1
|
Rodriguez-Martinez H, Martinez-Serrano CA, Alvarez-Rodriguez M, Martinez EA, Roca J. Reproductive physiology of the boar: What defines the potential fertility of an ejaculate? Anim Reprod Sci 2024; 269:107476. [PMID: 38664134 DOI: 10.1016/j.anireprosci.2024.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 10/02/2024]
Abstract
Despite decades of research and handling of semen for use in artificial insemination (AI) and other assisted reproductive technologies, 5-10% of selected boar sires are still considered sub-fertile, escaping current assessment methods for sperm quality and resilience to preservation. As end-product, the ejaculate (emitted spermatozoa sequentially exposed to the composite seminal plasma, the SP) ought to define the homeostasis of the testes, the epididymis, and the accessory sexual glands. Yet, linking findings in the ejaculate to sperm production biology and fertility is suboptimal. The present essay critically reviews how the ejaculate of a fertile boar can help us to diagnose both reproductive health and resilience to semen handling, focusing on methods -available and under development- to identify suitable biomarkers for cryotolerance and fertility. Bulk SP, semen proteins and microRNAs (miRNAs) have, albeit linked to sperm function and fertility after AI, failed to enhance reproductive outcomes at commercial level, perhaps for just being components of a complex functional pathway. Hence, focus is now on the interaction sperm-SP, comparing in vivo with ex vivo, and regarding nano-sized lipid bilayer seminal extracellular vesicles (sEVs) as priority. sEVs transport fragile molecules (lipids, proteins, nucleic acids) which, shielded from degradation, mediate cell-to-cell communication with spermatozoa and the female internal genital tract. Such interaction modulates essential reproductive processes, from sperm homeostasis to immunological female tolerance. sEVs can be harvested, characterized, stored, and manipulated, e.g. can be used for andrological diagnosis, selection of breeders, and alternatively be used as additives to improve cryosurvival and fertility.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
| | - Cristina A Martinez-Serrano
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Ctra de la Coruña KM 7,5, Madrid 28040, Spain
| | - Manuel Alvarez-Rodriguez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Ctra de la Coruña KM 7,5, Madrid 28040, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
2
|
Llavanera M. Evaluation of sperm quality and male fertility: The use of molecular markers in boar sperm and seminal plasma. Anim Reprod Sci 2024; 269:107545. [PMID: 38960838 DOI: 10.1016/j.anireprosci.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
In pig production, the optimization of artificial insemination (AI) efficiency significantly relies on the accurate assessment of semen quality and fertility of boars. Traditional methods such as conventional seminogram techniques, although long-standing, exhibit limited sensitivity in predicting boar fertility, warranting the exploration of novel molecular markers. This review synthesizes the current knowledge on the utilization of molecular markers for semen quality evaluation and male fertility prediction in boars, providing an in-depth examination of molecular markers in this context. Specifically, the present work delves into the potential of OMICs technologies, encompassing genetic and genomic approaches, transcriptomics, proteomics, and metabolomics. A diverse array of molecular markers, including genomic regions associated with sperm quality and male fertility, chromatin integrity, mitochondrial DNA content, mRNA and non-coding RNA signatures, as well as proteins and metabolites in sperm and seminal plasma, are identified as promising molecular markers for fertility prediction in boars. Furthermore, the need of validating biomarkers and their practical implementation in AI centres is here emphasized. Addressing these considerations and integrating molecular markers within the swine breeding field holds the potential to enhance reproductive management practices and optimize productivity in boar breeding programs. This integration can significantly improve overall efficiency within the pig breeding industry.
Collapse
Affiliation(s)
- Marc Llavanera
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
| |
Collapse
|
3
|
Rodriguez-Martinez H, Roca J, Alvarez-Rodriguez M, Martinez-Serrano CA. How does the boar epididymis regulate the emission of fertile spermatozoa? Anim Reprod Sci 2022; 246:106829. [PMID: 34452796 DOI: 10.1016/j.anireprosci.2021.106829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The epididymis is responsible for peripheral immune tolerance of maturing spermatozoa even though these have xeno-antigens foreign to the male and female immune system. The epididymis also produces factors required for fertilization and serves as a sperm repository until the time of ejaculation. These reproduction-relevant epididymal functions occur in the mesonephros-derived duct-system that is composed of absorptive and secretory epithelial cells with the capacity for merocrine and apocrine secretion of proteins, antioxidative- and electrolyte/pH-regulating enzymes and small, non-coding RNAs (sncRNAs), many stored in epididymosomes for sperm adhesion and long-lasting modifications of sperm functions. This paper provides a review summary of current and new knowledge of how the boar epididymis affects the quality of spermatozoa in the ejaculate of breeding boars. There is a particular focus on sperm maturation, survival, function and the role of signaling to the female immune system in fertility modulation. Furthermore, aspects related to the ductus epithelial contributions regarding electrolyte control, protein production, release of epididymosomes that contain sncRNAs are emphasized as are novel associations with fertility of the male, sperm quiescence during storage in the cauda epididymis, and on changes occurring in sperm subsequent to ejaculation.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden.
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Cristina A Martinez-Serrano
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| |
Collapse
|
4
|
Seminal Plasma Antioxidants Are Related to Sperm Cryotolerance in the Horse. Antioxidants (Basel) 2022; 11:antiox11071279. [PMID: 35883774 PMCID: PMC9311553 DOI: 10.3390/antiox11071279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to determine the relationship of enzymatic (superoxide dismutase, SOD; glutathione peroxidase, GPX; catalase, CAT; and paraoxonase type 1, PON1) and non-enzymatic antioxidants (measured in terms of: Trolox equivalent antioxidant capacity, TEAC; cupric-reducing antioxidant capacity, CUPRAC; and ferric-reducing ability of plasma, FRAP), as well as the oxidative stress index (OSI) in seminal plasma (SP) with the resilience of horse sperm to freeze-thawing. Twenty-one ejaculates (one per individual) were collected and split into two aliquots: the first was used to harvest the SP and assess the activity levels of antioxidants and the OSI, and the second one was cryopreserved. The following post-thaw sperm quality parameters were evaluated: sperm motility, plasma membrane and acrosome integrity, mitochondrial membrane potential, intracellular levels of reactive oxygen species (ROS), and plasma membrane lipid disorder. Based on post-thaw total motility (TM) and plasma membrane integrity (SYBR14+/PI−), ejaculates were hierarchically (p < 0.001) clustered into two groups of good (GFE) and poor (PFE) freezability. The SP activity levels of PON1, SOD, and TEAC were higher (p < 0.05) in GFE than in PFE, showing a positive relationship (p < 0.05) with some sperm motility parameters and with plasma membrane (PON1 and TEAC) and acrosome (SOD and TEAC) integrity. In contrast, OSI was higher (p < 0.05) in the SP of PFE than in that of GFE, and was negatively correlated (p < 0.05) to some sperm motility parameters and to plasma membrane and acrosome integrity, and positively (p < 0.05) to the percentage of viable sperm with high plasma membrane lipid disorder. In conclusion, enzymatic (PON1 and SOD) and non-enzymatic (TEAC) antioxidants of SP are related to horse sperm cryotolerance. In addition, our results suggest that PON1 could be one of the main antioxidant enzymes involved in the control of ROS in this species. Further investigation is needed to confirm the potential use of these SP-antioxidants and OSI to predict sperm cryotolerance in horses.
Collapse
|
5
|
Impact of Seminal Plasma Antioxidants on Donkey Sperm Cryotolerance. Antioxidants (Basel) 2022; 11:antiox11020417. [PMID: 35204299 PMCID: PMC8869541 DOI: 10.3390/antiox11020417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether the activities of the antioxidant components of donkey seminal plasma (SP)—both enzymatic (superoxide dismutase (SOD), catalase-like (CAT), glutathione peroxidase-like (GPX), and paraoxonase type 1 (PON1)) and non-enzymatic (measured in terms of total thiol, copper-reducing antioxidant capacity (CUPRAC), ferric-reducing ability of plasma (FRAP), and Trolox equivalent antioxidant capacity (TEAC))—and oxidative stress index (OSI) are related to sperm cryotolerance. For this purpose, 15 ejaculates from jackasses (one per individual) were collected and split into two aliquots. The first one was used for measuring the activities levels of enzymatic and non-enzymatic antioxidants and OSI in SP, whereas the other aliquot was cryopreserved. Before cryopreservation, sperm quality parameters (concentration, motility, and viability) were evaluated. After thawing, sperm motility, plasma membrane integrity, lipid disorder, mitochondrial membrane potential, reactive oxygen species (ROS), and calcium intracellular levels were also determined. Based on the percentages of total motility (TM) and of sperm with an intact plasma membrane (SYBR14+/PI−) after thawing, samples were classified as good-freezability (GFE) or poor-freezability (PFE) ejaculates through cluster analyses. The SP activity levels of enzymatic (SOD and PON1) and non-enzymatic antioxidants (CUPRAC, FRAP, and TEAC) were higher (p < 0.05) in GFE than in PFE, whereas SP-OSI was higher (p < 0.05) in PFE than in GFE. In addition, the activity levels of SOD, PON1, GPX, CUPRAC, FRAP, and TEAC were positively (p < 0.05) related to post-thaw sperm motility and plasma membrane integrity and negatively to intracellular ROS levels. The SP-OSI was negatively correlated (p < 0.05) to post-thaw sperm quality parameters and positively to intracellular ROS levels. It can thus be concluded that donkey SP antioxidants are related to sperm cryotolerance and that measurements of antioxidants PON1, SOD, CUPRAC, FRAP, and TEAC, as well as SP-OSI, could be used as markers of sperm cryotolerance. Further research addressing the relationship of these antioxidants and SP-OSI with sperm cryotolerance and their potential use as freezing markers is warranted.
Collapse
|
6
|
Lucca MS, Goularte KL, Rovani MT, Schneider A, Gasperin BG, Lucia Júnior T, Rossi CAR. Paraoxonase 1 activity in the sperm-rich portion of boar ejaculates is positively associated with sperm quality. Anim Reprod 2022; 19:e20220039. [PMID: 36156884 PMCID: PMC9484396 DOI: 10.1590/1984-3143-ar2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Associations of the activity of the paraoxonase 1 (PON1) enzyme with boar sperm quality still needs to be characterized, since boar ejaculates present distinct portions with differences in sperm concentration and quality. This study evaluated PON1 activity in the serum, in the distinct portions of boar ejaculates and estimated correlations with sperm quality parameters. Ejaculates and blood samples were collected from six boars for three weeks (two per week per boar; n = 36). Serum and post-spermatic portion PON1 activities were positively correlated (P = 0.01) but were both uncorrelated with the PON1 activity in the sperm-rich portion and in the whole ejaculate (P > 0.05). Differences in PON1 activity among boars were only observed in the sperm-rich portion of the ejaculate (P < 0.05). The PON1 activity in the serum and in the post-spermatic portion was generally negatively correlated with parameters of spermatozoa kinetics (P < 0.05). In the sperm-rich portion, PON1 activity was positively correlated with sperm concentration (P < 0.0001), curvilinear distance and velocity (both P < 0.05) and DNA integrity (P < 0.05), but negatively correlated with straightness and linearity (P < 0.05). Thus, boar ejaculates with increased PON1 activity in the sperm-rich portion may present increased concentration and spermatozoa with acceptable curvilinear velocity and distance and DNA integrity, which suggests that PON1 activity may be a biomarker for potential fertility.
Collapse
|
7
|
Measurement of Oxidative Stress Index in Seminal Plasma Can Predict In Vivo Fertility of Liquid-Stored Porcine Artificial Insemination Semen Doses. Antioxidants (Basel) 2021; 10:antiox10081203. [PMID: 34439450 PMCID: PMC8388916 DOI: 10.3390/antiox10081203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The study evaluated the relation between the oxidative stress index (OSI) in porcine seminal plasma (n = 76) with sperm resilience and in vivo fertility (farrowing rate and litter size of 3137 inseminated sows) of liquid-stored artificial insemination (AI) semen doses. The OSI was assessed as the ratio of advanced oxidation protein products to Trolox-equivalent antioxidant capacity, both measured using an automated analyzer. Sperm motility (computer-assisted sperm analyzer) and viability (flow cytometry) were evaluated in semen AI-doses at 0 and 72 h of storage at 17 °C. Sperm resilience was defined as the difference between storage intervals. Semen AI-doses were hierarchically clustered as having high, medium and low seminal OSI (p < 0.001) with those of low displaying higher resilience (p < 0.01). Boars were hierarchically clustered into two groups (p < 0.001) as having either positive or negative farrowing rate and litter size deviation; the negative one showing higher seminal OSI (p < 0.05). In sum, seminal OSI was negatively related to sperm motility and the in vivo fertility of liquid-stored boar semen AI-doses, with the receiver operating characteristic curve presenting seminal OSI as a good predictive biomarker of in vivo fertility of AI-boars (area under the curve: 0.815, p < 0.05).
Collapse
|
8
|
Mateo-Otero Y, Fernández-López P, Ribas-Maynou J, Roca J, Miró J, Yeste M, Barranco I. Metabolite Profiling of Pig Seminal Plasma Identifies Potential Biomarkers for Sperm Resilience to Liquid Preservation. Front Cell Dev Biol 2021; 9:669974. [PMID: 34124051 PMCID: PMC8194698 DOI: 10.3389/fcell.2021.669974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolomic approaches allow the study of downstream gene expression events since metabolites are considered as the products of cell signaling pathways. For this reason, many studies in humans have already been conducted to determine the influence of the metabolites present in seminal plasma (SP) on sperm physiology, and to identify putative biomarkers. However, in livestock species, these relationships are yet to be uncovered. Thus, the present study aimed to explore: (i) if concentrations of metabolites in pig SP are related to sperm quality and functionality, and (ii) if they could predict the sperm resilience to liquid storage at 17°C. To this end, 28 ejaculates were individually collected and split into three aliquots: one was used for SP analysis through nuclear magnetic resonance (NMR) spectroscopy; another served for the evaluation of sperm concentration and morphology; and the last one was utilized to determine sperm functionality parameters using computer-assisted sperm analysis (CASA) and flow cytometry after 0 h and 72 h of liquid-storage at 17°C. NMR analysis allowed the identification and quantification of 23 metabolites present in pig SP which, except for fumarate, were not observed to follow a breed-dependent behavior. Moreover, specific relationships between metabolites and sperm variables were identified: (i) glutamate, methanol, trimethylamine N-oxide, carnitine, and isoleucine were seen to be related to some sperm quality and functionality parameters evaluated immediately after semen collection; (ii) leucine, hypotaurine, carnitine and isoleucine were found to be associated to the sperm ability to withstand liquid storage; and (iii) Bayesian multiple regression models allowed the identification of metabolite patterns for specific sperm parameters at both 0 h and 72 h. The identification of these relationships opens up the possibility of further investigating these metabolites as potential sperm functional biomarkers.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Pol Fernández-López
- Centre d’Estudis Avançats de Blanes (CEAB), Spanish Research Council (CSIC), Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Jordi Roca
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Department of Veterinary Medical Sciences, Via Tolara di Sopra, Bologna, Italy
| |
Collapse
|
9
|
Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal Plasma: Relevant for Fertility? Int J Mol Sci 2021; 22:ijms22094368. [PMID: 33922047 PMCID: PMC8122421 DOI: 10.3390/ijms22094368] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA-the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-132-869-25
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain;
| | - Fernando J. Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, 10003 Caceres, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| |
Collapse
|
10
|
Gibb Z, Blanco-Prieto O, Bucci D. The role of endogenous antioxidants in male animal fertility. Res Vet Sci 2021; 136:495-502. [PMID: 33857769 DOI: 10.1016/j.rvsc.2021.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023]
Abstract
Mammalian semen is a physiological fluid composed of a cellular fraction (spermatozoa), and a liquid fraction (seminal plasma). Once delivered to the female genital tract, spermatozoa should be able to capacitate; a process which involves a plethora of biochemical and physiological changes required to fertilize the oocyte. Sperm production (spermatogenesis) occurs in the testes, whereby pluripotent spermatogonia differentiate to form the most morphologically specialized cells in the body. Further maturation of spermatozoa occurs in the epididymis, where they are stored prior to ejaculation. During this whole process, spermatozoa are exposed to different environments and cellular processes which may expose them to substantial levels of oxidative stress. To avoid damage associated with the unchecked production of reactive oxygen species (ROS), both spermatozoa, and the parts of the male genital tract in which they reside, are furnished with a suite of antioxidant molecules which are able to provide protection to these cells, thereby increasing their chance of being able to fertilize the oocyte and deliver an intact paternal genome to the future offspring. However, there are a host of reasons why these antioxidant systems may fail, including nutritional deficiencies, genetics, and disease states, and in these situations, a reduction or abolition of fertilizing capacity may result. This review paper focuses on the endogenous antioxidant defences available to spermatozoa during spermatogenesis and sperm maturation, the site of their production and their physiological role. Furthermore, we revised the causes and effects of antioxidant deficiencies (congenital or acquired during the animal's adulthood) on reproductive function in different animal species.
Collapse
Affiliation(s)
- Zamira Gibb
- Priority Research Centre in Reproductive Science, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Olga Blanco-Prieto
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - Università di Bologna, Italy.
| | - Diego Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - Università di Bologna, Italy
| |
Collapse
|
11
|
Barranco I, Tvarijonaviciute A, Padilla L, Rodriguez-Martinez H, Roca J, Lucas X. Delays in processing and storage of pig seminal plasma alters levels of contained antioxidants. Res Vet Sci 2020; 135:416-423. [PMID: 33187679 DOI: 10.1016/j.rvsc.2020.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
Seminal plasma (SP) antioxidants are considered biomarkers of sperm function and fertility for AI-boars. The current protocol for their measurement implies the SP was harvested immediately after ejaculation and prompt stored at -80 °C until analysis. Such protocol may be impractical for AI-centers. This study evaluated how SP levels of antioxidants were influenced by delays in (1) SP-harvesting (0 [control], 2 or 24 h at 17 °C after ejaculate collection), in (2) SP-freezing (0 [control] or 24 h at 17 °C after SP-harvesting) or (3) the temperature of storage (-80 °C [control] or - 20 °C). The SP-antioxidants evaluated were: glutathione peroxidase [GPx], superoxide dismutase [SOD], paraoxonase-1 [PON-1], trolox equivalent antioxidant capacity [TEAC] and oxidative stress index [OSI]. A total of 120 aliquots from 10 entire ejaculates were handled in three trials. They were centrifuged (1500 g, 10 min) for harvesting SP and antioxidants were measured with an Automatic Chemistry Analyzer. A 24 h-delay in harvesting the SP led to an increase (p˂0.001) in TEAC and SOD SP-levels, and a decrease (p˂0.05) of OSI and PON-1. Similarly, a 24 h-delay to freeze the SP increased (p˂0.01) TEAC values and decreased (p˂0.01) PON-1 and GPx activity levels. Finally, storing the SP at -20 °C decreased (p˂0.001) SP-levels of TEAC, PON-1 and GPx, and increased (p˂0.01) OSI values. Strong positive relationships (p˂0.001) were found between antioxidant SP-levels in processed samples and their respective controls. In sum, handling and SP storage influence antioxidant measurements in AI-boars. Reliable levels of SP-antioxidants can only be warranted if a strict protocol for harvesting and SP storage is followed.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain; Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona 17003, Spain
| | - Asta Tvarijonaviciute
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain.
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
12
|
Llavanera M, Delgado-Bermúdez A, Mateo-Otero Y, Padilla L, Romeu X, Roca J, Barranco I, Yeste M. Exploring Seminal Plasma GSTM3 as a Quality and In Vivo Fertility Biomarker in Pigs-Relationship with Sperm Morphology. Antioxidants (Basel) 2020; 9:antiox9080741. [PMID: 32806672 PMCID: PMC7466085 DOI: 10.3390/antiox9080741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022] Open
Abstract
Glutathione S-transferases Mu 3 (GSTM3) is an essential antioxidant enzyme whose presence in sperm has recently been related to sperm cryotolerance, quality and fertility. However, its role in seminal plasma (SP) as a predictor of the same sperm parameters has never been investigated. Herein, cell biology and proteomic approaches were performed to explore the presence, origin and role of SP-GSTM3 as a sperm quality and in vivo fertility biomarker. GSTM3 in SP was quantified using a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit specific for Sus scrofa, whereas the presence of GSTM3 in testis, epididymis and accessory sex glands was assessed through immunoblotting analysis. Sperm quality and functionality parameters were evaluated in semen samples at 0 and 72 h of liquid-storage, whereas fertility parameters were recorded over a 12-months as farrowing rate and litter size. The presence and concentration of GSTM3 in SP was established for the first time in mammalian species, predominantly synthesized in the epididymis. The present study also evidenced a relationship between SP-GSTM3 and sperm morphology and suggested it is involved in epididymal maturation rather than in ejaculated sperm physiology. Finally, the data reported herein ruled out the role of this antioxidant enzyme as a quality and in vivo fertility biomarker of pig sperm.
Collapse
Affiliation(s)
- Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, ES-30100 Murcia, Spain; (L.P.); (J.R.)
| | - Xavier Romeu
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, ES-30100 Murcia, Spain; (L.P.); (J.R.)
| | - Isabel Barranco
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
- Correspondence: (I.B.); (M.Y.); Tel.: +34-972-419514 (I.B. & M.Y.)
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
- Correspondence: (I.B.); (M.Y.); Tel.: +34-972-419514 (I.B. & M.Y.)
| |
Collapse
|
13
|
Parrilla I, Martinez EA, Gil MA, Cuello C, Roca J, Rodriguez-Martinez H, Martinez CA. Boar seminal plasma: current insights on its potential role for assisted reproductive technologies in swine. Anim Reprod 2020; 17:e20200022. [PMID: 33029213 PMCID: PMC7534575 DOI: 10.1590/1984-3143-ar2020-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Seminal plasma (SP) supports not only sperm function but also the ability of spermatozoa to withstand biotechnological procedures as artificial insemination, freezing or sex sorting. Moreover, evidence has been provided that SP contains identifiable molecules which can act as fertility biomarkers, and even improve the output of assisted reproductive technologies by acting as modulators of endometrial and embryonic changes of gene expression, thus affecting embryo development and fertility beyond the sperm horizon. In this overview, we discuss current knowledge of the composition of SP, mainly proteins and cytokines, and their influence on semen basic procedures, such as liquid storage or cryopreservation. The role of SP as modulator of endometrial and embryonic molecular changes that lead to successful pregnancy will also be discussed.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Emilio Arsenio Martinez
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Maria Antonia Gil
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Cristina Cuello
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Jordi Roca
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences, BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cristina Alicia Martinez
- Department of Biomedical & Clinical Sciences, BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Seminal Plasma Anti-Müllerian Hormone: A Potential AI-Boar Fertility Biomarker? BIOLOGY 2020; 9:biology9040078. [PMID: 32290279 PMCID: PMC7236007 DOI: 10.3390/biology9040078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022]
Abstract
The anti-Müllerian hormone (AMH), a Sertoli cell-secreted glycoprotein that is present in seminal plasma (SP), is considered as a marker of spermatogenesis in humans. This study aimed to evaluate the presence of this hormone in boar SP, together with its putative relationship with sperm quality, function, and in vivo fertility parameters in liquid-stored semen samples. The concentration of SP-AMH was assessed in 126 ejaculates from artificial insemination (AI)-boars (n = 92) while using a commercial Enzyme-Linked ImmunoSorbent Assay (ELISA) kit with monoclonal antibodies specific for Sus scrofa AMH (CEA228Po, Cloud-clone). Sperm quality (concentration, motility, viability, and acrosome damage) and functionality (membrane lipid disorder and intracellular H2O2 generation) were assessed in semen samples at 0 and 72 h of liquid-storage. In addition, fertility parameters from 3113 sows inseminated with the AI-boars were recorded in terms of farrowing rate, litter size, number of stillbirths per litter, and the duration of pregnancy over a 12-month period. The results revealed that the SP-AMH concentration varied widely among boar ejaculates, with no differences among breeds. Moreover, the SP-AMH concentration proved to be a good predictive biomarker for sperm concentration (p ˂ 0.05), but poor for other sperm quality, functionality, and in vivo fertility parameters of liquid-stored semen samples from AI-boars.
Collapse
|
15
|
Peña FJ, O’Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips GL, Gil MC, Ortega Ferrusola C. Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants (Basel) 2019; 8:antiox8110567. [PMID: 31752408 PMCID: PMC6912273 DOI: 10.3390/antiox8110567] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.
Collapse
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
- Correspondence: ; Tel.: +34-927-257-167
| | - Cristian O’Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada;
| | - José M. Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Francisco E. Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Gemma L. Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - María C. Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| |
Collapse
|
16
|
Shaoyong W, Li Q, Ren Z, Xiao J, Diao Z, Yang G, Pang W. Effects of kojic acid on boar sperm quality and anti-bacterial activity during liquid preservation at 17 C. Theriogenology 2019; 140:124-135. [PMID: 31473495 DOI: 10.1016/j.theriogenology.2019.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Bacteriospermia is a documented risk to sperm quality when boar semen is stored at 17 °C. The objective of this study was to evaluate the effects of kojic acid (KA) on sperm quality and anti-bacterial effect during liquid storage boar semen at 17 °C, as well as to explore sperm-oocyte binding and embryonic development in vitro. Boar semen was diluted with Beltsville thawing solution (BTS), and it contained KA at different concentrations (0, 0.02, 0.04, 0.06, 0.08, and 0.10 g/L). Bacterial concentrations and sperm quality parameters (motility, mitochondrial membrane potential, acrosome integrity, and plasma membrane integrity) were evaluated on each experimental day. Differences in microbial compositions were compared using 16S rDNA sequencing among the control group, 0.04 g/L KA, and 0.25 g/L gentamycin groups on experimental day 5, and the effects of KA on sperm capacitation, Western blot, total anti-oxidant capacity (T-AOC), reactive oxygen species (ROS) content, malondialdehyde (MDA) content, in vitro fertilization (IVF) parameters, sperm-oocyte binding, cleavage rates, and blastocyst rates were evaluated. The results showed that KA at the optimum concentration of 0.04 g/L significantly improved sperm quality parameters and sperm capacitation, increased T-AOC ability, enhanced IVF parameters and sperm-oocyte binding, increased cleavage and blastocyst rates, inhibited bacterial concentrations, reduced ROS and MDA content, and altered bacterial compositions (P < 0.05). Moreover, KA also increased the expression of anti-oxidant-related proteins, SOD1, SOD2 and CAT, and anti-apoptosis-related protein, Bcl 2, and decreased the expression of apoptosis-related proteins, caspase 3 and Bax in sperm (P < 0.05). These findings demonstrated that supplementation of antibiotic-free extenders for boar semen with 0.04 g/L KA has beneficial effects on liquid boar sperm preservation.
Collapse
Affiliation(s)
- Weike Shaoyong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiqiang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoxi Diao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Alvarez-Rodriguez M, Ljunggren SA, Karlsson H, Rodriguez-Martinez H. Exosomes in specific fractions of the boar ejaculate contain CD44: A marker for epididymosomes? Theriogenology 2019; 140:143-152. [PMID: 31473497 DOI: 10.1016/j.theriogenology.2019.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/10/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Seminal plasma (SP) is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles (EVs). The SP interacts with spermatozoa and the inner cell lining of the female genital tract, adsorbing proteins and exosomes that modulate sperm functions and female immune responsiveness. In the present study, boar sperm-free SP was studied using flow cytometry (FC) after membrane tetraspanins (CD9, CD63 and CD81) and membrane receptor CD44 marking of non-enriched (whole SP) or gradient fractions enriched through two-step discontinuous KBr-density-gradient ultracentrifugation, in whole ejaculate or in selected ejaculate fractions. The results, evaluated by transmission electron microscopy, confirmed the presence of exosomes in all fractions of the pig SP. Noteworthy, these pig SP-exosomes were CD44-bearing when analysed by FC, with bands detected by western blotting (WB) at the expected 85 kD size. The two-step discontinuous KBr-density-gradient ultracentrifugation enriched the population of exosomes in two specific gradient fractions, indicating exosomes (either prostasomes or epididymosomes) could be separated from low-density lipoprotein (LDL) but they co-sediment with the high-density lipoprotein (HDL)-bearing fraction. The findings pave for the selective isolation of exosomes in functional studies of their function when interacting with spermatozoa, the oocyte and/or the female genitalia, including hyaluronan-CD44 interplay.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Clinical & Experimental Medicine (IKE), BHK/O&G Linköping University, SE-58185, Linköping, Sweden.
| | - Stefan A Ljunggren
- Occupational & Environmental Medicine Centre, Linköping University, SE-58185, Linköping, Sweden
| | - Helen Karlsson
- Occupational & Environmental Medicine Centre, Linköping University, SE-58185, Linköping, Sweden
| | | |
Collapse
|
18
|
Barranco I, Padilla L, Tvarijonaviciute A, Parrilla I, Martínez EA, Rodriguez-Martinez H, Yeste M, Roca J. Levels of activity of superoxide dismutase in seminal plasma do not predict fertility of pig AI-semen doses. Theriogenology 2019; 140:18-24. [PMID: 31421531 DOI: 10.1016/j.theriogenology.2019.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Superoxide dismutase (SOD) is a major antioxidant enzyme in boar seminal plasma (SP). This study evaluated how SP-SOD affected sperm attributes when semen of boars of various breeds, included in commercial artificial insemination (AI)-programs, was extended and liquid-stored at 17 °C for AI; as well as their in vivo fertility (farrowing rate and litter size of 10,952 AI-sows). SP-SOD-activity was assessed in 311 ejaculates (100 boars) while sperm motility (by CASA), viability and intracellular H2O2 generation in viable spermatozoa (by flow cytometry) were measured at 0 and 72 h of liquid storage. SP-SOD activity was not affected by breed but differed (P < 0.001) between boars (n = 50), ranging from 1.16 ± 0.11 to 7.02 ± 0.75 IU/mL. Semen AI-doses (n = 44) hierarchically grouped (P < 0.001) with low SP-SOD activity showed lower (P < 0.05) sperm motility and intracellular H2O2 at 72 h of liquid storage. Fertility did not differ between AI-boars (n = 39) hierarchically grouped (P < 0.001) with high or low SP-SOD activity. In conclusion, SP-SOD activity is boar dependent and positively related with sperm functionality of liquid-stored semen AI-doses. However, this positive effect is not reflected on in vivo fertility post-AI.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Asta Tvarijonaviciute
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Emilio A Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | | | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain.
| |
Collapse
|
19
|
Rossi G, Wat P, Lim K, McNaughten J, Sitters S, Barnes A. Analytical Validation of Paraoxonase-1 (PON-1) Activity in Seminal Plasma of Horses. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Li J, Roca J, Pérez-Patiño C, Barranco I, Martinez EA, Rodriguez-Martinez H, Parrilla I. Is boar sperm freezability more intrinsically linked to spermatozoa than to the surrounding seminal plasma? Anim Reprod Sci 2018; 195:30-37. [PMID: 29773470 DOI: 10.1016/j.anireprosci.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
Abstract
This study aimed to elucidate the effect of seminal plasma (SP) from post-SRF on boar sperm freezability and, in addition, to determine the relevance of sperm itself to sustain cryopreservation, regardless of the SP surrounding them. Twelve ejaculates from three boars were manually collected in fractions/portions, P1: the first 10 mL of the SRF, P2: the rest of the SRF and the post-SRF. Immediately, samples were centrifuged to separate spermatozoa from the surrounding SP. Spermatozoa from P1 and P2 were then incubated with its own SP or that from post-SRF, diluted in BTS (1:1, v/v) at 17 °C overnight before being frozen in 0.5 mL straws using a standard protocol. Sperm motility (total and progressive) deteriorated (P < 0.05) when P1- or P2-sperm when incubated overnight in SP from post-SRF, while sperm viability differed between P1 and P2 (P < 0.05) regardless of the SP they were incubated in. Post-thaw sperm quality and functionality differed between P1 and P2, regardless of the SP used for overnight pre-freezing incubation. Post-thaw motility (P < 0.05) and viability (P < 0.01), as well as plasma membrane fluidity (P < 0.05) or lipid peroxidation values (P < 0.01) were best in P1 sperm compared to those of P2. The protein profile of sperm from P1 and P2, analyzed by 2D-PAGE, showed qualitative differences, which suggest that sperm rather than SP would explain differences in sperm freezability between ejaculate fractions/portions. Use of P1 fraction spermatozoa seems thus optimal for cryopreservation.
Collapse
Affiliation(s)
- Junwei Li
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Cristina Pérez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain.
| |
Collapse
|
21
|
Pérez-Patiño C, Parrilla I, Barranco I, Vergara-Barberán M, Simó-Alfonso EF, Herrero-Martínez JM, Rodriguez-Martínez H, Martínez EA, Roca J. New In-Depth Analytical Approach of the Porcine Seminal Plasma Proteome Reveals Potential Fertility Biomarkers. J Proteome Res 2018; 17:1065-1076. [DOI: 10.1021/acs.jproteome.7b00728] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cristina Pérez-Patiño
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | - Inmaculada Parrilla
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | - Isabel Barranco
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | | | | | | | | | - Emilio A. Martínez
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | - Jordi Roca
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
22
|
Ferreira CER, Haas CS, Goularte KL, Rovani MT, Cardoso FF, Schneider A, Gasperin BG, Lucia T. Expression of paraoxonase types 1, 2 and 3 in reproductive tissues and activity of paraoxonase type 1 in the serum and seminal plasma of bulls. Andrologia 2017; 50. [PMID: 29143963 DOI: 10.1111/and.12923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/28/2022] Open
Abstract
The paraoxonases types 1, 2 and 3 (PON1, PON2 and PON3, respectively) are enzymes that degrade lipid peroxides, preventing oxidative damages relevant for male reproductive function. This study determined the expression of those three paraoxonases in reproductive tissues of bulls and evaluated correlations among the activity of PON1 in the serum and seminal plasma with breeding soundness parameters in bulls. The expression of PON1, PON2 and PON3 was characterised by RT-PCR in samples of testicular parenchyma, vesicular glands and epididymis collected from three slaughtered bulls. All three paraoxonases were expressed in the testicular parenchyma, PON2 and PON3 were both expressed in the epididymis head and PON3 was also expressed in the epididymis tail. The PON1 activity was determined in samples of serum and seminal plasma from 110 bulls submitted to breeding soundness evaluation. There was a strong correlation (r = .90) between the activity of the PON1 in both serum and seminal plasma (p < .0001). The PON1 activity in the seminal plasma was positively correlated with ejaculate's colour, sperm mass activity (p = .04), motility, vigour and viability (all p < .01). Thus, PON1 may be a potential marker for sperm motility and viability in bulls.
Collapse
Affiliation(s)
- C E R Ferreira
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - C S Haas
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - K L Goularte
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - M T Rovani
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | | | - A Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - B G Gasperin
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - T Lucia
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| |
Collapse
|
23
|
Li J, Barranco I, Tvarijonaviciute A, Molina MF, Martinez EA, Rodriguez-Martinez H, Parrilla I, Roca J. Seminal plasma antioxidants are directly involved in boar sperm cryotolerance. Theriogenology 2017; 107:27-35. [PMID: 29128698 DOI: 10.1016/j.theriogenology.2017.10.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022]
Abstract
Boar ejaculates are ejected in fractions with a specific composition in terms of sperm numbers and seminal plasma (SP), which is reflected in the varying sperm cryotolerance observed among different fractions. As boar sperm are particularly sensitive to oxidative stress, this study evaluated the role of SP antioxidants in the observed differences in sperm cryotolerance among ejaculate fractions. Ten ejaculates from five boars were manually collected in fractions: the first 10 mL of the sperm-rich fraction (SRF), the rest of the SRF and the post-SRF. Semen samples comprising the entire ejaculate (EE) were created by proportionally mixing the three fractions described above. Each of the 40 resulting semen samples was split into two aliquots: one was used for sperm cryopreservation following a standard protocol utilizing 0.5-mL straws, and the other was used to collect SP for antioxidant assessment. Frozen-thawed (FT) sperm from the SRF (the first 10 mL of the SRF and the rest of the SRF) and those from post-SRF were of the highest and worst quality, respectively, which was measured in terms of total and objective progressive motility and viability (P < 0.01). Viable FT sperm from the post-SRF generated more reactive oxygen species and experienced more lipid peroxidation than those from the SRF (both the first 10 mL and the rest of the SRF) (P < 0.01). The percentage of FT sperm exhibiting fragmented nuclear DNA did not differ among ejaculate fractions and the EE. Catalase, glutathione peroxidase and glutathione peroxidase 5 (GPx-5) were lowest in SP from the first 10 mL of the SRF (P < 0.001), whereas superoxide dismutase (SOD) and paraoxonase 1 (PON-1) were highest in SP of the SRF (both the first 10 mL and the rest of the SRF) (P < 0.01). Trolox-equivalent antioxidant capacity (TEAC) and the ferric-reducing ability of plasma (FRAP) were highest in SP from the first 10 mL of the SRF and lowest in the post-SRF (P < 0.001), whereas cupric-reducing antioxidant capacity was lowest (P < 0.05) in SP from the first 10 mL of the SRF. Regression analyses indicated that certain SP antioxidants had good predictive value for post-thaw recovery rates of total motility (R2 = 54.8%, P < 0.001; including SOD, TEAC and FRAP) and viability (R2 = 56.1%, P < 0.001; including SOD, PON-1, GPx-5 and TEAC). These results demonstrated that certain SP antioxidants are positively involved in boar sperm cryotolerance, minimizing the oxidative stress imposed by cryogenic handling.
Collapse
Affiliation(s)
- Junwei Li
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Asta Tvarijonaviciute
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Manuel F Molina
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain.
| |
Collapse
|
24
|
Barranco I, Casao A, Perez-Patiño C, Parrilla I, Muiño-Blanco T, Martinez EA, Cebrian-Perez JA, Roca J. Profile and reproductive roles of seminal plasma melatonin of boar ejaculates used in artificial insemination programs. J Anim Sci 2017; 95:1660-1668. [PMID: 28464088 DOI: 10.2527/jas.2016.1286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melatonin (MLT) is present in seminal plasma (SP) of mammalian species, including pigs, and it is credited with antioxidant properties. This study aims to identify the sources of variation and the role of boar SP MLT on sperm quality and functionality and in vivo fertilizing ability of liquid-stored semen doses used in AI programs. The SP MLT was measured using an ELISA kit in a total of 219 ejaculates collected from 76 boars, and reproductive records of 5,318 AI sows were recorded. Sperm quality was assessed according to motility (computer-aided sperm analysis) and viability (cytometry evaluation). Sperm functionality was assessed according to the cytometric determination of intracellular HO generation, total and mitochondrial O production, and lipid peroxidation in liquid AI semen samples stored at 17°C over 144 h. The concentration of SP MLT differed among seasons ( < 0.01) and day length periods ( < 0.001) of the year, demonstrating that the ejaculates collected during the increasing day length period (9.80 ± 1.38 pg/mL, range: 2.75-21.94) had lower SP MLT concentrations than those collected during the decreasing day length period (16.32 ± 1.67 pg/mL, range: 5.02-35.61). The SP MLT also differed ( < 0.001) among boars, among ejaculates within boar, and among portions within the ejaculate, demonstrating that SP from the first 10 mL of sperm-rich ejaculate fraction (SRF) exhibited lower MLT concentrations than post-SRF. The SP MLT was negatively related ( < 0.001) to mitochondrial O production in viable sperm. The SP MLT did not differ among AI boars ( = 14) hierarchically grouped according to high and low fertility outcomes. In conclusion, SP MLT concentration in AI boars varies depending on the season of ejaculate collection and differs among boars, ejaculates within boar, and portions within ejaculate. The SP MLT may act at the mitochondrial level of sperm by reducing the generation of O. However, this antioxidant role of SP MLT was not reflected in sperm quality or in vivo fertility outcomes of AI semen doses.
Collapse
|
25
|
Barranco I, Perez-Patiño C, Tvarijonaviciute A, Parrilla I, Vicente-Carrillo A, Alvarez-Rodriguez M, Ceron JJ, Martinez EA, Rodriguez-Martinez H, Roca J. Active paraoxonase 1 is synthesised throughout the internal boar genital organs. Reproduction 2017; 154:237-243. [PMID: 28611113 DOI: 10.1530/rep-17-0300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/16/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022]
Abstract
The paraoxonase type 1 (PON1) is an enzyme with antioxidant properties recently identified in the seminal plasma (SP) of several species, including the porcine. The aims of the present study were to (1) describe the immunohistochemical localisation of PON1 in the genital organs of fertile boars and (2) evaluate the relationship among PON1 activity and high-density lipoprotein cholesterol (HDL-C) concentration in fluids of the boar genital organs. Immunohistochemical analysis demonstrated that PON1 was present in testis (specifically in Leydig cells, blood vessels, spermatogonia and elongated spermatids), epididymis (specifically in the cytoplasm of the principal epithelial cells, luminal secretion and in the surrounding smooth muscle) and the lining epithelia of the accessory sexual glands (cytoplasmic location in the prostate and membranous in the seminal vesicle and bulbourethral glands). The Western blotting analysis confirmed the presence of PON1 in all boar genital organs, showing in all of them a band of 51 kDa and an extra band of 45 kDa only in seminal vesicles. PON1 showed higher activity levels in epididymal fluid than those in SP of the entire ejaculate or of specific ejaculate portions. A highly positive relationship between PON1 activity and HDL-C concentration was found in all genital fluids. In sum, all boar genital organs contributing to sperm-accompanying fluid/s were able to express PON1, whose activity in these genital fluids is highly dependent on the variable HDL-C concentration present.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and AnimalSurgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Cristina Perez-Patiño
- Department of Medicine and AnimalSurgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Asta Tvarijonaviciute
- Department of Medicine and AnimalSurgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and AnimalSurgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | | | - Manuel Alvarez-Rodriguez
- Department of Clinical and Experimental Medicine (IKE), University of Linköping, Linköping, Sweden
| | - Jose J Ceron
- Department of Medicine and AnimalSurgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and AnimalSurgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | | | - Jordi Roca
- Department of Medicine and AnimalSurgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| |
Collapse
|
26
|
Silva DM, Holden SA, Lyons A, Souza JC, Fair S. In vitro addition of docosahexaenoic acid improves the quality of cooled but not frozen-thawed stallion semen. Reprod Fertil Dev 2017; 29:2021-2027. [PMID: 28171739 DOI: 10.1071/rd16473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to assess the effect of the addition of docosahexaenoic acid (DHA) on the in vitro quality of cooled and frozen-thawed stallion semen. In Experiment 1, semen from 10 stallions was collected (three ejaculates per stallion). Semen was diluted to 100×106 spermatozoa mL-1 with 0.02mM vitamin E (VE) and 0, 1, 10 or 20ng mL-1 DHA and frozen. Semen was thawed and total motility (TM), rapid progressive motility (PM), acrosome integrity, membrane fluidity and morphology were assessed. In Experiment 2, semen from three stallions was collected (three ejaculates per stallion) and frozen as in Experiment 1, but VE and DHA were added after thawing. TM and PM were assessed at 30, 60 and 120min and viability, acrosome integrity and membrane fluidity were evaluated at 30min. In Experiment 3, semen from five stallions was collected (one to three ejaculates per stallion), diluted to 20×106 spermatozoa mL-1 and stored at 4°C. After 1, 24, 48 and 72h, TM, PM, viability, membrane fluidity and lipid peroxidation were assessed. The addition of DHA had no effect on frozen semen (Experiments 1 and 2) but improved TM, PM and membrane fluidity in cooled stallion semen.
Collapse
Affiliation(s)
- D M Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais - Campus Machado, Machado, Minas Gerais, Brazil
| | - S A Holden
- Laboratory of Animal Reproduction, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Castletroy, Co Limerick, Ireland
| | - A Lyons
- Laboratory of Animal Reproduction, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Castletroy, Co Limerick, Ireland
| | - J C Souza
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - S Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Castletroy, Co Limerick, Ireland
| |
Collapse
|
27
|
Glutathione Peroxidase 5 Is Expressed by the Entire Pig Male Genital Tract and Once in the Seminal Plasma Contributes to Sperm Survival and In Vivo Fertility. PLoS One 2016; 11:e0162958. [PMID: 27627110 PMCID: PMC5023184 DOI: 10.1371/journal.pone.0162958] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022] Open
Abstract
Glutathione peroxidase-5 (GPX5) is an H2O2-scavenging enzyme identified in boar seminal plasma (SP). This study attempted to clarify its origin and role on sperm survival and fertility after artificial insemination (AI). GPX5 was expressed (Western blot and immunocytochemistry using a rabbit primary polyclonal antibody) in testes, epididymis and accessory sex glands (6 boars). SP-GPX5 concentration differed among boars (11 boars, P < 0.001), among ejaculates within boar (44 ejaculates, P < 0.001) and among portions within ejaculate (15 ejaculates). The first 10 mL of the sperm rich fraction (SRF, sperm-peak portion) had a significantly lower concentration (8.87 ± 0.78 ng/mL) than the rest of the SRF and the post-SRF (11.66 ± 0.79 and 12.37 ± 0.79 ng/mL, respectively, P < 0.005). Sperm motility of liquid-stored semen AI-doses (n = 44, at 15–17°C during 72h) declined faster in AI-doses with low concentrations of SP-GPX5 compared to those with high-levels. Boars (n = 11) with high SP-GPX5 showed higher farrowing rates and litter sizes than those with low SP-GPX5 (a total of 5,275 inseminated sows). In sum, GPX5 is widely expressed in the boar genital tract and its variable presence in SP shows a positive relationship with sperm quality and fertility outcomes of liquid-stored semen AI-doses.
Collapse
|
28
|
Roca J, Broekhuijse MLWJ, Parrilla I, Rodriguez-Martinez H, Martinez EA, Bolarin A. Boar Differences In Artificial Insemination Outcomes: Can They Be Minimized? Reprod Domest Anim 2016; 50 Suppl 2:48-55. [PMID: 26174919 DOI: 10.1111/rda.12530] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
Abstract
In Western countries, where pig breeding and production are intensive, there is a documented variability in fertility between farms with boar-related parameters only accounting to 6% of this total variation of in vivo fertility. Such low boar effect could be a result of the rigorous control of sires and ejaculates yielding AI-doses exerted by the highly specialized AI-centres that monopolize the market. However, some subfertile boars pass through these rigorous controls and consequently reach the AI-programmes. Here, we discuss why testing young boars for chromosomal defects, sperm nuclear chromatin integrity and in vitro fertilizing ability can be discriminative and economically sound for removing these less fertile boars. Alongside, we discuss why boars differ in the ability of their sperm to tolerate cryopreservation or sex sorting.
Collapse
Affiliation(s)
- J Roca
- Veterinary Medicine, University of Murcia, Murcia, Spain
| | | | - I Parrilla
- Veterinary Medicine, University of Murcia, Murcia, Spain
| | - H Rodriguez-Martinez
- Department of Clinical & Experimental Medicine (IKE), University of Linköping, Linköping, Sweden
| | - E A Martinez
- Veterinary Medicine, University of Murcia, Murcia, Spain
| | - A Bolarin
- AIM iberica, Topigs Norsvin, Las Rozas, Spain
| |
Collapse
|
29
|
Barranco I, Tvarijonaviciute A, Perez-Patiño C, Parrilla I, Ceron JJ, Martinez EA, Rodriguez-Martinez H, Roca J. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci Rep 2015; 5:18538. [PMID: 26688188 PMCID: PMC4685244 DOI: 10.1038/srep18538] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/20/2015] [Indexed: 02/05/2023] Open
Abstract
The study attempted to clarify the role of total antioxidant capacity of seminal plasma (SP-TAC) on boar sperm survival and fertility after artificial insemination (AI). SP-TAC differed (P < 0.001) among boars (n° = 15) and, to a lesser degree, among ejaculates within male (4 ejaculates/boar). SP-TAC also differed (P < 0.001) among ejaculate fractions (43 ejaculates and 3 fractions per ejaculate), of which the sperm-peak portion of the sperm rich ejaculate fraction (SRF) had the highest SP-TAC. SP-TAC was not correlated with sperm quality (motility and viability) or functionality (intracellular ROS generation and lipid peroxidation) of liquid AI-semen samples stored at 17 °C for 72 h (90 AI-samples), but the decline in sperm quality was larger (P < 0.05) in ejaculates with low, compared with high SP-TAC (hierarchically grouped). The SP-TAC differences among ejaculate portions agree with sperm cryosurvival rates (14 ejaculates from 7 boars), showing sperm from sperm-peak portion better (P < 0.01) post-thaw quality and functionality than those from the entire ejaculate (mainly post-SRF). Boars (n° = 18) with high SP-TAC (hierarchically grouped) had higher (P < 0.05) fertility outcomes (5,546 AI-sows) than those with low SP-TAC. Measurement of SP-TAC ought to be a discriminative tool to prognosis fertility in breeding boars.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Asta Tvarijonaviciute
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Jose J Ceron
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| |
Collapse
|
30
|
Roca J, Parrilla I, Bolarin A, Martinez EA, Rodriguez-Martinez H. Will AI in pigs become more efficient? Theriogenology 2015; 86:187-93. [PMID: 26723133 DOI: 10.1016/j.theriogenology.2015.11.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/19/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
AI is commercially applied worldwide to breed pigs, yielding fertility outcomes similar to those of natural mating. However, it is not fully efficient, as only liquid-stored semen is used, with a single boar inseminating about 2000 sows yearly. The use of liquid semen, moreover, constrains international trade and slows genetic improvement. Research efforts, reviewed hereby, are underway to reverse this inefficient scenario. Special attention is paid to studies intended to decrease the number of sperm used per pregnant sow, facilitating the practical use of sexed frozen-thawed semen in swine commercial insemination programs.
Collapse
Affiliation(s)
- J Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain.
| | - I Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - A Bolarin
- R&D Department of AIM iberica, Topigs Norsvin, Madrid, Spain
| | - E A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - H Rodriguez-Martinez
- Department of Clinical and Experimental Medicine (IKE), Linköping University (LiU), Linköping, Sweden
| |
Collapse
|