1
|
Anand-Ivell R, Heng K, Antonio L, Bartfai G, Casanueva FF, Maggi M, O'Neill TW, Punab M, Rastrelli G, Slowikowska-Hilczer J, Tournoy J, Vanderschueren D, Wu FC, Huhtaniemi IT, Ivell R. Insulin-like peptide 3 (INSL3) as an indicator of leydig cell insufficiency (LCI) in Middle-aged and older men with hypogonadism: reference range and threshold. Aging Male 2024; 27:2346322. [PMID: 38676285 DOI: 10.1080/13685538.2024.2346322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using results from large cohort studies we explore sources of biological and technical variance, and establish a reference range for adult men. It is constitutively secreted with little within-individual variation and reflects testicular capacity to produce testosterone. The main INSL3 assays available indicate good concordance with low technical variance; there is no effect of ethnicity. INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testosterone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. Consequently, low INSL3 (≤0.4 ng/ml; ca. <2 SD from the population mean) might serve as an additional biochemical marker in the assessment of functional hypogonadism (late-onset hypogonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with low LCI (INSL3 ≤ 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) for INSL3 in the eugonadal population of 0.4 - 2.3 ng/ml, with low INSL3 prospectively identifying individuals at risk of increased future morbidity.
Collapse
Affiliation(s)
| | - Kee Heng
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Leen Antonio
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, Leuven, KU, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-Gyorgy Medical University, Szeged, Hungary
| | - Felipe F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (IDIS), CIBER de Fisiopatología Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Mario Maggi
- Endocrinology and Andrology Unit, "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, The University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Margus Punab
- Andrology Clinic, Tartu University Hospital, and Institute of Clinical Medicine, and Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Giulia Rastrelli
- Endocrinology and Andrology Unit, "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Jos Tournoy
- Department of Geriatrics, University Hospitals Leuven, and Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, Leuven, KU, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Frederick Cw Wu
- Department of Endocrinology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, UK
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
2
|
Ji M, Chen D, Zhao X, Huang F, Guan X, Wen X, Wang J, Shao J, Xie J, Shan D, Cao S, Chen C, Chen H. Isolation of leydig cells from adult rat testes by magnetic-activated cell sorting protocol based on prolactin receptor expression. Andrology 2022; 10:1197-1207. [PMID: 35735181 DOI: 10.1111/andr.13211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The primary function of testicular Leydig cells (LCs) is to produce testosterone (T). In vitro culture of the cells represents a very important approach to study androgen production and its regulations. Various methods have been developed for the enrichment of the cells from the testes. However, getting cells in large numbers with high purity and viability is still challenging. Here we describe a new way to isolate LCs from rat testes in large quantity with high purity and viability. METHODS Enzymatic digested testicular cells from adult rats were labelled with prolactin receptor (PRLR) antibody. The positive cells were isolated by Magnetic-Activated Cell Sorting (MACS) protocol. Purified LCs were tested in vitro for their steroidogenic (T production) and no-steroidogenic (25-OH-vitamin D production and Insl3 and Cyp2r1expressions) functions in the presence of LH for up to 24 hours. RESULTS Reanalysis of scRNA-seq data indicates that Prlr expression is highly specific in LCs of adult rat testis. MACS procedure based on PRLR expression was able to isolate LCs with very high yield (about 106 cells/testis), high purity (about 95%) and viability (>93%). Purified LCs retained high steroidogenic and no-steroidogenic functions in responding to maximal LH stimulations, with more than 10-fold increases in T production in 3 hours and 42% and 103% increases in Insl3 and Cyp2r1 expressions in 24 hours. DISCUSSION AND CONCLUSION We have established an excellent way to purify high quality LCs from adult rat testis that can serve as an useful tool to study the physiology, pharmacology and toxicology of the cells in vitro. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Dan Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xingyi Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fu Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Dan Shan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuyan Cao
- The Basic Medical Research Center of the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Congde Chen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
3
|
Zhu J, Zheng X. Clinical value of INSL3 in the diagnosis and development of diabetic nephropathy. J Clin Lab Anal 2021; 35:e23898. [PMID: 34233048 PMCID: PMC8418484 DOI: 10.1002/jcla.23898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Insulin‐like factor 3 (INSL3) was stated to be an essential regulator in many diseases. This present study aimed to explore the underlying mechanisms of INSL3 in diabetic nephropathy (DN). Methods The serum samples were obtained from 121 DN patients, 67 T2DM patients, and 44 healthy controls. Twenty SD rats were used to establish the DN model in vivo. Quantitative PCR (qPCR) and Western blot were completed to analyze the INSL3 expression in cells, serum samples, and kidney of the rats. The structure of kidney was analyzed by HE staining. The diagnostic values of INSL3 in DN were determined by receiver operating characteristic (ROC) assay. Then, Spearman's correlation analysis was executed to verify the association between INSL3 and glomerular filtration rate (eGFR). Finally, the proliferation and apoptosis status of transfected cells were analyzed by MTT, flow cytometry, and Hoechst33258 staining assay. Results We found that INSL3 expression was up‐regulated in DN patients and SV40‐MES‐13 cells. Furthermore, the correlation analysis elucidated that INSL3 expression was negatively correlated with DN diagnosis golden criterion eGFR. INSL3 knockdown promoted the proliferation rate and inhibited the apoptosis rate of SV40‐MES‐13 cells after high‐glucose treatment. Finally, the INSL3 expression and fast blood glucose were up‐regulated in DN rats. Conclusions Collectively, this study demonstrated the clinical significance of INSL3 in diagnosing and developing DN.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Health Management Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zheng
- Department of Health Management Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Foresta C, Rocca MS, Di Nisio A. Gender susceptibility to COVID-19: a review of the putative role of sex hormones and X chromosome. J Endocrinol Invest 2021; 44:951-956. [PMID: 32936429 PMCID: PMC7492232 DOI: 10.1007/s40618-020-01383-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The recent emergence of COVID-19 poses a global health emergency. One of the most frequently reported data is sex-related severity and mortality: according to the last available analysis on 239,709 patients in Italy, lethality is 17.7% in men and 10.8% in women, with 59% of total deaths being men. Interestingly, the infection rate is lower in males than in females, with 45.8% and 54.2% of positive cases, respectively, suggesting that gender-related factor may worsen disease evolution. A tentative hypothesis to explain these findings is the role of angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 involved in viral infection. PURPOSE In this review, we summarize the available evidence pointing to gender-related differences in ACE2 and TMPRSS2 expression, from both genetic and endocrine points of view. RESULTS Altogether, available evidence points toward two not-mutually exclusive mechanisms in gender susceptibility to COVID-19 by sex hormonal regulation of ACE2 and TMPRSS2. On one hand, ACE2 expression could be increased in women, either by estrogens or constitutively by X chromosome inactivation escape or by reduced methylation, providing a larger reservoir of ACE2 to maintain the fundamental equilibrium of RAS regulatory axis. On the other, low levels of androgens in women may keep at low levels TMPRSS2 expression, representing a further protective factor for the development of COVID-19 infection, despite the increased expression of ACE2, which represents the Trojan horse for SARS-CoV-2 entry. CONCLUSIONS Both mechanisms consistently point to the role of sex hormones and sex chromosomes in the differential severity and lethality of COVID-19 in men and women.
Collapse
Affiliation(s)
- C Foresta
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| | - M S Rocca
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
5
|
Johannsen TH, Ljubicic ML, Young J, Trabado S, Petersen JH, Linneberg A, Albrethsen J, Juul A. Serum insulin-like factor 3 quantification by LC-MS/MS in male patients with hypogonadotropic hypogonadism and Klinefelter syndrome. Endocrine 2021; 71:578-585. [PMID: 33483888 DOI: 10.1007/s12020-021-02609-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE Insulin-like factor 3 (INSL3) is an emerging testicular marker, yet larger studies elucidating the clinical role of INSL3 in patients with hypogonadism are lacking. The aim was to describe serum INSL3 concentrations analyzed by LC-MS/MS methodology in males with hypogonadotropic hypogonadism (HH) and Klinefelter syndrome (KS). METHODS This was a combined study from two tertiary centers in Denmark and France analyzing INSL3 concentrations by LC-MS/MS. In total, 103 patients with HH and 82 patients with KS were grouped into treated (HH: n = 96; KS: n = 71) or untreated (HH: n = 7; KS: n = 11). Treatment modalities included testosterone and hCG. Serum concentrations and standard deviation (SD) scores of INSL3, total testosterone, and LH according to age and treatment were evaluated. RESULTS In both HH and KS, INSL3 concentrations were low. In HH, INSL3 was low regardless of treatment, except for some hCG-treated patients with normal concentrations. In untreated HH, testosterone was low, while normal to high in most testosterone- and hCG-treated patients. In untreated KS, INSL3 and testosterone concentrations were low to normal, while in testosterone-treated KS, serum INSL3 was low in most patients. INSL3 SD scores were significantly lower in untreated HH than in untreated KS (p = 0.01). CONCLUSIONS The dichotomy between lower INSL3 and higher testosterone concentrations, particularly observed in hCG-treated patients with HH, confirms that INSL3 is a different marker of Leydig cell function than testosterone. However, the clinical application of INSL3 in males with hypogonadism remains unclear.
Collapse
Affiliation(s)
- Trine Holm Johannsen
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Lindhardt Ljubicic
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacques Young
- Paris-Saclay University and Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Séverine Trabado
- Molecular Genetics, Pharmacogenomics, and Hormonology, Inserm U1185, Université Paris-Saclay, Assistance Publique Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Jørgen Holm Petersen
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Albrethsen
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Ljubicic ML, Jørgensen A, Aksglaede L, Nielsen JE, Albrethsen J, Juul A, Johannsen TH. Serum Concentrations and Gonadal Expression of INSL3 in Eighteen Males With 45,X/46,XY Mosaicism. Front Endocrinol (Lausanne) 2021; 12:709954. [PMID: 34447353 PMCID: PMC8382946 DOI: 10.3389/fendo.2021.709954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Insulin-like factor 3 (INSL3) is produced in the testes and has been proposed as a circulating biomarker of Leydig cell capacity, but remains undescribed in 45,X/46,XY mosaicism. The aim was to examine serum concentrations and gonadal expression of INSL3 in 45,X/46,XY mosaicism. METHODS Retrospectively collected data from medical records, gonadal tissue samples, and prospectively analyzed serum samples from eighteen male patients with 45,X/46,XY mosaicism (one prepubertal, four testosterone-treated, 13 untreated) were included. Biochemical, clinical, and histological outcomes were evaluated according to serum INSL3 concentrations, quantified by LC-MS/MS methodology, and gonadal INSL3 immunohistochemical expression. RESULTS Serum INSL3 concentrations spanned from below to above the reference range. In untreated patients, the median serum INSL3 SD score was -0.80 (IQR: -1.65 to 0.55) and no significant difference was observed between INSL3 and testosterone. There was no clear association between serum INSL3 and External Genitalia Score at diagnosis, spontaneous puberty, or sperm concentration. INSL3 and CYP11A1 expression overlapped, except for less pronounced INSL3 expression in areas with severe Leydig cell hyperplasia. No other apparent links between INSL3 expression and histological outcomes were observed. CONCLUSIONS In this pilot study, serum INSL3 concentrations ranged and seemed independent of other reproductive hormones and clinical features in males with 45,X/46,XY mosaicism. Discordant expression of INSL3 and CYP11A1 may explain low INSL3 and normal testosterone concentrations in some patients. Further studies are needed to elucidate the divergence between serum INSL3 and testosterone and the potential clinical use of INSL3.
Collapse
Affiliation(s)
- Marie Lindhardt Ljubicic
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Marie Lindhardt Ljubicic, ; orcid.org/0000-0002-7418-6878
| | - Anne Jørgensen
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lise Aksglaede
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Erik Nielsen
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Albrethsen
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Trine Holm Johannsen
- Dept. of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|