1
|
Prapiadou S, Mayerhofer E, Georgakis MK, Kals M, Radmanesh F, Izzy S, Richardson S, Okonkwo D, Puccio A, Temkin N, Palotie A, Ripatti S, Diaz-Arrastia R, Stein MB, Manley G, Menon DK, Rosand J, Parodi L, Anderson CD, on behalf of The Genetic Associations In Neurotrauma (GAIN) Consortium (with contribution from the CENTER-TBI, TRACK-TBI, CABI, MGB, and TBIcare studies). Exploring Synaptic Pathways in Traumatic Brain Injury: A Cross-Phenotype Genomics Approach. J Neurotrauma 2025; 42:131-142. [PMID: 39264867 PMCID: PMC12056582 DOI: 10.1089/neu.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Traumatic brain injury (TBI), a global leading cause of mortality and disability, lacks effective treatments to enhance recovery. Synaptic remodeling has been postulated as one mechanism that influences outcomes after TBI. We sought to investigate whether common mechanisms affecting synapse maintenance are shared between TBI and other neuropsychiatric conditions using pathway enrichment tools and genome-wide genotype data, with the goal of highlighting novel treatment targets. We leveraged an integrative approach, combining data from genome-wide association studies with pathway and gene-set enrichment analyses. Literature review-based and Reactome database-driven approaches were combined to identify synapse-related pathways of interest in TBI outcome and to assess for shared associations with conditions in which synapse-related pathobiological mechanisms have been implicated, including Alzheimer's disease, schizophrenia (SCZ), major depressive disorder, post-traumatic stress disorder, attention-deficit hyperactivity disorder, and autism spectrum disorder. Gene and pathway-level enrichment analyses were conducted using MAGMA and its extensions, e- and H-MAGMA, followed by Mendelian randomization to investigate potential causal associations. Of the 98 pathways tested, 32 were significantly enriched in the included conditions. In TBI outcome, we identified significant enrichment in five pathways: "Serotonin clearance from the synaptic cleft" (p = 0.0001), "Presynaptic nicotinic acetylcholine receptors" (p = 0.0003), "Postsynaptic nicotinic acetylcholine receptors" (p = 0.0003), "Highly sodium permeable postsynaptic acetylcholine nicotinic receptors" (p = 0.0001), and "Acetylcholine binding and downstream events" pathways (p = 0.0003). These associations highlight potential involvement of the cholinergic and serotonergic systems in post-TBI recovery. Three of those pathways were shared between TBI and SCZ, suggesting possible pathophysiologic commonalities. In this study, we utilize comparative and integrative genomic approaches across brain conditions that share synaptic mechanisms to explore the pathophysiology of TBI outcomes. Our results implicate associations between TBI outcome and synaptic pathways as well as pathobiological overlap with other neuropsychiatric diseases.
Collapse
Affiliation(s)
| | | | - Marios K. Georgakis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Farid Radmanesh
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Neurocritical Care, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Saef Izzy
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ava Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nancy Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, Washington, USA
| | - Aarno Palotie
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Murray B. Stein
- Department of Psychiatry, School of Medicine, and School of Public Health, University of California, La Jolla, California, USA
| | - Geoff Manley
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | | | - Livia Parodi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - on behalf of The Genetic Associations In Neurotrauma (GAIN) Consortium (with contribution from the CENTER-TBI, TRACK-TBI, CABI, MGB, and TBIcare studies)
- University of Patras Medical School, Patras, Greece
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Neurocritical Care, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, Washington, USA
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, School of Medicine, and School of Public Health, University of California, La Jolla, California, USA
- Department of Neurosurgery, University of California, San Francisco, California, USA
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Jamjoom AAB, Rhodes J, Andrews PJD, Grant SGN. The synapse in traumatic brain injury. Brain 2021; 144:18-31. [PMID: 33186462 PMCID: PMC7880663 DOI: 10.1093/brain/awaa321] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide and is a risk factor for dementia later in life. Research into the pathophysiology of TBI has focused on the impact of injury on the neuron. However, recent advances have shown that TBI has a major impact on synapse structure and function through a combination of the immediate mechanical insult and the ensuing secondary injury processes, leading to synapse loss. In this review, we highlight the role of the synapse in TBI pathophysiology with a focus on the confluence of multiple secondary injury processes including excitotoxicity, inflammation and oxidative stress. The primary insult triggers a cascade of events in each of these secondary processes and we discuss the complex interplay that occurs at the synapse. We also examine how the synapse is impacted by traumatic axonal injury and the role it may play in the spread of tau after TBI. We propose that astrocytes play a crucial role by mediating both synapse loss and recovery. Finally, we highlight recent developments in the field including synapse molecular imaging, fluid biomarkers and therapeutics. In particular, we discuss advances in our understanding of synapse diversity and suggest that the new technology of synaptome mapping may prove useful in identifying synapses that are vulnerable or resistant to TBI.
Collapse
Affiliation(s)
- Aimun A B Jamjoom
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Jonathan Rhodes
- Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Peter J D Andrews
- Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
3
|
Lau LA, Noubary F, Wang D, Dulla CG. α2δ-1 Signaling Drives Cell Death, Synaptogenesis, Circuit Reorganization, and Gabapentin-Mediated Neuroprotection in a Model of Insult-Induced Cortical Malformation. eNeuro 2017; 4:ENEURO.0316-17.2017. [PMID: 29109971 PMCID: PMC5672548 DOI: 10.1523/eneuro.0316-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
Developmental cortical malformations (DCMs) result from pre- and perinatal insults, as well as genetic mutations. Hypoxia, viral infection, and traumatic injury are the most common environmental causes of DCMs, and are associated with the subsyndromes focal polymicrogyria and focal cortical dysplasia (FCD) Type IIId, both of which have a high incidence of epilepsy. Understanding the molecular signals that lead to the formation of a hyperexcitable network in DCMs is critical to devising novel treatment strategies. In a previous study using the freeze-lesion (FL) murine model of DCM, we found that levels of thrombospondin (TSP) and the calcium channel auxiliary subunit α2δ-1 were elevated. TSP binds to α2δ-1 to drive the formation of excitatory synapses during development, suggesting that overactivation of this pathway may lead to exuberant excitatory synaptogenesis and network hyperexcitability seen in DCMs. In that study, antagonizing TSP/α2δ-1 signaling using the drug gabapentin (GBP) reduced many FL-induced pathologies. Here, we used mice with a genetic deletion of α2δ-1 to determine how α2δ-1 contributes to cell death, elevated excitatory synapse number, and in vitro network function after FL and to examine the molecular specificity of GBP's effects. We identified a critical role for α2δ-1 in FL-induced pathologies and in mediating the neuroprotective effects of GBP. Interestingly, genetic deletion of α2δ-1 did not eliminate GBP's effects on synaptogenesis, suggesting that GBP can have α2δ-1-independent effects. Taken together these studies suggests that inhibiting α2δ-1 signaling may have therapeutic promise to reduce cell death and network reorganization associated with insult-induced DCMs.
Collapse
Affiliation(s)
- Lauren A. Lau
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
- Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, MA 02111
| | - Farzad Noubary
- The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA 02111
| | - Dongqing Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Chris G. Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
4
|
Cheng C, Yu Z, Zhao S, Liao Z, Xing C, Jiang Y, Yang YG, Whalen MJ, Lo EH, Sun X, Wang X. Thrombospondin-1 Gene Deficiency Worsens the Neurological Outcomes of Traumatic Brain Injury in Mice. Int J Med Sci 2017; 14:927-936. [PMID: 28924363 PMCID: PMC5599915 DOI: 10.7150/ijms.18812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Thrombospondin-1 (TSP-1) is an extracellular matrix protein that plays multiple physiological and pathophysiological roles in the brain. Experimental reports suggest that TSP-1 may have an adverse role in neuronal function recovery under certain injury conditions. However, the roles of TSP-1 in traumatic brain injury (TBI) have not been elucidated. In this study we for the first time investigated the roles of TSP-1 in a controlled cortical impact (CCI) model of TBI in TSP-1 knockout (TSP-1 KO) and wild type (WT) mice. Methods: We examined blood brain-barrier (BBB) damage using at 1 day post-TBI by measuring Evans Blue leakage, and neurological functional recovery at 3 weeks post-TBI by measuring neurological severity score (NSS), wire gripping, corner test and Morris Water Maze (MWM). Mechanistically, we quantified pro-angiogenic biomarkers including cerebral vessel density, vascular endothelial growth factors (VEGF) and angiopoietin-1 (Ang-1) protein expression, synaptic biomarker synaptophysin, and synaptogenesis marker brain-derived neurotrophic factor (BDNF) protein expression in contralateral and ipsilateral (peri-lesion) cortex at 21 days after TBI using immunohistochemistry and Western Blot. Results: TSP-1 is upregulated at early phase of TBI in WT mice. Compared to WT mice, TSP-1 KO (1) significantly worsened TBI-induced BBB leakage at 1 day after TBI; (2) had similar lesion size as WT mice at 3 weeks after TBI; (3) exhibited a significantly worse neurological deficits in motor and cognitive functions; (4) had no significant difference in cerebral vessel density, but significant increase of VEGF and Ang-1 protein expressions in peri-lesion cortex; (5) significantly increased BDNF but not synaptophysin protein level in peri-lesion cortex compared to sham, but both synaptophysin and BDNF expressions were significantly decreased in contralateral cortex compared to WT. Conclusion: Our results suggest that TSP-1 may be beneficial for maintaining BBB integrity in the early phase and functional recovery in late phase after TBI. The molecular mechanisms of TSP-1 in early BBB pathophysiology, and long-term neurological function recovery after TBI need to be further investigated.
Collapse
Affiliation(s)
- Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Song Zhao
- Departments of Orthopedic and Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengbu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Changhong Xing
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yinghua Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yong-Guang Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael J. Whalen
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|