebo or no treatment. This suggests that, in the studies contributing to the analysis of clinical pregnancy, if the baseline chance of clinical pregnancy following placebo or no treatment is assumed to be 15%, the chance following the use of antioxidants is estimated to be between 20% and 30%. This result was based on 327 clinical pregnancies from 1706 couples in 20 small studies. Adverse events Miscarriage: only six studies reported on this outcome and the event rate was very low. No evidence of a difference in miscarriage rate was found between the antioxidant and placebo or no treatment group (OR 1.46, 95% CI 0.75 to 2.83, P = 0.27, 6 RCTs, 664 men, I2 = 35%, very low-certainty evidence). The findings suggest that in a population of subfertile couples, with male factor infertility, with an expected miscarriage rate of 5%, the risk of miscarriage following the use of an antioxidant would be between 4% and 13%. Gastrointestinal: antioxidants may lead to an increase in mild gastrointestinal discomfort when compared with placebo or no treatment (OR 2.70, 95% CI 1.46 to 4.99, P = 0.002, 16 RCTs, 1355 men, I2 = 40%, low-certainty evidence). This suggests that if the chance of gastrointestinal discomfort following placebo or no treatment is assumed to be 2%, the chance following the use of antioxidants is estimated to be between 2% and 7%. However, this result was based on a low event rate of 46 out of 1355 men in 16 small or medium-sized studies, and the certainty of the evidence was rated low and heterogeneity was high. We were unable to draw conclusions from the antioxidant versus antioxidant comparison as insufficient studies compared the same interventions. AUTHORS' CONCLUSIONS In this review, there is very low-certainty evidence from 12 small or medium-sized randomised controlled trials suggesting that antioxidant supplementation in subfertile males may improve live birth rates for couples attending fertility clinics. Low-certainty evidence suggests that clinical pregnancy rates may increase. There is no evidence of increased risk of miscarriage, however antioxidants may give more mild gastrointestinal discomfort, based on very low-certainty evidence. Subfertile couples should be advised that overall, the current evidence is inconclusive based on serious risk of bias due to poor reporting of methods of randomisation, failure to report on the clinical outcomes live birth rate and clinical pregnancy, often unclear or even high attrition, and also imprecision due to often low event rates and small overall sample sizes. Further large well-designed randomised placebo-controlled trials studying infertile men and reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.
Collapse
Affiliation(s)
- Wiep de Ligny
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roos M Smits
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Vanessa Jordan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathrin Fleischer
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Peter de Bruin
- Department of Obstetrics and Gynaecology, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Marian G Showell
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Tanhaei Vash N, Nadri P, Karimi A. Synergistic effects of myo‐inositol and melatonin on cryopreservation of goat spermatozoa. Reprod Domest Anim 2022; 57:876-885. [DOI: 10.1111/rda.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Nima Tanhaei Vash
- Department of Biology, Cellular and Developmental Biology Payame Noor University Isfahan Iran
- Department of Animal Biotechnology Reproductive Biomedicine Research Center Royan Institute for Biotechnology ACECR Isfahan Iran
| | - Parisa Nadri
- Department of Animal Science College of Agriculture Isfahan University of Technology Isfahan 84156‐83111 Iran
| | - Akbar Karimi
- Department of Biology, Cellular and Developmental Biology Payame Noor University Isfahan Iran
- Department of Biology Payame Noor University Tehran Iran
| |
Collapse
|
15
|
The Effect of Semen Cryopreservation Process on Metabolomic Profiles of Turkey Sperm as Assessed by NMR Analysis. BIOLOGY 2022; 11:biology11050642. [PMID: 35625370 PMCID: PMC9138281 DOI: 10.3390/biology11050642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022]
Abstract
Semen cryopreservation represents the main tool for preservation of biodiversity; however, in avian species, the freezing−thawing process results in a sharp reduction in sperm quality and consequently fertility. Thus, to gain a first insight into the molecular basis of the cryopreservation of turkey sperm, the NMR-assessed metabolite profiles of fresh and frozen−thawed samples were herein investigated and compared with sperm qualitative parameters. Cryopreservation decreased the sperm viability, mobility, and osmotic tolerance of frozen−thawed samples. This decrease in sperm quality was associated with the variation in the levels of some metabolites in both aqueous and lipid sperm extracts, as investigated by NMR analysis. Higher amounts of the amino acids Ala, Ile, Leu, Phe, Tyr, and Val were found in fresh than in frozen−thawed sperm; on the contrary, Gly content increased after cryopreservation. A positive correlation (p < 0.01) between the amino acid levels and all qualitative parameters was found, except in the case of Gly, the levels of which were negatively correlated (p < 0.01) with sperm quality. Other water-soluble compounds, namely formate, lactate, AMP, creatine, and carnitine, turned out to be present at higher concentrations in fresh sperm, whereas cryopreserved samples showed increased levels of citrate and acetyl-carnitine. Frozen−thawed sperm also showed decreases in cholesterol and polyunsaturated fatty acids, whereas saturated fatty acids were found to be higher in cryopreserved than in fresh sperm. Interestingly, lactate, carnitine (p < 0.01), AMP, creatine, cholesterol, and phosphatidylcholine (p < 0.05) levels were positively correlated with all sperm quality parameters, whereas citrate (p < 0.01), fumarate, acetyl-carnitine, and saturated fatty acids (p < 0.05) showed negative correlations. A detailed discussion aimed at explaining these correlations in the sperm cell context is provided, returning a clearer scenario of metabolic changes occurring in turkey sperm cryopreservation.
Collapse
|
16
|
Condorelli RA, Cannarella R, Crafa A, Barbagallo F, Gusmano C, Avola O, Mongioì LM, Basile L, Calogero AE, La Vignera S. Advances in non-hormonal pharmacotherapy for the treatment of male infertility: the role of inositols. Expert Opin Pharmacother 2022; 23:1081-1090. [PMID: 35348407 DOI: 10.1080/14656566.2022.2060076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several antioxidants are available for the treatment of male infertility. Although the benefit of myo-inositol (MYO) and D-chiro-inositol (DCI) for female infertility is recognized, their role in male infertility is a matter of debate. AREAS COVERED The authors review the impact that treatment with MYO and/or DCI may have on conventional and bio-functional sperm parameters [mitochondrial membrane potential (MMP), sperm chromatin compactness, and sperm DNA fragmentation (SDF)], seminal oxidative stress (OS) and pregnancy, miscarriage, and live birth rates, and the possible mechanisms involved. Furthermore, the authors gather evidence on the effects of MYO and/or DCI on sperm function in vitro. EXPERT OPINION MYO can improve sperm count, motility, capacitation, acrosome reaction, and MMP. No data are currently available on the effects of DCI in vivo. Both MYO and DCI ameliorate sperm motility and MMP in vitro. Therefore, the use of inositols should be preferred in patients with idiopathic asthenozoospermia, especially in case of impaired sperm mitochondrial function. Due to their insulin-sensitizing action, a role for these molecules may be envisaged for the treatment of infertility caused by carbohydrate metabolism derangement.
Collapse
Affiliation(s)
- Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmelo Gusmano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ottavia Avola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Basile
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Garolla A, Petre GC, Francini-Pesenti F, De Toni L, Vitagliano A, Di Nisio A, Grande G, Foresta C. Systematic Review and Critical Analysis on Dietary Supplements for Male Infertility: From a Blend of Ingredients to a Rationale Strategy. Front Endocrinol (Lausanne) 2022; 12:824078. [PMID: 35185789 PMCID: PMC8854851 DOI: 10.3389/fendo.2021.824078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Content Dietary supplements (DS) for male infertility marketed in Italy were evaluated for composition, concentration of ingredients, and recommended daily dose. A systematic review of literature identified ingredients potentially effective on sperm parameters and their minimal effective daily dose (mED). Objective This study was conducted in order to critically evaluate the composition and efficacy of DS marketed in Italy. Design Setting and Participants This was a systematic review of randomized controlled trials. Evidence Acquisition A formula allowed us to classify the expected efficacy of each DS, based on composition. Each DS was scored and included into three classes of expected efficacy: high, low, and none. Evidence Synthesis Among 24 supplements, 3 (12.5%) fall in high, 9 (37.5%) in lower, and 12 (50.0%) in no expected efficacy class. DS composition showed 36 substances, 18 with no literature on male fertility and 18 showing positive effect on sperm parameters, thus considered potentially active ingredients (PAI). All DS were mixtures of ingredients, containing from 2 to 17 different substances. Fifteen supplements (65.2%) contained at least 1 ingredient without evidence of efficacy and 21 formulations had PAI dosed below mED. Some PAI were associated to the improvement of specific sperm parameters. Conclusions DS were usually blends of many substances that are frequently employed at negligible dose or without any evidence of efficacy on male reproduction. Some ingredients have been demonstrated to be effective on specific sperm parameters by RCTs. We report a list of ingredients with potential efficacy on specific sperm parameters, aimed to allow a tailored use of DS. Patient Summary The market of DS for male infertility offers products with potential efficacy in the improvement of sperm parameters but also many with uncertain effects. Based on current scientific literature, our study can help in the choice of DS that are more likely to be effective on specific sperm alterations, so providing the best supplementation for each patient.
Collapse
Affiliation(s)
- Andrea Garolla
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Gabriel Cosmin Petre
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | | | - Luca De Toni
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Amerigo Vitagliano
- Department of Women and Children’s Health, University of Padua, Padua, Italy
- Unit of Obstetrics and Gynecology, Madonna della Navicella Hospital, Venice, Italy
| | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Laganà AS, Forte G, Bizzarri M, Kamenov ZA, Bianco B, Kaya C, Gitas G, Alkatout I, Terzic M, Unfer V. Inositols in the ovaries: activities and potential therapeutic applications. Expert Opin Drug Metab Toxicol 2022; 18:123-133. [PMID: 35472446 DOI: 10.1080/17425255.2022.2071259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Myo-inositol (MI) and d-chiro-inositol (DCI) play a key role in ovarian physiology, as they are second messengers of insulin and gonadotropins. Ex-vivo and in-vitro experiments demonstrate that both isomers are deeply involved in steroid biosynthesis, and that reduced MI-to-DCI ratios are associated with pathological imbalance of sex hormones. AREAS COVERED This expert opinion provides an overview of the physiological distribution of MI and DCI in the ovarian tissues, and a thorough insight of their involvement into ovarian steroidogenesis. Insulin resistance and compensatory hyperinsulinemia dramatically reduce the MI-to-DCI ratio in the ovaries, leading to gynecological disorders characterized by hyperandrogenism, altered menstrual cycle and infertility. EXPERT OPINION Available evidence indicates that MI and DCI have very specific physiological roles and, seemingly, physiological MI-to-DCI ratios in the ovaries are crucial to maintain the correct homeostasis of steroids. Inositol treatments should be evaluated on the patients' specific conditions and needs, as long-term supplementation of high doses of DCI may cause detrimental effects on the ovarian functionality. In addition, the effects of inositol therapy on the different PCOS phenotypes should be further investigated in order to better tailor the supplementation.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- The Experts Group on Inositols in Basic and Clinical Research (EGOI), Rome, Italy.,Unit of Gynecologic Oncology, ARNAS 'Civico - Di Cristina - Benfratelli', Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | | | - Mariano Bizzarri
- The Experts Group on Inositols in Basic and Clinical Research (EGOI), Rome, Italy.,Department of Experimental Medicine, Systems Biology Group Lab, Sapienza University of Rome, Rome, Italy
| | - Zdravko A Kamenov
- The Experts Group on Inositols in Basic and Clinical Research (EGOI), Rome, Italy.,Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Bianca Bianco
- Discipline of Sexual and Reproductive Health, and Populational Genetics - Department of Collective Health, Faculdade de Medicina do ABC/Centro Universitário FMABC, Santo André, Brazil
| | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, Charité Campus, Berlin, Germany
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Milan Terzic
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan.,National Research Center for Maternal and Child Health, Clinical Academic Department of Women's Health, University Medical Center, Nur-Sultan, Kazakhstan.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, Pennsylvania, USA
| | - Vittorio Unfer
- The Experts Group on Inositols in Basic and Clinical Research (EGOI), Rome, Italy.,Systems Biology Group Lab, Rome, Italy
| |
Collapse
|
19
|
Oxidative Stress-Induced Male Infertility: Role of Antioxidants in Cellular Defense Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:275-309. [PMID: 36472828 DOI: 10.1007/978-3-031-12966-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is linked to several environmental and mutagenic factors. Most of these factors, i.e., lifestyle, radiations, and chemical contaminations, work on the fundamental principles of physics, chemistry, and biology. Principally, it may induce oxidative stress (OS) and produce free radicals within the cells. The negative effect of OS may enhance the reactive oxygen species (ROS) levels in male reproductive organs and impair basic functions in a couple's fertility. Evidence suggests that infertile men have significantly increased ROS levels and a reduced antioxidant capacity compared with fertile men. Although, basic spermatic function and fertilizing capacity depend on a delicate balance between physiological activity of ROS and antioxidants to protect from cellular oxidative injury in sperm, that is essential to achieve pregnancy. The ideal oxidation-reduction (REDOX) equilibrium requires a maintenance of a range of ROS concentrations and modulation of antioxidants. For this reason, the chapter focuses on the effects of ROS in sperm functions and the current concepts regarding the benefits of medical management in men with diminished fertility and amelioration of the effect to improve sperm function. Also, this evidence-based study suggests an increasing rate of infertility that poses a global challenge for human health, urging the need of health care professionals to offer a correct diagnosis, comprehension of the process, and an individualized management of the patients.
Collapse
|
20
|
Keyser S, van der Horst G, Maree L. Progesterone, Myo-Inositol, Dopamine and Prolactin Present in Follicular Fluid Have Differential Effects on Sperm Motility Subpopulations. Life (Basel) 2021; 11:1250. [PMID: 34833125 PMCID: PMC8617736 DOI: 10.3390/life11111250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Considering the challenges surrounding causative factors in male infertility, rather than relying on standard semen analysis, the assessment of sperm subpopulations and functional characteristics essential for fertilization is paramount. Furthermore, the diagnostic value of sperm interactions with biological components in the female reproductive tract may improve our understanding of subfertility and provide applications in assisted reproductive techniques. We investigated the response of two sperm motility subpopulations (mimicking the functionality of potentially fertile and sub-fertile semen samples) to biological substances present in the female reproductive tract. Donor semen was separated via double density gradient centrifugation, isolated into high (HM) and low motile (LM) sperm subpopulations and incubated in human tubal fluid (HTF), capacitating HTF, HD-C medium, progesterone, myo-inositol, dopamine and prolactin. Treated subpopulations were evaluated for vitality, motility percentages and kinematic parameters, hyperactivation, positive reactive oxygen species (ROS), intact mitochondrial membrane potential (MMP) and acrosome reaction (AR). While all media had a significantly positive effect on the LM subpopulation, dopamine appeared to significantly improve both subpopulations' functional characteristics. HD-C, progesterone and myo-inositol resulted in increased motility, kinematic and hyperactivation parameters, whereas prolactin and myo-inositol improved the LM subpopulations' MMP intactness and reduced ROS. Furthermore, progesterone, myo-inositol and dopamine improved the HM subpopulations' motility parameters and AR. Our results suggest that treatment of sub-fertile semen samples with biological substances present in follicular fluid might assist the development of new strategies for IVF treatment.
Collapse
Affiliation(s)
| | | | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (S.K.); (G.v.d.H.)
| |
Collapse
|
21
|
De Luca MN, Colone M, Gambioli R, Stringaro A, Unfer V. Oxidative Stress and Male Fertility: Role of Antioxidants and Inositols. Antioxidants (Basel) 2021; 10:antiox10081283. [PMID: 34439531 PMCID: PMC8389261 DOI: 10.3390/antiox10081283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Infertility is defined as a couple’s inability to conceive after at least one year of regular unprotected intercourse. This condition has become a global health problem affecting approximately 187 million couples worldwide and about half of the cases are attributable to male factors. Oxidative stress is a common reason for several conditions associated with male infertility. High levels of reactive oxygen species (ROS) impair sperm quality by decreasing motility and increasing the oxidation of DNA, of protein and of lipids. Multi-antioxidant supplementation is considered effective for male fertility parameters due to the synergistic effects of antioxidants. Most of them act by decreasing ROS concentration, thus improving sperm quality. In addition, other natural molecules, myo-inositol (MI) and d-chiro–inositol (DCI), ameliorate sperm quality. In sperm cells, MI is involved in many transduction mechanisms that regulate cytoplasmic calcium levels, capacitation and mitochondrial function. On the other hand, DCI is involved in the downregulation of steroidogenic enzyme aromatase, which produces testosterone. In this review, we analyze the processes involving oxidative stress in male fertility and the mechanisms of action of different molecules.
Collapse
Affiliation(s)
- Maria Nunzia De Luca
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Riccardo Gambioli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Correspondence:
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| |
Collapse
|
22
|
Mohammadi A, Asadpour R, Tayefi-Nasrabadi H, Rahbar M, Joozani RJ. Evaluation of Microscopic, Flow Cytometric, and Oxidative Parameters of the Frozen-Thawed Bull Sperm in a Freezing Extender Containing Myo-Inositol. Biopreserv Biobank 2021; 20:176-184. [PMID: 34388025 DOI: 10.1089/bio.2021.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: This research was conducted to assess the effect of myo-inositol (MYO) in the freezing extender on the semen quality and oxidative stress parameters of frozen-thawed bull sperm. Materials and Methods: Semen samples were obtained from four bulls (n = 24, six ejaculates per bull), twice a week, and diluted into four equal aliquots in freezing extenders containing different concentrations of MYO (0, 2, 3, and 4 mg/mL). After a freezing/thawing process, velocity parameters, plasma membrane integrity, apoptosis status, malondialdehyde level, and oxidative stress parameters were assessed. Results: Supplementation of freezing extender with 3 mg/mL MYO resulted in higher rapid motility (62.22% ± 2.63%), progressive motility (77.45% ± 2.65%), viability (78% ± 0.91%), plasma membrane integrity (86 ± 0.85), catalase (20.03 ± 0.39 U/mL) activity, and lower significance of lipid peroxidation (3.60 ± 0.15 nmol/dL) than those of the control group (p < 0.05). A significantly lower percentage of normal morphology and intact acrosomes were observed for frozen-thawed semen in the extender supplemented with 4 mg/mL MYO than those of the control group (p < 0.05). Freezing of the sperm in the extender containing 3 mg/mL of MYO leads to a higher percentage of live cells (38.3 ± 2.76). Beat-cross-frequency, amplitude of lateral head displacement, linearity, total antioxidant capacity, total peroxidase activity, early apoptotic status, and superoxide dismutase activities were not affected by MYO levels in the extenders (p > 0.05). Conclusion: The findings of this study suggest that the supplementation of the freezing extender with 3 mg/mL MYO resulted in a higher quality of frozen-thawed bull sperm.
Collapse
Affiliation(s)
- Armin Mohammadi
- Graduated from Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science and Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Tayefi-Nasrabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science and Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi-Jafari Joozani
- Department of Clinical Science and Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
23
|
Melatonin and Myo-Inositol: Supporting Reproduction from the Oocyte to Birth. Int J Mol Sci 2021; 22:ijms22168433. [PMID: 34445135 PMCID: PMC8395120 DOI: 10.3390/ijms22168433] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Human pregnancy is a sequence of events finely tuned by several molecular interactions that come with a new birth. The precise interlocking of these events affecting the reproductive system guarantees safe embryo formation and fetal development. In this scenario, melatonin and myo-inositol seem to be pivotal not only in the physiology of the reproduction process, but also in the promotion of positive gestational outcomes. Evidence demonstrates that melatonin, beyond the role of circadian rhythm management, is a key controller of human reproductive functions. Similarly, as the most representative member of the inositol’s family, myo-inositol is essential in ensuring correct advancing of reproductive cellular events. The molecular crosstalk mediated by these two species is directly regulated by their availability in the human body. To date, biological implications of unbalanced amounts of melatonin and myo-inositol in each pregnancy step are growing the idea that these molecules actively contribute to reduce negative outcomes and improve the fertilization rate. Clinical data suggest that melatonin and myo-inositol may constitute an optimal dietary supplementation to sustain safe human gestation and a new potential way to prevent pregnancy-associated pathologies.
Collapse
|
24
|
Relationships between Seminal Plasma Metabolites, Semen Characteristics and Sperm Kinetics in Donkey ( Equus asinus). Animals (Basel) 2021; 11:ani11010201. [PMID: 33467749 PMCID: PMC7830036 DOI: 10.3390/ani11010201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary A deeper knowledge of reproductive biology may be helpful in the donkey to avoid the risk of extinction that some breeds are facing. The evaluation of metabolites in seminal plasma provides crucial information for the knowledge of donkey sperm metabolism, for obtaining comparative information with other species, as well as for providing useful elements for the formulation of extenders for sperm dilution and conservation. Moreover, correlations of seminal metabolites with sperm kinetics highlight new possible markers of sperm quality. Using multivariate analysis, all metabolic, seminal, and spermatic data were merged in a single dot that grouped individual stallions within clusters in the Cartesian axes according to the different spermatic characteristics. This amount of information also allows to shed light on the effects of total or partial removal of seminal plasma for improving sperm preservation. The inclusion in the study of an azoospermic individual represents a further discriminating element in the analysis of sperm quality under physiological and pathological conditions. Abstract This study aimed to evaluate donkey seminal plasma metabolites and relate this information to the main characteristics of sperm quality. Sperm kinetics from 10 donkey stallions were analyzed with a computerized system at the time of collection (T0) and after 24 h storage at 4 °C (T24). Seminal plasma was frozen at −80 °C for subsequent proton nuclear magnetic resonance (1H NMR) spectroscopy. On three stallions, semen collection was repeated monthly for three times and sperm analysis also included mitochondrial activity and oxidative status. One stallion was azoospermic and a second semen collection was performed after one month. In the seminal plasma, 17 metabolites were identified; their levels showed numerous significant variations between the azoospermic and the normospermic individuals and grouped in well-defined clusters in a multivariate analysis. Comparing individuals with high and low sperm motility, the only discriminating metabolite was phenylalanine, whose levels were lower in the latter, as in the azoospermic individual. Phenylalanine was also the only metabolite highly correlated with all sperm kinematic parameters at T24. In conclusion, the present study has provided relevant information on the chemical characteristics of donkey semen, identified relationships between seminal metabolites, semen parameters, and sperm kinetics, and offered insights for future technological applications.
Collapse
|
25
|
Governini L, Ponchia R, Artini PG, Casarosa E, Marzi I, Capaldo A, Luddi A, Piomboni P. Respiratory Mitochondrial Efficiency and DNA Oxidation in Human Sperm after In Vitro Myo-Inositol Treatment. J Clin Med 2020; 9:E1638. [PMID: 32481754 PMCID: PMC7355669 DOI: 10.3390/jcm9061638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Semen samples are known to contain abnormal amounts of reactive oxygen species (ROS) and oxygen free radicals; therefore, the identification of antioxidant molecules able to counteract the oxidative damage caused by ROS is foresight. Indeed, improving semen quality in terms of motility and reduction in DNA damage, can significantly improve the fertilization potential of sperm in vitro. To this regard, myo-inositol, based on its antioxidant properties, has been reported to be effective in improving sperm quality and motility in oligoasthenozoospermic patients undergoing assisted reproduction techniques when used as a dietary supplementation. Moreover, in vitro treatment demonstrated a direct relationship between myo-inositol, mitochondrial membrane potential and sperm motility. This experimental study aimed to evaluate the effects of myo-inositol (Andrositol-lab) in vitro treatment on sperm motility, capacitation, mitochondrial oxidative phosphorylation and DNA damage. Our results demonstrate that myo-inositol induces a significant increase in sperm motility and in oxygen consumption, the main index of oxidative phosphorylation efficiency and ATP production, both in basal and in in vitro capacitated samples. Moreover, we provide evidence for a significant protective role of myo-inositol against oxidative damage to DNA, thus supporting the in vitro use of myo-inositol in assisted reproductive techniques. Even if further studies are needed to clarify the mechanisms underlying the antioxidant properties of myo-inositol, the present findings significantly extend our knowledge on human male fertility and pave the way to the definition of evidence-based guidelines, aiming to improve the in vitro procedure currently used in ART laboratory for sperm selection.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (R.P.); (P.P.)
| | - Rosetta Ponchia
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (R.P.); (P.P.)
- Assisted Reproduction Unit, Siena University Hospital, 53100 Siena, Italy;
| | - Paolo Giovanni Artini
- Department of Experimental and Clinical Medicine, Division of Obstetrics and Gynecology, Pisa University, 56100 Pisa, Italy; (P.G.A.); (E.C.); (I.M.)
| | - Elena Casarosa
- Department of Experimental and Clinical Medicine, Division of Obstetrics and Gynecology, Pisa University, 56100 Pisa, Italy; (P.G.A.); (E.C.); (I.M.)
| | - Ilaria Marzi
- Department of Experimental and Clinical Medicine, Division of Obstetrics and Gynecology, Pisa University, 56100 Pisa, Italy; (P.G.A.); (E.C.); (I.M.)
| | - Angela Capaldo
- Assisted Reproduction Unit, Siena University Hospital, 53100 Siena, Italy;
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (R.P.); (P.P.)
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (R.P.); (P.P.)
- Assisted Reproduction Unit, Siena University Hospital, 53100 Siena, Italy;
| |
Collapse
|
26
|
Garolla A, Petre GC, Francini-Pesenti F, De Toni L, Vitagliano A, Di Nisio A, Foresta C. Dietary Supplements for Male Infertility: A Critical Evaluation of Their Composition. Nutrients 2020; 12:nu12051472. [PMID: 32438678 PMCID: PMC7284793 DOI: 10.3390/nu12051472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Dietary supplements (DS) represent a possible approach to improve sperm parameters and male fertility. A wide range of DS containing different nutrients is now available. Although many authors demonstrated benefits from some nutrients in the improvement of sperm parameters, their real effectiveness is still under debate. The aim of this study was to critically review the composition of DS using the Italian market as a sample. Active ingredients and their minimal effective daily dose (mED) on sperm parameters were identified through a literature search. Thereafter, we created a formula to classify the expected efficacy of each DS. Considering active ingredients, their concentration and the recommended daily dose, DS were scored into three classes of expected efficacy: higher, lower and none. Twenty-one DS were identified. Most of them had a large number of ingredients, frequently at doses below mED or with undemonstrated efficacy. Zinc was the most common ingredient of DS (70% of products), followed by selenium, arginine, coenzyme Q and folic acid. By applying our scoring system, 9.5% of DS fell in a higher class, 71.4% in a lower class and 19.1% in the class with no expected efficacy. DS marketed in Italy for male infertility frequently includes effective ingredients but also a large number of substances at insufficient doses or with no reported efficacy. Manufacturers and physicians should better consider the scientific evidence on effective ingredients and their doses before formulating and prescribing these products.
Collapse
Affiliation(s)
- Andrea Garolla
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
- Correspondence:
| | - Gabriel Cosmin Petre
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| | | | - Luca De Toni
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| | - Amerigo Vitagliano
- Department of Women and Children’s Health, University of Padua, 35122 Padua, Italy;
- Unit of Obstetrics and Gynecology, Madonna della Navicella Hospital, Chioggia, 30015 Venice, Italy
| | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| |
Collapse
|
27
|
Delbarba A, Arrighi N, Facondo P, Cappelli C, Ferlin A. Positive effect of nutraceuticals on sperm DNA damage in selected infertile patients with idiopathic high sperm DNA fragmentation. MINERVA ENDOCRINOL 2020; 45:89-96. [PMID: 32340427 DOI: 10.23736/s0391-1977.20.03188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The use of nutraceuticals to improve sperm parameters and male fertility is debatable, even if evidence suggests that selected infertile patients might benefit from their use. In particular, oxidative stress might play a role in idiopathic male infertility, leading to sperm membrane damage and high sperm DNA fragmentation (SDF). The aim of this study was to evaluate, in selected idiopathic infertile men with high SDF, the effect on sperm DNA damage and on standard semen parameters of a nutraceutical formulation containing myoinositol, alpha lipoic acid, coenzyme Q10, selenium, zinc and B vitamins. METHODS The study included 60 idiopathic infertile men with DNA fragmentation index (DFI) >20%. Semen analysis and DFI determination were assessed at baseline and after three months of nutraceutical treatment. Primary outcome was change in DFI. RESULTS Semen volume, sperm concentration, total sperm count, sperm motility and sperm morphology did not change after treatment. Instead, sperm vitality significantly increased (65.9±11.8% pre-treatment vs. 69.4±9.4% post-treatment, P<0.05) and DFI significantly decreased (33.5±10.1% pre-treatment vs. 26.8±8.7% post-treatment, P=0.0001) after treatment. The percentage of men with normal standard sperm parameters significantly increased (15% vs. 30%, P<0.05). The mean decrease in DFI was -6.7±1.4% and the percentage of men with DFI ≤30% after treatment was 75.0% compared to 48.3% pre-treatment (P<0.005). Higher pre-treatment DFI (and no other parameters) correlated with greater DFI reduction after treatment. CONCLUSIONS Nutraceuticals might be effective in idiopathic infertile men with high DFI to reduce SDF, increase sperm vitality and globally improve semen parameters.
Collapse
Affiliation(s)
- Andrea Delbarba
- Unit of Endocrinology and Metabolism, Department of Medicine, ASST Spedali Civili Brescia, Brescia, Italy
| | - Nicola Arrighi
- Division of Urology, Istituto Clinico Città di Brescia, Brescia, Italy
| | - Paolo Facondo
- Department of Clinical and Experimental Sciences, University of Brescia and Unit of Endocrinology and Metabolism, ASST Spedali Civili Brescia, Brescia, Italy
| | - Carlo Cappelli
- Department of Clinical and Experimental Sciences, University of Brescia and Unit of Endocrinology and Metabolism, ASST Spedali Civili Brescia, Brescia, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, University of Brescia and Unit of Endocrinology and Metabolism, ASST Spedali Civili Brescia, Brescia, Italy -
| |
Collapse
|