1
|
Zhang ZL, Ren ST, Yang WJ, Xu XW, Zhao SM, Fang KF, Lin Y, Yuan YY, Zhang XJ, Chen YQ, Xu W. AARS2-catalyzed lactylation induces follicle development and premature ovarian insufficiency. Cell Death Discov 2025; 11:209. [PMID: 40301335 PMCID: PMC12041370 DOI: 10.1038/s41420-025-02501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Lactate, a metabolite which is elevated in various developmental and pathological processes, exerts its signal through alanyl tRNA synthetases (AARS)-catalyzed protein lactylation. Herein, we report that elevated lactate and gain-of-function mitochondrial AARS (AARS2) mutations-induced hyper-lactylation promotes premature ovarian insufficiency (POI). Serum lactate is elevated in POI patients. POI-driving AARS2 mutations gain lactyltransferase activity. AARS2 lactylates and inactivates carnitine palmitoyl transferase 2 (CPT2), resulting in FFA accumulation that activates peroxisome proliferator-activated receptor γ (PPARγ), and potentiates follicle-stimulating hormone (FSH) to initiate follicle development. These, in synergy with the anabolites accumulation effects of AARS2, promoted lactylation-induced PDHA1 inactivation promote granular cell (GC) proliferation and primordial follicle development. GC-specific AARS2 overexpression does not affect primordial follicle number but speed up follicle depletion. AARS2 ablation or lactylation-inhibiting β-alanine treatments can prevent folliculogenesis and POI traits in mouse. These findings reveal that lactate signal drives follicle development, and inhibiting lactate signal could treat/prevent POI.
Collapse
Affiliation(s)
- Zhi-Ling Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu-Ting Ren
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Wan-Jie Yang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Wen Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ke-Fei Fang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi-Yuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Jin Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun-Qin Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Fifth People's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Mao C, Qiu Y, Wang T, Jiang Y, Chu S, Jin W, Dong L, Gao J. Clinical Diagnosis and Differential Diagnosis Between CSF1R- and AARS2-Related Leukoencephalopathy. J Mol Neurosci 2025; 75:11. [PMID: 39853526 DOI: 10.1007/s12031-024-02281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 01/30/2025]
Abstract
CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult. 23 CSF1R-L and 6 AARS2-L patients were enrolled from the Leukoencephalopathy Clinic, Peking Union Medical College Hospital in China. Detailed clinical information, neuroimaging manifestations, and genetic data were collected and analyzed. Demographically, female patients were more in AARS2-L than CSF1R-L. Clinically, cognitive impairment and emotion/personality change were common in both groups. Bulbar palsy, extrapyramidal symptoms, and hemiplegia/pyramidal impairment were more common in CSF1R-L, while ataxia was significantly more common in AARS2-L. Abnormal menstruation including infertility was significantly more in AARS2-L. Radiologically, similar features were found, including lateral ventricle-centered white matter lesions, involving corpus callosum, avoiding U fibers. The lesions showed persistent hyperintensity on DWI image and were not contrasted after gadolinium enhancement. In CSF1R-L, the lesions could be widespread confluent or patchy and spotted, extending to centrum semiovale and subcortical white matter occasionally, which was significantly different from AARS2-L. Besides, brain stem lesion caused by pyramidal degeneration, spotted or linear calcification and obviously brain atrophy were common in CSF1R-L. In AARS2-L, periventricular white matter rarefaction was significantly common. No genotype and phenotype association was found in these two diseases. Although similar, there were several clinical and radiological features helping differentiating the two distinct diseases.
Collapse
Affiliation(s)
- Chenhui Mao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Yuyue Qiu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Tianyi Wang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Yuhan Jiang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Shanshan Chu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Wei Jin
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Liling Dong
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
4
|
Mao Y, Zhang J, Zhou Q, He X, Zheng Z, Wei Y, Zhou K, Lin Y, Yu H, Zhang H, Zhou Y, Lin P, Wu B, Yuan Y, Zhao J, Xu W, Zhao S. Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res 2024; 34:13-30. [PMID: 38163844 PMCID: PMC10770133 DOI: 10.1038/s41422-023-00864-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/01/2023] [Indexed: 01/03/2024] Open
Abstract
Oxidative phosphorylation (OXPHOS) consumes oxygen to produce ATP. However, the mechanism that balances OXPHOS activity and intracellular oxygen availability remains elusive. Here, we report that mitochondrial protein lactylation is induced by intracellular hypoxia to constrain OXPHOS. We show that mitochondrial alanyl-tRNA synthetase (AARS2) is a protein lysine lactyltransferase, whose proteasomal degradation is enhanced by proline 377 hydroxylation catalyzed by the oxygen-sensing hydroxylase PHD2. Hypoxia induces AARS2 accumulation to lactylate PDHA1 lysine 336 in the pyruvate dehydrogenase complex and carnitine palmitoyltransferase 2 (CPT2) lysine 457/8, inactivating both enzymes and inhibiting OXPHOS by limiting acetyl-CoA influx from pyruvate and fatty acid oxidation, respectively. PDHA1 and CPT2 lactylation can be reversed by SIRT3 to activate OXPHOS. In mouse muscle cells, lactylation is induced by lactate oxidation-induced intracellular hypoxia during exercise to constrain high-intensity endurance running exhaustion time, which can be increased or decreased by decreasing or increasing lactylation levels, respectively. Our results reveal that mitochondrial protein lactylation integrates intracellular hypoxia and lactate signals to regulate OXPHOS.
Collapse
Affiliation(s)
- Yunzi Mao
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiaojiao Zhang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qian Zhou
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiadi He
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhifang Zheng
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun Wei
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kaiqiang Zhou
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Lin
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, China
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Haowen Yu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haihui Zhang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yineng Zhou
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengcheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiyuan Yuan
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, China
| | - Jianyuan Zhao
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, China
| | - Wei Xu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, China.
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, China.
| | - Shimin Zhao
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China.
| |
Collapse
|
5
|
Zhang X, Li J, Zhang Y, Gao M, Peng T, Tian T. AARS2-Related Leukodystrophy: a Case Report and Literature Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:59-69. [PMID: 35084689 DOI: 10.1007/s12311-022-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Mutations in the alanyl-transfer RNA synthase 2 (AARS2) represent a heterogenous group of autosomal recessive leukodystrophy characterized by cognitive decline, ataxia, spasticity, and Parkinsonism. AARS2-related leukodystrophy (AARS2-L) is extremely rare. To date, only 45 genetically confirmed cases, explaining the frequent diagnostic delay. Here, we report a 21-year-old male presented with unsteady gait and weakness in the bilateral lower extremities. Examination revealed dysarthria, cerebellar ataxia, paraparesis, and Parkinsonism with generalized hyperreflexia. MRI findings showed extensive white matter lesions in bilateral frontoparietal lobes, immediate periventricular regions, and corpus callosum. Focused exome sequencing revealed compound heterozygous mutations in the AARS2 gene confirming the diagnosis of AARS2-L; two heterogeneous missense mutations (c.452 T > C, p. M151T; c. 2557C > T, p. R853W) appeared together for the first time. We also reviewed phenotypic spectra of AARS2-related leukodystrophies from a total of 45 reported cases.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Li
- Department of Neurology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Yanyan Zhang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meina Gao
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Peng
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Tian Tian
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Ferrer I. The Primary Microglial Leukodystrophies: A Review. Int J Mol Sci 2022; 23:ijms23116341. [PMID: 35683020 PMCID: PMC9181167 DOI: 10.3390/ijms23116341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Primary microglial leukodystrophy or leukoencephalopathy are disorders in which a genetic defect linked to microglia causes cerebral white matter damage. Pigmented orthochromatic leukodystrophy, adult-onset orthochromatic leukodystrophy associated with pigmented macrophages, hereditary diffuse leukoencephalopathy with (axonal) spheroids, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) are different terms apparently used to designate the same disease. However, ALSP linked to dominantly inherited mutations in CSF1R (colony stimulating factor receptor 1) cause CSF-1R-related leukoencephalopathy (CRP). Yet, recessive ALSP with ovarian failure linked to AARS2 (alanyl-transfer (t)RNA synthase 2) mutations (LKENP) is a mitochondrial disease and not a primary microglial leukoencephalopathy. Polycystic membranous lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL; Nasu–Hakola disease: NHD) is a systemic disease affecting bones, cerebral white matter, selected grey nuclei, and adipose tissue The disease is caused by mutations of one of the two genes TYROBP or TREM2, identified as PLOSL1 and PLOSL2, respectively. TYROBP associates with receptors expressed in NK cells, B and T lymphocytes, dendritic cells, monocytes, macrophages, and microglia. TREM2 encodes the protein TREM2 (triggering receptor expressed on myeloid cells 2), which forms a receptor signalling complex with TYROBP in macrophages and dendritic cells. Rather than pure microglial leukoencephalopathy, NHD can be considered a multisystemic “immunological” disease.
Collapse
Affiliation(s)
- Isidro Ferrer
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Department of Pathology and Experimental Therapeutics, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, 08907 Barcelona, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
7
|
Costei C, Barbarosie M, Bernard G, Brais B, La Piana R. Adult Hereditary White Matter Diseases With Psychiatric Presentation: Clinical Pointers and MRI Algorithm to Guide the Diagnostic Process. J Neuropsychiatry Clin Neurosci 2022; 33:180-193. [PMID: 33951919 DOI: 10.1176/appi.neuropsych.20110294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The investigators aimed to provide clinical and MRI guidelines for determining when genetic workup should be considered in order to exclude hereditary leukoencephalopathies in affected patients with a psychiatric presentation. METHODS A systematic literature review was conducted, and clinical cases are provided. Given the central role of MRI pattern recognition in the diagnosis of white matter disorders, the investigators adapted an MRI algorithm that guides the interpretation of MRI findings and thus directs further investigations, such as genetic testing. RESULTS Twelve genetic leukoencephalopathies that can present with psychiatric symptoms were identified. As examples of presentations that can occur in clinical practice, five clinical vignettes from patients assessed at a referral center for adult genetic leukoencephalopathies are provided. CONCLUSIONS Features such as drug-resistant symptoms, presence of long-standing somatic features, trigger events, consanguinity, and positive family history should orient the clinician toward diagnostic workup to exclude the presence of a genetic white matter disorder. The identification of MRI white matter abnormalities, especially when presenting a specific pattern of involvement, should prompt genetic testing for known forms of genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Catalina Costei
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Michaela Barbarosie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| |
Collapse
|
8
|
Turkyilmaz A, Alavanda C, Ates EA, Geckinli BB, Polat H, Gokcu M, Karakaya T, Cebi AH, Soylemez MA, Guney Aİ, Ata P, Arman A. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet 2022; 39:695-710. [PMID: 35066699 PMCID: PMC8995228 DOI: 10.1007/s10815-022-02408-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Premature ovarian insufficiency (POI) is a heterogeneous disorder characterized by the cessation of menstrual cycles before the age of 40 years due to the depletion or dysfunction of the ovarian follicles. POI is a highly heterogeneous disease in terms of etiology. The aim of this study is to reveal the genetic etiology in POI patients. METHODS A total of 35 patients (mean age: 27.2 years) from 28 different families diagnosed with POI were included in the study. Karyotype, FMR1 premutation analysis, single nucleotide polymorphism (SNP) array, and whole-exome sequencing (WES) were conducted to determine the genetic etiology of patients. RESULTS A total of 35 patients with POI were first evaluated by karyotype analysis, and chromosomal anomaly was detected in three (8.5%) and FMR1 premutation was detected in six patients (17%) from two different families. A total of 29 patients without FMR1 premutation were included in the SNP array analysis, and one patient had a 337-kb deletion in the chromosome 6q26 region including PARK2 gene, which was thought to be associated with POI. Twenty-nine cases included in SNP array analysis were evaluated simultaneously with WES analysis, and genetic variant was detected in 55.1% (16/29). CONCLUSION In the present study, rare novel variants were identified in genes known to be associated with POI, which contribute to the mutation spectrum. The effects of detected novel genes and variations on different pathways such as gonadal development, meiosis and DNA repair, or metabolism need to be investigated by experimental studies. Molecular etiology allows accurate genetic counseling to the patient and family as well as fertility planning.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Ceren Alavanda
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Esra Arslan Ates
- grid.414850.c0000 0004 0642 8921Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Bilgen Bilge Geckinli
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Hamza Polat
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mehmet Gokcu
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Taner Karakaya
- Department of Medical Genetics, Isparta City Hospital, Isparta, Turkey
| | - Alper Han Cebi
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Ali Soylemez
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet İlter Guney
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Pinar Ata
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Arman
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Hu B, Duan S, Wang Z, Li X, Zhou Y, Zhang X, Zhang YW, Xu H, Zheng H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front Aging Neurosci 2021; 13:789834. [PMID: 34867307 PMCID: PMC8634759 DOI: 10.3389/fnagi.2021.789834] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.
Collapse
Affiliation(s)
- Banglian Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Parra SP, Heckers SH, Wilcox WR, Mcknight CD, Jinnah HA. The emerging neurological spectrum of AARS2-associated disorders. Parkinsonism Relat Disord 2021; 93:50-54. [PMID: 34784527 DOI: 10.1016/j.parkreldis.2021.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The AARS2 gene encodes a mitochondrial alanyl-transfer RNA synthetase. Defects in this gene have been linked with autosomal recessive inheritance of a variety of different clinical phenotypes. CASE A 13 year-old boy developed behavioral and psychiatric problems following a mild head injury. At age 21 he developed tremor, parkinsonism, and eye nystagmus. MRI revealed white matter changes consistent with a leukoencephalopathy. Genetic studies revealed two pathogenic mutations in the AARS2 gene (c.647dupG and c.595C > T). LITERATURE REVIEW Only 47 cases of AARS2-associated disorders have been reported, with equal numbers of males and females, and age at onset ranging from infancy to 44 years. The most common clinical problems include movement disorders (71%), cognitive impairment (67%), corticospinal signs (64%), behavioral or psychiatric features (46%), and eye signs (34%). Imaging evidence suggestive of leukoencephalopathy is common, but not invariant. Premature ovarian failure is frequent in females, but not universal. CONCLUSIONS Defects in the AARS2 gene are a rare cause for a variety of movement disorders, often associated with brain imaging evidence suggestive of leukoencephalopathy.
Collapse
Affiliation(s)
- Sahyli Perez Parra
- Jean & Paul Amos PD & Movement Disorders Program Department of Neurology, Emory University, USA
| | - Stephan H Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, USA
| | | | | | - H A Jinnah
- Jean & Paul Amos PD & Movement Disorders Program Department of Neurology, Emory University, USA.
| |
Collapse
|
11
|
Okamoto N, Miya F, Tsunoda T, Kanemura Y, Saitoh S, Kato M, Yanagi K, Kaname T, Kosaki K. Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurol Sci 2021; 43:2765-2774. [PMID: 34585293 DOI: 10.1007/s10072-021-05626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan.
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Tokumaru AM, Saito Y, Murayma S. Diffusion-Weighted Imaging is Key to Diagnosing Specific Diseases. Magn Reson Imaging Clin N Am 2021; 29:163-183. [PMID: 33902901 DOI: 10.1016/j.mric.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article reviews diseases for which persistent signal abnormalities on diffusion-weighted imaging are the key to their diagnosis. Specifically, updated knowledge regarding the neuroimaging patterns of the following diseases is summarized: sporadic Creutzfeldt-Jakob disease, neuronal intranuclear inclusion disease, and hereditary diffuse leukoencephalopathy with axonal spheroids-colony-stimulating factor receptors/adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In addition, their differential diagnoses; clinical manifestations; and pathologic, genetic, and imaging correlates are discussed.
Collapse
Affiliation(s)
- Aya Midori Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Yuko Saito
- Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Shigeo Murayma
- Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka-fu 565-0871, Japan
| |
Collapse
|
13
|
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci 2021; 22:ijms22094524. [PMID: 33926074 PMCID: PMC8123711 DOI: 10.3390/ijms22094524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Dallabona
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| | - Paola Goffrini
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| |
Collapse
|
14
|
Sirkis DW, Bonham LW, Yokoyama JS. The Role of Microglia in Inherited White-Matter Disorders and Connections to Frontotemporal Dementia. Appl Clin Genet 2021; 14:195-207. [PMID: 33833548 PMCID: PMC8020808 DOI: 10.2147/tacg.s245029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia play a critical but poorly understood role in promoting white-matter homeostasis. In this review, we leverage advances in human genetics and mouse models of leukodystrophies to delineate our current knowledge and identify outstanding questions regarding the impact of microglia on central nervous system white matter. We first focus on the role of pathogenic mutations in genes, such as TREM2, TYROBP, and CSF1R, that cause leukodystrophies in which the primary deficit is thought to originate in microglia. We next discuss recent advances in disorders such as adrenoleukodystrophy and Krabbe disease, in which microglia play an increasingly recognized role. We conclude by reviewing the roles of GRN and related genes, such as TMEM106B, PSAP, and SORT1, that affect microglial biology and associate with several types of disease, including multiple leukodystrophies as well as forms of frontotemporal dementia (FTD) presenting with white-matter abnormalities. Taken together, mouse and human data support the notion that loss of microglia-facilitated white-matter homeostasis plays an important role in the development of leukodystrophies and suggest novel mechanisms contributing to FTD.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.,Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.,Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
15
|
Kinoshita M, Oyanagi K, Kondo Y, Ishizawa K, Ishihara K, Yoshida M, Inoue T, Mitsuyama Y, Yoshida K, Yamada M, Sekijima Y, Ikeda SI. Pathologic basis of the preferential thinning of thecorpus callosum in adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). eNeurologicalSci 2021; 22:100310. [PMID: 33553700 PMCID: PMC7844436 DOI: 10.1016/j.ensci.2021.100310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023] Open
Abstract
Background Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is an early onset dementia characterized by axonal loss in the cerebral white matter with swollen axons (spheroids). It had been reported that the preferential thinning and “focal lesions” of the corpus callosum were observed on T2-weighted MRI in ALSP patients. The present study aimed to reveal the pathologic basis of them in relation to brain lesion staging (I ~ IV: Oyanagi et al. 2017). Methods Seven autopsied brains of ALSP and five controls were neuropathologically examined. Results Even at Stage I, corpus callosum body showed evident atrophy, and the atrophy advanced with stage progression. Spheroid size and density were maximal at Stage II in both centrum semiovale and corpus callosum body, but spheroids were larger in corpus callosum body than in centrum semiovale. Microglia in the body at Stage II had a larger cytoplasm than those in centrum semiovale. But spheroids and microglia in the “focal lesions” were identical with those of centrum semiovale. Conclusion Preferential thinning of corpus callosum was considered to be formed in relation to peculiar morphological alteration of microglia there in ALSP. Instead, “focal lesions” were formed in connection with the lesions in centrum semiovale. Preferential thinning and “focal lesions” of corpus callosum in ALSP. Seven autopsied brains of ALSP and five controls were neuropathologically examined. Larger spheroids and more microglial alteration in corpus callosum than centrum semiovale. “Focal lesions” were formed in connection with the lesions in the centrum semiovale. Peculiar morphological change of microglia leads to the preferential thinning of corpus callosum.
Collapse
Affiliation(s)
- Michiaki Kinoshita
- Department of Neurology, Suwa Red Cross Hospital, 5-11-50 Kogandori, Suwa 392-8510, Japan
| | - Kiyomitsu Oyanagi
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yasufumi Kondo
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Keisuke Ishizawa
- Departments of Neurology and Pathology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kenji Ishihara
- Department of Internal Medicine, Ushioda General Hospital, 1-6-20 Yako, Tsurumi-ku, Yokohama 230-0001, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, 480-1195, Japan
| | - Teruhiko Inoue
- Psychogeriatric Center, Daigo Hospital, 1270 Nagata, Mimata-chou, Kitamorokata-gun, Miyazaki 889-1911, Japan
| | - Yoshio Mitsuyama
- Psychogeriatric Center, Daigo Hospital, 1270 Nagata, Mimata-chou, Kitamorokata-gun, Miyazaki 889-1911, Japan
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Mitsunori Yamada
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shu-Ichi Ikeda
- Intractable Disease Care Center, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
16
|
Abstract
The diagnosis of primary ovarian insufficiency (POI) has untold effects on women and a better understanding alongside potential treatments are paramount to improve quality of life of these women. Various causes have been linked to the development of POI with genetics playing a key role. A better understanding of the genetics of POI could lead to earlier diagnosis and broaden fertility options. This chapter discusses previously known and more recently discovered genes that have been implicated in the development of POI. It explores the varying phenotypic expressions of some genes in different populations and areas for further research in the genetics of POI.
Collapse
|
17
|
Felhi R, Charif M, Sfaihi L, Mkaouar-Rebai E, Desquiret-Dumas V, Kallel R, Bris C, Goudenège D, Guichet A, Bonneau D, Procaccio V, Reynier P, Amati-Bonneau P, Hachicha M, Fakhfakh F, Lenaers G. Mutations in aARS genes revealed by targeted next-generation sequencing in patients with mitochondrial diseases. Mol Biol Rep 2020; 47:3779-3787. [PMID: 32319008 DOI: 10.1007/s11033-020-05425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022]
Abstract
Mitochondrial diseases are a clinically heterogeneous group of multisystemic disorders that arise as a result of various mitochondrial dysfunctions. Autosomal recessive aARS deficiencies represent a rapidly growing group of severe rare inherited mitochondrial diseases, involving multiple organs, and currently without curative option. They might be related to defects of mitochondrial aminoacyl t-RNA synthetases (mtARS) that are ubiquitous enzymes involved in mitochondrial aminoacylation and the translation process. Here, using NGS analysis of 281 nuclear genes encoding mitochondrial proteins, we identified 4 variants in different mtARS in three patients from unrelated Tunisian families, with clinical features of mitochondrial disorders. Two homozygous variants were found in KARS (c.683C>T) and AARS2 (c.1150-4C>G), respectively in two patients, while two heterozygous variants in EARS2 (c.486-7C>G) and DARS2 (c.1456C>T) were concomitantly found in the third patient. Bio-informatics investigations predicted their pathogenicity and deleterious effects on pre-mRNA splicing and on protein stability. Thus, our results suggest that mtARS mutations are common in Tunisian patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia.
| | - Majida Charif
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Lamia Sfaihi
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Emna Mkaouar-Rebai
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia
| | - Valerie Desquiret-Dumas
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Rim Kallel
- Departments of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Céline Bris
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Agnès Guichet
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Mongia Hachicha
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia.
| | - Guy Lenaers
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France
| |
Collapse
|
18
|
Altered features of monocytes in adult onset leukoencephalopathy with axonal spheroids and pigmented glia: A clue to the pathomechanism of microglial dyshomeostasis. Neurobiol Dis 2020; 140:104867. [PMID: 32276111 DOI: 10.1016/j.nbd.2020.104867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/21/2020] [Accepted: 04/05/2020] [Indexed: 01/03/2023] Open
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is an autosomal-dominant type of leukoencephalopathy caused by gene mutation of colony stimulating factor 1 receptor, which is expressed mainly on monocyte lineage cells such as monocytes in the peripheral blood and microglia in the brain. Hence, microglial dysfunction is regarded as critical in the pathogenesis of ALSP. However, functional changes in these cells have not been elucidated. In this study, we report the phenotypic and functional alterations of monocytes in four patients with ALSP. Flow cytometric analysis revealed altered expression of antigen presentation- and migration-related molecules, an inflammatory shift in cytokine production and phagocytic impairment in ALSP monocytes. We speculate that the observed altered features of monocytes are mostly shared by microglial cells, leading to the clinical history and pathological characteristics of ALSP. Our analysis of PB monocytes provides novel insights into the pathogenesis of ALSP.
Collapse
|
19
|
Fine AS, Nemeth CL, Kaufman ML, Fatemi A. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination. J Neurodev Disord 2019; 11:29. [PMID: 31839000 PMCID: PMC6913031 DOI: 10.1186/s11689-019-9292-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The mitochondrial aminoacyl-tRNA synthetase proteins (mt-aaRSs) are a group of nuclear-encoded enzymes that facilitate conjugation of each of the 20 amino acids to its cognate tRNA molecule. Mitochondrial diseases are a large, clinically heterogeneous group of disorders with diverse etiologies, ages of onset, and involved organ systems. Diseases related to mt-aaRS mutations are associated with specific syndromes that affect the central nervous system and produce highly characteristic MRI patterns, prototypically the DARS2, EARS, and AARS2 leukodystrophies, which are caused by mutations in mitochondrial aspartyl-tRNA synthetase, mitochondria glutamate tRNA synthetase, and mitochondrial alanyl-tRNA synthetase, respectively. BODY: The disease patterns emerging for these leukodystrophies are distinct in terms of the age of onset, nature of disease progression, and predominance of involved white matter tracts. In DARS2 and EARS2 disorders, earlier disease onset is typically correlated with more significant brain abnormalities, rapid neurological decline, and greater disability. In AARS2 leukodystrophy cases reported thus far, there is nearly invariable progression to severe disability and atrophy of involved brain regions, often within a decade. Although most mutations are compound heterozygous inherited in an autosomal recessive fashion, homozygous variants are found in each disorder and demonstrate high phenotypic variability. Affected siblings manifest disease on a wide spectrum. CONCLUSION The syndromic nature and selective vulnerability of white matter tracts in these disorders suggests there may be a shared mechanism of mitochondrial dysfunction to target for study. There is evidence that the clinical variability and white matter tract specificity of each mt-aaRS leukodystrophy depend on both canonical and non-canonical effects of the mutations on the process of mitochondrial translation. Furthermore, different sensitivities to the mt-aaRS mutations have been observed based on cell type. Most mutations result in at least partial retention of mt-aaRS enzyme function with varied effects on the mitochondrial respiratory chain complexes. In EARS2 and AARS2 cells, this appears to result in cumulative impairment of respiration. Mt-aaRS mutations may also affect alternative biochemical pathways such as the integrated stress response, a homeostatic program in eukaryotic cells that typically confers cytoprotection, but can lead to cell death when abnormally activated in response to pathologic states. Systematic review of this group of disorders and further exploration of disease mechanisms in disease models and neural cells are warranted.
Collapse
Affiliation(s)
- Amena Smith Fine
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205 USA
| | - Christina L. Nemeth
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Miriam L. Kaufman
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
20
|
Tiosano D, Mears JA, Buchner DA. Mitochondrial Dysfunction in Primary Ovarian Insufficiency. Endocrinology 2019; 160:2353-2366. [PMID: 31393557 PMCID: PMC6760336 DOI: 10.1210/en.2019-00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined by the loss or dysfunction of ovarian follicles associated with amenorrhea before the age of 40. Symptoms include hot flashes, sleep disturbances, and depression, as well as reduced fertility and increased long-term risk of cardiovascular disease. POI occurs in ∼1% to 2% of women, although the etiology of most cases remains unexplained. Approximately 10% to 20% of POI cases are due to mutations in a single gene or a chromosomal abnormality, which has provided considerable molecular insight into the biological underpinnings of POI. Many of the genes for which mutations have been associated with POI, either isolated or syndromic cases, function within mitochondria, including MRPS22, POLG, TWNK, LARS2, HARS2, AARS2, CLPP, and LRPPRC. Collectively, these genes play roles in mitochondrial DNA replication, gene expression, and protein synthesis and degradation. Although mutations in these genes clearly implicate mitochondrial dysfunction in rare cases of POI, data are scant as to whether these genes in particular, and mitochondrial dysfunction in general, contribute to most POI cases that lack a known etiology. Further studies are needed to better elucidate the contribution of mitochondria to POI and determine whether there is a common molecular defect in mitochondrial function that distinguishes mitochondria-related genes that when mutated cause POI vs those that do not. Nonetheless, the clear implication of mitochondrial dysfunction in POI suggests that manipulation of mitochondrial function represents an important therapeutic target for the treatment or prevention of POI.
Collapse
Affiliation(s)
- Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa, Israel
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Jason A Mears
- Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
- Research Institute for Children’s Health, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
21
|
Zhou Y, Chen B, Li L, Pan H, Liu B, Li T, Wang R, Ma X, Wang B, Cao Y. Novel alanyl-tRNA synthetase 2 (AARS2) homozygous mutation in a consanguineous Chinese family with premature ovarian insufficiency. Fertil Steril 2019; 112:569-576.e2. [PMID: 31280959 DOI: 10.1016/j.fertnstert.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To explore the candidate pathogenic gene in a premature ovarian insufficiency (POI) proband from a consanguineous marriage and detect the potential effects of mutation on cellular energy metabolism. DESIGN Genetic and functional studies. SETTING Reproductive medicine center. PATIENT(S) A patient with POI, from a consanguineous family, and her family members were recruited from the Reproductive Center of the First Affiliated Hospital of Anhui Medical University. INTERVENTION(S) Whole exome sequencing (WES) was performed for the proband. Variation revealed by WES sequencing was validated by Sanger sequencing in her family. Sequencing data were combined with those of other sporadic cases listed in public databases to identify the causative gene. MAIN OUTCOME MEASURE(S) Rare homozygous nonsynonymous variants were identified and included in subsequent analysis. Metabolic analyzes were performed using Seahorse XFe96 analyzers to measure oxygen consumption and then obtain further results of ATP production and extracellular acidification rate. The differences in energy metabolism measurements between wild type and mutation were analyzed and compared. RESULT(S) A novel alanyl-tRNA synthetase 2 (AARS2) homozygous mutation (NM_020745: exon2: c.337G>C: p. G113R) was identified in the aminoacylation region using WES. The mutation was highly conserved among species and predicted to be disease causing. AARS2 encodes mitochondrial alanyl-tRNA synthetase, which attaches alanine onto tRNA-ala. AARS2 mutations were previously reported in female leukodystrophy patients with POI. In mitochondrial stress tests, the ATP productions of the mutation group (3.58 ± 0.46 fmol/min/cell) was significantly lower than that of the wild type group (6.96 ± 1.56 fmol/min/cell). CONCLUSION(S) This is the first report of a homozygous pathogenic AARS2 mutation in POI. This mutation may lead to incorrect aminoacylation of tRNA, affect mitochondrial translation, and cause oxidative phosphorylation defects, which may be responsible for POI.
Collapse
Affiliation(s)
- Yiran Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Hefei, People's Republic of China; Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, People's Republic of China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Hefei, People's Republic of China; Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, People's Republic of China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, People's Republic of China
| | - Hong Pan
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China; Center for Genetics, National Research Institute of Family Planning, Beijing, People's Republic of China
| | - Beihong Liu
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China; Center for Genetics, National Research Institute of Family Planning, Beijing, People's Republic of China
| | - Tengyan Li
- Center for Genetics, National Research Institute of Family Planning, Beijing, People's Republic of China
| | - Ruyi Wang
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China; Center for Genetics, National Research Institute of Family Planning, Beijing, People's Republic of China
| | - Xu Ma
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China; Center for Genetics, National Research Institute of Family Planning, Beijing, People's Republic of China
| | - Binbin Wang
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China; Center for Genetics, National Research Institute of Family Planning, Beijing, People's Republic of China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Hefei, People's Republic of China; Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
22
|
Srivastava S, Butala A, Mahida S, Richter J, Mu W, Poretti A, Vernon H, VanGerpen J, Atwal PS, Middlebrooks EH, Zee DS, Naidu S. Expansion of the clinical spectrum associated with AARS2-related disorders. Am J Med Genet A 2019; 179:1556-1564. [PMID: 31099476 DOI: 10.1002/ajmg.a.61188] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
Biallelic pathogenic variants in AARS2, a gene encoding the mitochondrial alanyl-tRNA synthetase, result in a spectrum of findings ranging from infantile cardiomyopathy to adult-onset progressive leukoencephalopathy. In this article, we present three unrelated individuals with novel compound heterozygous pathogenic AARS2 variants underlying diverse clinical presentations. Patient 1 is a 51-year-old man with adult-onset progressive cognitive, psychiatric, and motor decline and leukodystrophy. Patient 2 is a 34-year-old man with childhood-onset progressive tremor followed by the development of polyneuropathy, ataxia, and mild cognitive and psychiatric decline without leukodystrophy on imaging. Patient 3 is a 57-year-old woman with childhood-onset tremor and nystagmus which preceded dystonia, chorea, ataxia, depression, and cognitive decline marked by cerebellar atrophy and white matter disease. These cases expand the clinical heterogeneity of AARS2-related disorders, given that the first and third case represent some of the oldest known survivors of this disease, the second is adult-onset AARS2-related neurological decline without leukodystrophy, and the third is biallelic AARS2-related disorder involving a partial gene deletion.
Collapse
Affiliation(s)
| | - Ankur Butala
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Sonal Mahida
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - John Richter
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Weiyi Mu
- Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Andrea Poretti
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Hilary Vernon
- Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Jay VanGerpen
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | | | - Erik H Middlebrooks
- Department of Radiology and Neurosurgery, Mayo Clinic, Jacksonville, Florida
| | - David S Zee
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland.,Department of Ophthalmology, Otolaryngology, Head and Neck Surgery and Neuroscience, The Johns Hopkins Hospital, Baltimore, Maryland
| | - SakkuBai Naidu
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
23
|
Tang Y, Qin Q, Xing Y, Guo D, Di L, Jia J. AARS2 leukoencephalopathy: A new variant of mitochondrial encephalomyopathy. Mol Genet Genomic Med 2019; 7:e00582. [PMID: 30706699 PMCID: PMC6465728 DOI: 10.1002/mgg3.582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 01/27/2023] Open
Abstract
Background Mutations in the mitochondrial alanyl‐transfer (t)RNA synthetase 2 (AARS2,OMIM:612035) have been linked to leukoencephalopathy recently. Till now, there have been 19 cases reported so far. However, the clinical and genetic characteristics of this disease are not fully understood. We reported an adult‐onset male leukoencephalopathy patient related to novel AARS2 gene mutations and reviewed all previous cases regarding the clinical and genetic features of AARS2 leukoencephalopathy. Methods The spectrum of clinical symptoms and the genetic analysis of the presented patient were identified and investigated. Besides this case, we assessed previously reported cases with AARS2 gene mutations. Results Here, we present a 30‐year‐old man with progressive motor deficits in the right lower limb and severe cerebellar ataxia for one year. MRI revealed extensive white matter lesions in periventricular regions and along the corticospinal tract. Genetic analysis revealed two new heterogeneous missense mutations in AARS2: c.179C>A and c.1703_1704del. We described the ragged red fiber (RRF) for the first time, suggesting that AARS2‐related leukoencephalopathy be a new variant of mitochondrial encephalomyopathy. Gradual improvement in motor function was observed with intravenous coenzyme complex treatment. We also summarized our case and all previously reported cases to provide an overview of AARS2‐related late‐onset leukoencephalopathy. Then, we compared clinical and neuroimaging features of AARS2‐related leukoencephalopathy with three other frequently diagnosed types of adult‐onset leukoencephalopathy to provide insight into diagnostic strategies. Conclusion The characteristic MRI abnormalities and clinical symptoms described here may help to distinguish AARS2‐related leukoencephalopathy from other adult‐onset leukoencephalopathies. The combination of encephalopathy and myopathy strongly suggest that AARS2‐related leukoencephalopathy is a new variant of mitochondrial encephalomyopathy. The response to coenzyme complex will shed light on future therapy investigation.
Collapse
Affiliation(s)
- Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yi Xing
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Dongmei Guo
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Geriatric Cognitive Disorders, Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| |
Collapse
|
24
|
Abstract
Purpose of review In this review we highlight recent advances in the human genetics of frontotemporal dementia (FTD). In addition to providing a broad survey of genes implicated in FTD in the last several years, we also discuss variation in genes implicated in both hereditary leukodystrophies and risk for FTD (e.g., TREM2, TMEM106B, CSF1R, AARS2, NOTCH3). Recent findings Over the past five years, genetic variation in approximately 50 genes has been confirmed or suggested to cause or influence risk for FTD and FTD-spectrum disorders. We first give background and discuss recent findings related to C9ORF72, GRN and MAPT, the genes most commonly implicated in FTD. We then provide a broad overview of other FTD-associated genes and go on to discuss new findings in FTD genetics in East Asian populations, including pathogenic variation in CHCHD10, which may represent a frequent cause of disease in Chinese populations. Finally, we consider recent insights gleaned from genome-wide association and genetic pleiotropy studies. Summary Recent genetic discoveries highlight cellular pathways involving autophagy, the endolysosomal system and neuroinflammation, and reveal an intriguing overlap between genes that confer risk for leukodystrophy and FTD.
Collapse
|