1
|
Salvio G, Ciarloni A, Ambo N, Bordoni M, Perrone M, Rossi S, Balercia G. Effects of glucagon-like peptide 1 receptor agonists on testicular dysfunction: A systematic review and meta-analysis. Andrology 2025. [PMID: 40105090 DOI: 10.1111/andr.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Hypogonadism and infertility are two conditions that are heavily affected by overweight and obesity in the male patient. Glucagon-like peptide 1 agonists (GLP-1RAs) are a recently introduced class of antidiabetic drugs with powerful weight-loss effect; this may induce an indirect positive effect on the testicular function. Nevertheless, recent evidence also suggests a potential direct influence of these molecules on the gonadal function. OBJECTIVES Our study aims at evaluating the effects of GLP-1RAs on hormone secretion in male patients and comparing their impact on the testicular function with other antidiabetic agents or weight-lowering drugs. MATERIALS AND METHODS A literature search was conducted using PubMed, EMBASE, and Scopus database to assess the effects of GLP-1RAs on hormone levels, sperm parameters, and erectile function in overweight and obese men. Before-after analysis and comparison between therapy with GLP-1RAs and other treatment regimens were performed. RESULTS Seven studies (n = 680) were included in the quantitative analysis. Treatment with GLP-1RAs produced a significant increase in total serum testosterone (TT), with a standardized mean difference of 1.39 ng/mL (95% confidence interval: 0.70, 2.09; p < 0.0001). Free serum testosterone (FT), sex hormone-binding globulin (SHBG), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) showed similar increase, while weight, body mass index (BMI), waist circumference (WC), and glycated hemoglobin (HbA1c) decreased. Meta-regression showed a significant negative correlation between standardized mean difference in TT levels before-after treatment and percentage change in weight and BMI. When compared with other treatment options, GLP-1RAs showed a comparable effect on serum androgens, but greater BMI reduction and increase in serum gonadotropins and indexes of the erectile function. CONCLUSION Our systematic review and meta-analysis suggest a possible role for GLP-1RAs in the therapy of functional hypogonadism related to overweight and obesity, while also promoting weight loss. The limitations of the current literature do not allow to demonstrate a direct action of GLP-1RAs on the testicular function.
Collapse
Affiliation(s)
- Gianmaria Salvio
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Ciarloni
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nicola Ambo
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Bordoni
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michele Perrone
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Rossi
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giancarlo Balercia
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
2
|
Morsy MM, Hassan HA, Morsi RM, Nafea OE, Farag AI, Ramadan RS. Alogliptin attenuates testicular damage induced by monosodium glutamate in both juvenile and adult male rats by activating autophagy: ROS dependent AMPK/mTOR. Reprod Toxicol 2025; 132:108826. [PMID: 39725177 DOI: 10.1016/j.reprotox.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Monosodium glutamate (MSG) is one of the most commonly used food additives, known for its adverse health effects. Alogliptin (ALO) is a highly selective dipeptidyl peptidase-4 inhibitor, but its role in male reproductive function remains debated. The study was designed to evaluate and compare the potential of ALO in mitigating MSG-induced testicular toxicity in juvenile and adult male rats. Juvenile and adult male rats were treated with either MSG or pretreated with ALO before MSG administration. The rats then received ALO and MSG concurrently for 28 days. Testicular tissues were isolated and subjected to histo-biochemical and molecular assessments. Our results demonstrated that ALO reversed MSG-induced testicular injury, as evidenced by the restoration of reproductive hormone balance (increased serum luteinizing hormone and testosterone concentrations), suppression of oxidative stress injury (decreased testicular malondialdehyde, increased superoxide dismutase activity, and minimal 8-hydroxy-2'-deoxyguanosine immunoreactivity), inflammation (reduced testicular tumor necrosis factor-alpha levels), and fibrosis (decreased testicular collagen fiber deposition). Additionally, ALO impeded apoptosis and activated autophagy by decreasing caspase-3 activity, stimulating the AMPK/mTOR pathway, downregulating Bax and SQSTM-1/p62 expression, upregulating Bcl2 and Beclin 1, promoting testicular proliferation (increased number of proliferating cell nuclear antigen-positive cells in the testis), restoring glycogen content in the testis (mild to moderate periodic acid-Schiff reaction), and preserving testicular architecture. MSG induced more severe adverse testicular effects in juvenile rats, while ALO pretreatment was more protective in adult rats. ALO's anti-inflammatory, antioxidant, antiapoptotic, pro-autophagic, antifibrotic, and proliferative actions in the testis suggest its promising potential for combating male reproductive dysfunction.
Collapse
Affiliation(s)
- Manal Mohammad Morsy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Pharmacology Department, Faculty of Medicine, Mutah University, Mutah 61710, Jordan
| | - Reham M Morsi
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ola Elsayed Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Azza I Farag
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Physical Therapy, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia
| | - Rania Saad Ramadan
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, College of Medicine, Al-Baha University, Al-Baha 65525, Saudi Arabia
| |
Collapse
|
3
|
Badejogbin OC, Chijioke-Agu OE, Olubiyi MV, Agunloye MO. Pathogenesis of testicular dysfunction in diabetes: exploring the mechanism and therapeutic interventions. J Assist Reprod Genet 2025; 42:367-379. [PMID: 39625650 PMCID: PMC11871280 DOI: 10.1007/s10815-024-03314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 03/01/2025] Open
Abstract
Diabetes mellitus is a global epidemic contributing to the rising male infertility rates. Addressing testicular dysfunction in diabetic patients requires a multimodal strategy encompassing medication, lifestyle changes, early diagnosis, and innovative treatments targeting specific biochemical pathways. This review explores the mechanisms of diabetes-induced testicular dysfunction and potential intervention targets. A comprehensive literature search was conducted using PubMed, Science Direct, Google Scholar, and Web of Science with keywords related to diabetes and testicular dysfunction. Diabetes leads to reduced testosterone synthesis, decreased spermatogenesis, increased germ cell apoptosis, and damage to Leydig and Sertoli cells. Mechanisms involved in the pathogenesis of diabetes-induced testicular dysfunction include: hyperglycaemia oxidative stress, inflammation, apoptosis and disrupted hormone levels among others. Targeting biomolecular regulators involved in the pathogenic pathways offers a promising therapeutic avenue. Additionally, exploring plant-based therapies as alternative treatments shows potential in alleviating testicular dysfunction in diabetes. Implementing a comprehensive approach combining diagnostics, pharmacological interventions, and lifestyle modifications is crucial in managing testicular dysfunction in diabetic individuals. Future research directions suggest the need for large-scale clinical trials, personalized medicine strategies, and innovative technologies to address and mitigate testicular dysfunction in diabetic populations effectively.
Collapse
Affiliation(s)
- Olabimpe Caroline Badejogbin
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | | | | | - Mary Olaoluwa Agunloye
- Department of Physiology, Kampala International University, Western Campus, Ishaka, Uganda.
| |
Collapse
|
4
|
Bdeir R, Al-Sawalha NA, Al-Fawares O, Hamadeneh L, Khawaldeh A. Effects of empagliflozin on gonadal functions of hyperglycemic male wistar rats. PLoS One 2024; 19:e0305636. [PMID: 38885232 PMCID: PMC11182553 DOI: 10.1371/journal.pone.0305636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Empagliflozin (EMPA) showed antiapoptotic, oxidative and anti-inflammatory potential effect. EMPA attenuates the inflammation and oxidative stress biomarkers in patients with heart failure while significantly decreases the malondialdehyde (a lipid peroxidation marker) levels in the plasma of diabetic patients. The present study examined the effects of moderate hyperglycemia on reproductive function. Sixty male Wister rats were divided and randomly allocated into four groups of 15 animals each. Diabetes was induced by a single intraperitoneal injection of a prepared solution containing STZ diluted in 0.1 M sodium citrate buffer (pH 4.5) at a dosage of 40 mg/kg body weight in selected in groups II and III for seven days before starting the treatment with EMPA. The current study revealed that EMPA for eight weeks prevented testicular high glucose-induced oxidative stress markers such as penile nitric oxide (NO), glutathione peroxidase (GPX) and total anti-oxidant capacity (TAC) in STZ-induced hyperglycemia in a rat model. In addition, EMPA ameliorated the high levels of endogenous Interleukin-6 (IL-6) present in gonads in response to an acute inflammatory found in the hyperglycemic STZ-induced rats. The present study further suggested the protective effects of EMPA and how it has a beneficial role and can effectively attenuate hyperglycemia-induced testicular oxidative damage and inflammatory markers as well as androgen dependent testicular enzymes activity as a protective role against the consequences of hyperglycemia and male sub-infertility.
Collapse
Affiliation(s)
- Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, Al-Salt, Jordan
| | - Nour A. Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - O’la Al-Fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Lama Hamadeneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, Jordan
| | - Alia Khawaldeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, Jordan
| |
Collapse
|
5
|
Basile L, Cannarella R, Iuliano S, Calogero AE, Condorelli RA, Greco EA, Aversa A, LA Vignera S. Semaglutide and obesity: beyond the nutritional and lifestyle intervention? Minerva Endocrinol (Torino) 2024; 49:182-195. [PMID: 39028209 DOI: 10.23736/s2724-6507.23.04103-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Semaglutide is the second marketed glucagon-like peptide 1 receptor agonist that can be used safely and efficiently in non-diabetic people with excess weight, providing a new milestone in the pharmacological treatment of obesity. This narrative review aims to describe the clinical actions of this new drug in weight management in non-diabetic patients along with possible side-effects and dropout reasons. To accomplish this, the PubMed database was searched to retrieve the most relevant clinical studies published to date on this topic, using the following keywords "semaglutide and obesity". Currently, semaglutide is on the market in two formulations, the once-weekly subcutaneous (s.c.) semaglutide and once-daily oral semaglutide. Data in the literature on the anti-obesity action of semaglutide are available for both routes of administration of the drug, with a prevalence of studies using the s.c. one. However, given its dosage, oral semaglutide may provide greater attractiveness and better treatment adherence, but further research is needed in this field.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Iuliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy -
| | - Sandro LA Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Zou H, Chen W, Hu B, Liu H, Zhao J. Testis–Gut-Reproduction Axis: The Key to Reproductive Health. Andrologia 2024; 2024:1-13. [DOI: 10.1155/2024/5020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Reproductive health is an important issue for humanity. In the context of the increasing incidence rate of male infertility, it is essential to find the factors that affect male reproductive health. Gastrointestinal health is closely related to reproductive health. Gastrointestinal hormones (GIH) and gut microbiota (GM), as important material foundations for gastrointestinal function, can promote or inhibit testicular reproductive function, including spermatogenesis, sperm maturation, androgen synthesis, and even broader male diseases such as sexual function, prostate cancer, etc. On the contrary, the functional health of the testes is also of great significance for the stability of gastrointestinal function. This review mainly discusses the important regulatory effects of GIH and GM on male reproductive function.
Collapse
Affiliation(s)
- Hede Zou
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenkang Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baofeng Hu
- Qian’an Hospital of Traditional Chinese Medicine, Tangshan, Hebei, China
| | - Hanfei Liu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiayou Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Qi R, Liang Y, Yu J, Chen B, Jiang J, Wu X, Lu W, Li Z. Liraglutide improved the reproductive function of obese mice by upregulating the testicular AC3/cAMP/PKA pathway. Reprod Biol Endocrinol 2024; 22:31. [PMID: 38509558 PMCID: PMC10953080 DOI: 10.1186/s12958-024-01202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The incidence of male reproductive dysfunction is increasing annually, and many studies have shown that obesity can cause severe harm to male reproductive function. The mechanism of male reproductive dysfunction caused by obesity is unclear, and there is no ideal treatment. Identification of effective therapeutic drugs and elucidation of the molecular mechanism involved in male reproductive health are meaningful. In this study, we investigated the effects of the GLP-1 receptor agonist liraglutide on sex hormones, semen quality, and testicular AC3/cAMP/PKA levels in high-fat-diet-induced obese mice. METHODS Obese mice and their lean littermates were treated with liraglutide or saline for 12 weeks. Body weight was measured weekly. Fasting blood glucose (FBG) was measured using a blood glucose test strip. The serum levels of insulin (INS), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), free testosterone (F-TESTO), estradiol (E2), and sex hormone binding globulin (SHBG) were detected using ELISA. The sperm morphology and sperm count were observed after Pap staining. The mRNA and protein expression levels of testicular GLP-1R and AC3 were measured by RT-qPCR and Western blot, respectively. Testicular cAMP levels and PKA activity were detected using ELISA. RESULTS Liraglutide treatment can decrease body weight, FBG, INS, HOMA-IR, E2 and SHBG levels; increase LH, FSH, T, and F-TESTO levels; increase sperm count; decrease the sperm abnormality rate; and increase GLP-1R and AC3 expression levels and cAMP levels and PKA activity in testicular tissue. CONCLUSIONS Liraglutide can improve the sex hormone levels and semen quality of obese male mice. In addition to its weight loss effect, liraglutide can improve the reproductive function of obese male mice, which may also be related to the upregulation of AC3/cAMP/PKA pathway in the testis. This work lays the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Ruibing Qi
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Department of Endocrinology and Metabolism, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Yuzhen Liang
- Department of Endocrinology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jinming Yu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Bing Chen
- Department of Endocrinology and Metabolism, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Jiaqin Jiang
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xingye Wu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wensheng Lu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zhengming Li
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
8
|
Varnum AA, Pozzi E, Deebel NA, Evans A, Eid N, Sadeghi-Nejad H, Ramasamy R. Impact of GLP-1 Agonists on Male Reproductive Health-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:50. [PMID: 38256311 PMCID: PMC10820247 DOI: 10.3390/medicina60010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Background and objective-Obesity is a prevalent health concern that notably impairs male fertility through hormonal disruptions and other pathophysiological alterations. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) can significantly reduce weight. This narrative review synthesizes the existing literature discussing the impact of glucagon-like peptide-GLP-1 RAs on the male reproductive system, particularly on the hypothalamic-pituitary-gonadal axis and spermatogenesis, highlighting their potential impact on male fertility. Material and methods-PubMed database was used for the retrieval of English-language articles published up to November 2023. This non-systematic literature review predominantly concentrates on both pre-clinical and clinical studies pertaining to GLP-1 RAs, specifically exploring their impact on male reproductive hormones and sperm parameters. Results-GLP-1 receptors have been identified within the male reproductive system according to the existing literature. While the exact mechanisms are not well understood, they appear to be involved in glucose homeostasis and energy metabolism, both vital processes in spermatogenesis. Multiple clinical trials have demonstrated the efficacy of GLP-1 RAs for promoting weight loss. Recent studies show that the use of GLP-1 RAs in obese males may enhance sperm metabolism, motility, and insulin secretion in vitro, along with positive effects on the human Sertoli cells. Recent clinical trials discussed in this review demonstrate weight loss associated with GLP-1 RAs is correlated with improvements in sperm count, concentration, and motility. However, the direct impact of GLP-1 RAs on male reproductive hormones remains unclear, necessitating further research to confirm their potential role in treating male infertility. Conclusions-This narrative review summarizes the existing literature discussing the potential impact of GLP-1 RA on the male reproductive system, emphasizing their potential therapeutic role in addressing idiopathic infertility in obese men. Despite numerous studies exploring the influence of GLP-1 and GLP-1 RAs on reproductive hormones, testicular function, and spermatogenesis, further clinical trials are crucial to validate initial evidence. Longer follow-up periods are essential to address uncertainties regarding the long-term repercussions and outcomes of GLP-1 RA use. While this holds true, the current literature suggests that GLP-1RAs show promise as a potential therapeutic approach for improving sperm parameters in obese men.
Collapse
Affiliation(s)
- Alexandra Aponte Varnum
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.A.V.); (E.P.); (A.E.)
| | - Edoardo Pozzi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.A.V.); (E.P.); (A.E.)
- Department of Urology, University Vita-Salute San Raffaele, 20132 Milan, Italy
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Nicholas Allen Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Aymara Evans
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.A.V.); (E.P.); (A.E.)
| | - Nathalie Eid
- Grossman School of Medicine, New York, NY 10016, USA; (N.E.); (H.S.-N.)
| | | | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.A.V.); (E.P.); (A.E.)
| |
Collapse
|
9
|
George BT, Jhancy M, Dube R, Kar SS, Annamma LM. The Molecular Basis of Male Infertility in Obesity: A Literature Review. Int J Mol Sci 2023; 25:179. [PMID: 38203349 PMCID: PMC10779000 DOI: 10.3390/ijms25010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The rising incidence of obesity has coincided with rising levels of poor reproductive outcomes. The molecular basis for the association of infertility in obese males is now being explained through various mechanisms. Insulin resistance, hyperglycemia, and changes in serum and gonadal concentrations of adipokines, like leptin, adiponectin, resistin, and ghrelin have been implicated as causes of male infertility in obese males. The effects of obesity and hypogonadism form a vicious cycle whereby dysregulation of the hypothalamic-pituitary-testicular axis-due to the effect of the release of multiple mediators, thus decreasing GnRH release from the hypothalamus-causes decreases in LH and FSH levels. This leads to lower levels of testosterone, which further increases adiposity because of increased lipogenesis. Cytokines such as TNF-α and interleukins, sirtuins, and other inflammatory mediators like reactive oxygen species are known to affect fertility in obese male adults. There is evidence that parental obesity can be transferred through subsequent generations to offspring through epigenetic marks. Thus, negative expressions like obesity and infertility have been linked to epigenetic marks being altered in previous generations. The interesting aspect is that these epigenetic expressions can be reverted by removing the triggering factors. These positive modifications are also transmitted to subsequent generations.
Collapse
Affiliation(s)
- Biji Thomas George
- Department of Surgery, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Malay Jhancy
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Lovely Muthiah Annamma
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
10
|
Yang L, Tian X, Li H, Sun J, Zhou W. Effects of fasting hyperglycemia in men on pregnancy outcomes of singleton pregnant women with cryo-thawed embryo transfer. Eur J Med Res 2023; 28:613. [PMID: 38115122 PMCID: PMC10731713 DOI: 10.1186/s40001-023-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The relationship of metabolic issues to pregnancy outcomes during assisted reproductive technology (ART) is gaining much attention. Fasting Plasma Glucose (FPG) is one of the most common metabolic indicators. Abnormal FPG not only affects the quality of life of human body, but also has a bearing on reproductive health. However, most attentions are paid on women's physical health and reproductive assessment, the health status of the male partner on pregnancy outcomes during ART treatment is often neglected. This study investigated whether male fasting hyperglycemia (FH, FPG > 6.1 mmol/L) can affect live birth rates (LBR) in singleton intrauterine clinical pregnancy women with cryo-thawed embryo transfer (CET) cycles. MATERIAL AND METHODS A retrospective cohort study (370 CET cycles with first singleton clinical intrauterine pregnancy and grouped by male FPG) was conducted to analyze the relationship between male FH and clinical pregnancy outcomes using binary logistic regression; the odds ratios (ORs) and 95% confidence intervals (CIs) were calculated as a measure of relevancy. Live birth rate was the main outcome measure. RESULTS The live birth rate (LBR) was significantly lower [58.6% vs. 81.8%, P = 0.007, adjusted OR 0.635, 95% CI 0.456-0.884] and miscarriage rate (MR) was significantly higher [41.4% vs. 18.2%, P = 0.007, adjusted OR 1.575, 95% CI 1.131-2.195] in the FH group when compared with the Con group. There was no difference in healthy baby rate [88.2% vs. 89.6%, P = 0.058, adjusted OR 2.143, 95% CI 0.974-4.716] or abnormal birth weight rate (23.5% vs. 11.8%, P = 0.238, adjusted OR 2.859, 95% CI 0.777-10.460] between the FH and control group. No birth defects were observed in the present study. CONCLUSION Male FH is an independent risk factor for lower LBR and higher MR in singleton intrauterine pregnancy women with CET cycles.
Collapse
Affiliation(s)
- Li Yang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Department of Obstetrics and Gynecology, Beijing Tongzhou Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Xiangming Tian
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huanhuan Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Junjian Sun
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing First Hospital of Traditional Chinese Combined With Western Medicine, Beijing, People's Republic of China
| | - Wenhui Zhou
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Fathy MA, Alsemeh AE, Habib MA, Abdel-nour HM, Hendawy DM, Eltaweel AM, Abdelkhalek A, Ahmed MM, Desouky MK, Hua J, Fericean LM, Banatean-Dunea I, Arisha AH, Khamis T. Liraglutide ameliorates diabetic-induced testicular dysfunction in male rats: role of GLP-1/Kiss1/GnRH and TGF-β/Smad signaling pathways. Front Pharmacol 2023; 14:1224985. [PMID: 37497106 PMCID: PMC10367011 DOI: 10.3389/fphar.2023.1224985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: Glucagon-like peptide -1 (GLP-1) is released by intestinal cells to stimulate glucose-dependent insulin release from the pancreas. GLP-1 has been linked to ameliorating obesity and/or diabetic complications as well as controlling reproductive function. Liraglutide is a GLP-1 receptor agonist (GLP-1RA) with 97% homology with GLP-1. The main objective of this study was to investigate the ameliorative role of liraglutide in diabetic-induced reproductive dysfunction in male rats. Methods: Rats were randomly allocated into 3 groups; a control group, a diabetic group, and a liraglutide-treated diabetic group. Results: In the diabetic group, a significant increase in BMI, FBG, HbA1c, HOMA-IR, TC, TAG, LDL, IL6, TNFα, and MDA, as well as decreased serum insulin, HDL, GSH, total testosterone, LH, and FSH, were shown compared to the control group. Furthermore, A significant downregulation in relative hypothalamic gene expression of GLP-1R, PPAR-α, PGC-1α, kiss, kiss1R, leptin, leptin R, GnRH GLP-1R, testicular PGC-1α, PPARα, kiss1, kiss1R, STAR, CYP17A1, HSD17B3, CYP19A, CYP11A1, and Smad7, as well as upregulation in hypothalamic GnIH and testicular TGF- β and Smad2 expression, were noticed compared to the control group. Liraglutide treatment significantly improved such functional and structural reproductive disturbance in diabetic rats. Conclusion: GLP-1RAs ameliorated the deleterious effects of diabetes on reproductive function by targeting GLP-1/leptin/kiss1/GnRH, steroidogenesis, and TGF- β/Smad pathways.
Collapse
Affiliation(s)
- Maha Abdelhamid Fathy
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa A. Habib
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanim M. Abdel-nour
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa M. Hendawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Monir Eltaweel
- Basic Medical Science Department of Anatomy and Embryology, College of Medicine-King Saud Abdulaziz, University for Health Sciences—Kingdom of Saudi Arabia, Jeddah, Saudi Arabia
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Mona M. Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha K. Desouky
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jinlian Hua
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liana Mihaela Fericean
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Magill RG, MacDonald SM. Male infertility and the human microbiome. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1166201. [PMID: 37361341 PMCID: PMC10289028 DOI: 10.3389/frph.2023.1166201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The historical belief in urology was that the genitourinary system should be sterile in a normal, healthy, asymptomatic adult. This idea was perpetuated for decades until research revealed a diverse microbiota existing in human anatomical niches that contributed to both human health and disease processes. In recent years, the search for an etiology and modifiable risk factors in infertility has turned to the human microbiome as well. Changes in the human gut microbiome have been associated with changes in systemic sex hormones and spermatogenesis. Certain microbial species are associated with higher levels of oxidative stress, which may contribute to an environment higher in oxidative reactive potential. Studies have demonstrated a link between increased oxidative reactive potential and abnormal semen parameters in infertile men. It has also been hypothesized that antioxidant probiotics may be able to correct an imbalance in the oxidative environment and improve male fertility, with promising results in small studies. Further, the sexual partner's microbiome may play a role as well; studies have demonstrated an overlap in the genitourinary microbiomes in sexually active couples that become more similar after intercourse. While the potential applications of the microbiome to male fertility is exciting, there is a need for larger studies with uniform microbial sequencing procedures to further expand this topic.
Collapse
Affiliation(s)
- Resa G. Magill
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Susan M. MacDonald
- Department of Urology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
13
|
Khamis T, Hegazy AA, El-Fatah SSA, Abdelfattah ER, Abdelfattah MMM, Fericean LM, Arisha AH. Hesperidin Mitigates Cyclophosphamide-Induced Testicular Dysfunction via Altering the Hypothalamic Pituitary Gonadal Axis and Testicular Steroidogenesis, Inflammation, and Apoptosis in Male Rats. Pharmaceuticals (Basel) 2023; 16:301. [PMID: 37259444 PMCID: PMC9966503 DOI: 10.3390/ph16020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cyclophosphamide (CP) is a cytotoxic, cell cycle, non-specific, and antiproliferative drug. This study aimed to address the toxic effects of CP on male fertility and the possible ameliorative role of hesperidin (HSP). Thirty-two adult albino rats were randomly divided into four groups, namely, the negative control, HSP, CP-treated, and CP+HSP-treated groups. The CP-treated rats showed a significant reduction in the levels of serum LH, FSH, testosterone, prolactin, testicular glutathione peroxidase (GPx), and total antioxidant capacity (TAC) with an elevation in levels of malondialdehyde (MDA), and p53, and iNOS immune expression, compared to the control group. A significant downregulation in hypothalamic KISS-1, KISS-1r, and GnRH, hypophyseal GnRHr, and testicular mRNA expression of steroidogenesis enzymes, PGC-1α, PPAR-1, IL10, and GLP-1, as well as a significant upregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP-treated group in comparison to that in the control group. The administration of HSP in CP-treated rats significantly improved the levels of serum LH, FSH, testosterone, prolactin, testicular GPx, and TAC, with a reduction in levels of MDA, and p53, and iNOS immune expression compared to the CP-treated group. A significant upregulation in hypophyseal GnRHr, and testicular mRNA expression of CYP19A1 enzymes, PPAR-1, IL10, and GLP-1, as well as a significant downregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP+HSP-treated group in comparison to that in the CP-treated group. In conclusion, HSP could be a potential auxiliary agent for protection from the development of male infertility.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelmonem Awad Hegazy
- Anatomy and Embryology, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Samaa Salah Abd El-Fatah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman Ramadan Abdelfattah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
14
|
La Vignera S, Condorelli RA, Calogero AE, Cannarella R, Aversa A. Sexual and Reproductive Outcomes in Obese Fertile Men with Functional Hypogonadism after Treatment with Liraglutide: Preliminary Results. J Clin Med 2023; 12:jcm12020672. [PMID: 36675601 PMCID: PMC9860933 DOI: 10.3390/jcm12020672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Purpose: To prospectively investigate the effects of treatment with liraglutide, a glucagon-like peptide 1 (GLP1) analog, on reproductive and sexual function in men with metabolic hypogonadism who are of childbearing age. Materials and Methods: To accomplish this purpose, 110 men of childbearing age (18-35 years) with metabolic hypogonadism were enrolled and divided into three groups, according to their desire to have children. Group A was made up of men actively seeking fatherhood, Group B, of men who did not seek fatherhood, and Group C, of men who had already fathered a child. Group A patients were treated with gonadotropins (urofollitropin at 150 IU, three times a week, and human chorionic gonadotropin at 2000 IU, twice a week), Group B patients with liraglutide (3 mg daily), and Group C patients with transdermal testosterone (60 mg per day). All patients were treated for 4 months. Results: Patients treated with liraglutide (Group B) showed significant improvement in conventional sperm parameters, compared to baseline and Group A patients, and in the quality of erectile function compared to baseline and patients of Groups A and C. In addition, they had significantly higher levels of total testosterone and sex hormone-binding globulin serum levels after 4 months of treatment with liraglutide than those achieved by patients in the other two groups at the end of the respective treatments. Finally, Group B patients also showed significantly higher serum gonadotropin levels than the other groups. Conclusions: The results of this study showed, for the first time, the efficacy of liraglutide, a GLP1 analog, for the pharmacological treatment of male patients with metabolic hypogonadism. Liraglutide has also shown advantages over traditional treatments on both reproductive and sexual function and appears to offer greater benefits in terms of metabolic protection. These findings suggest that liraglutide is a useful drug for the treatment of obese males with metabolic hypogonadism.
Collapse
Affiliation(s)
- Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Adipose Tissue Dysfunction and Obesity-Related Male Hypogonadism. Int J Mol Sci 2022; 23:ijms23158194. [PMID: 35897769 PMCID: PMC9330735 DOI: 10.3390/ijms23158194] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic illness associated with several metabolic derangements and comorbidities (i.e., insulin resistance, leptin resistance, diabetes, etc.) and often leads to impaired testicular function and male subfertility. Several mechanisms may indeed negatively affect the hypothalamic–pituitary–gonadal health, such as higher testosterone conversion to estradiol by aromatase activity in the adipose tissue, increased ROS production, and the release of several endocrine molecules affecting the hypothalamus–pituitary–testis axis by both direct and indirect mechanisms. In addition, androgen deficiency could further accelerate adipose tissue expansion and therefore exacerbate obesity, which in turn enhances hypogonadism, thus inducing a vicious cycle. Based on these considerations, we propose an overview on the relationship of adipose tissue dysfunction and male hypogonadism, highlighting the main biological pathways involved and the current therapeutic options to counteract this condition.
Collapse
|
16
|
Salvio G, Ciarloni A, Cutini M, delli Muti N, Finocchi F, Perrone M, Rossi S, Balercia G. Metabolic Syndrome and Male Fertility: Beyond Heart Consequences of a Complex Cardiometabolic Endocrinopathy. Int J Mol Sci 2022; 23:5497. [PMID: 35628307 PMCID: PMC9143238 DOI: 10.3390/ijms23105497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/06/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent condition among adult males, affecting up to 41% of men in Europe. It is characterized by the association of obesity, hypertension, and atherogenic dyslipidemia, which lead to premature morbidity and mortality due to cardiovascular disease (CVD). Male infertility is another common condition which accounts for about 50% of cases of couple infertility worldwide. Interestingly, male infertility and MetS shares several risk factors (e.g., smoking, ageing, physical inactivity, and excessive alcohol consumption), leading to reactive oxygen species (ROS) production and increased oxidative stress (OS), and resulting in endothelial dysfunction and altered semen quality. Thus, the present narrative review aims to discuss the pathophysiological mechanisms which link male infertility and MetS and to investigate the latest available evidence on the reproductive consequences of MetS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60126 Ancona, Italy; (G.S.); (A.C.); (M.C.); (N.d.M.); (F.F.); (M.P.); (S.R.)
| |
Collapse
|
17
|
Abdullah DM, Alsemeh AE, Khamis T. Semaglutide early intervention attenuated testicular dysfunction by targeting the GLP-1-PPAR-α-Kisspeptin-Steroidogenesis signaling pathway in a testicular ischemia-reperfusion rat model. Peptides 2022; 149:170711. [PMID: 34920048 DOI: 10.1016/j.peptides.2021.170711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
Testicular torsion is a serious emergency and a well-known cause of male infertility. It represents 10 %-15 % of scrotal diseases in children. Kisspeptin (KISS1) is a hormone secreted from the hypothalamic nuclei and testis, but its role in testis is not fully understood. Semaglutide is a novel antidiabetic glucagon-like peptide 1 (GLP-1) analog. Hence, we designed the current study to elucidate the possible ameliorative effect of semaglutide on ischemia/reperfusion-induced testicular dysfunction in rats and highlight the role of the testicular GLP-1/PCG-1α-PPAR-α-KISS1 signaling pathway. We randomly divided 50 male Sprague Dawley into five equal groups (10 rats each): SHAM, exendin 9-39 -treated (EX), testicular torsion/detorsion (T/D), testicular torsion/detorsion and semaglutide-treated (SEM + T/D), and testicular torsion/detorsion, exendin, and semaglutide-treated (EX + SEM + T/D). We quantified serum follicle-stimulating hormone, luteinizing hormone, total testosterone, testicular oxidative stress markers, testicular gene expression of GLP-1/KISS1 pathway-related genes (KISS1, KISS1R, GLP-1, GLP-1R, PGC-1α, PPAR-α), steroidogenesis pathway-related genes (STAR, CYP11A1, CYP17A1, HSD17B3, CYP19A1), HO-1, Nrf-2, and testicular protein expression of HIF-1α, TNF-α, NF-κβ, Caspase-3, FAS, proliferating cell nuclear antigen, and KISS1 through testicular histopathology and immunohistochemistry assays. Testicular torsion/detorsion markedly elevated proapoptotic, proinflammatory, and oxidative stress marker levels, noticeably downregulating the expression of GLP-1/KISS1 and steroidogenesis pathway-related proteins. Semaglutide administration significantly ameliorated all these deleterious effects. Nevertheless, injecting exendin, a GLP1-R antagonist, before semaglutide abolished all the documented improvements. We concluded that semaglutide ameliorated ischemia/reperfusion-induced testicular dysfunction by modulating the GLP-1/PGC-1α-PPAR-α/KISS1/steroidogenesis signaling pathway, improving testicular oxidative state, and suppressing testicular inflammation and apoptosis.
Collapse
Affiliation(s)
- Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
18
|
Killion EA, Hussien R, Shkumatov A, Davies R, Lloyd DJ, Véniant MM, Lebrec H, Fort MM. GIPR gene expression in testis is mouse-specific and can impact male mouse fertility. Andrology 2022; 10:789-799. [PMID: 35224888 DOI: 10.1111/andr.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide receptor (Gipr) gene expression has been reported in mouse spermatids and Gipr knockout (KO) male mice have previously been reported to have decreased in vitro fertilization, although the role of Gipr signaling in male mouse fertility is not well understood. OBJECTIVES The purposes of these studies were to determine the role of GIPR in male fertility using Gipr KO mice and anti-GIPR antibody treated wild-type mice and to determine if the expression of Gipr in mouse testes is similar in non-human and human primates. METHODS AND MATERIALS Adiponectin promoter-driven Gipr knockout male mice (GiprAdipo-/- ) were assessed for in vitro and in vivo fertility, sperm parameters, and testicular histology. CD1 male mice were administered an anti-GIPR antibody (muGIPR-Ab) prior to and during mating for assessment of in vivo fertility and sperm parameters. Expression of Gipr/GIPR mRNA in the mouse, cynomolgus monkey, and human testes was assessed by in situ hybridization methods using species-specific probes. RESULTS GiprAdipo-/- male mice are infertile in vitro and in vivo, despite normal testis morphology, sperm counts and sperm motility. In contrast, administration of muGIPR-Ab to CD1 male mice did not impact fertility. While Gipr mRNA expression is detectable in the mouse testes, GIPR mRNA expression is not detectable in monkey or human testes. DISCUSSION The infertility of GiprAdipo-/- male mice correlated with the lack of Gipr expression in the testis and/or adipocyte tissue. However, as administration of muGIPR-Ab did not impact the fertility of adult male mice, it is possible that the observations in genetically deficient male mice are related to Gipr-deficiency during development. CONCLUSION Our data support a role for Gipr expression in the mouse testis during the development of sperm fertilization potential, but based on gene expression data, a similar role for GIPR in non-human primate or human male fertility is unlikely. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elizabeth A Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, Thousand Oaks, CA
| | - Rajaa Hussien
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| | - Artem Shkumatov
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| | - Rhian Davies
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| | - David J Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, Thousand Oaks, CA.,D.L. is currently at Carmot Therapeutics, Inc
| | - Murielle M Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, Thousand Oaks, CA
| | - Herve Lebrec
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA.,H.L. is currently at Sonoma Biotherapeutics, Inc
| | - Madeline M Fort
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| |
Collapse
|
19
|
Pelusi C. The Effects of the New Therapeutic Treatments for Diabetes Mellitus on the Male Reproductive Axis. Front Endocrinol (Lausanne) 2022; 13:821113. [PMID: 35518937 PMCID: PMC9065269 DOI: 10.3389/fendo.2022.821113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
One of the complications of chronic hyperglycemia and insulin resistance due to type 2 diabetes mellitus (T2DM) on the hypothalamic-pituitary-gonadal axis in men, is the high prevalence of hypogonadotropic hypogonadism, which has been recently defined as functional hypogonadism, characterized by low testosterone associated with inappropriately normal gonadotropin levels. Although the pathophysiology of this hormonal imbalance may be related to several factors, including glycemic control, concomitant sleep apnea, insulin resistance, the main role is determined by the degree of central or visceral obesity and the consequent inflammatory state. Several drugs have been developed to treat T2DM such as glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase 4 inhibitors, and sodium-glucose co-transporter 2 inhibitors. All appear to be effective in ameliorating blood glucose control, by lowering inflammation and body weight, and most seem to reduce the risk of micro- and macrovascular damage as a consequence of uncontrolled diabetes. A few studies have evaluated the impact of these drugs on gonadal function in T2DM patients with hypogonadism, with promising results. This review summarizes the main current knowledge of the effects of these new antidiabetic drugs on the hypothalamus-pituitary-gonadal axis, showing their potential future application in addition to glucose control in dysmetabolic male patients.
Collapse
Affiliation(s)
- Carla Pelusi
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
- *Correspondence: Carla Pelusi,
| |
Collapse
|