1
|
Goh T, Ju LA, Waterhouse A. Thrombotic response to mechanical circulatory support devices. J Thromb Haemost 2025; 23:1743-1757. [PMID: 40058704 DOI: 10.1016/j.jtha.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 04/07/2025]
Abstract
Cardiovascular mechanical circulatory support (MCS) device use triggers thrombosis and hemostatic disorders, which may become fatal if thrombi occlude circulation or cause embolic complications. Consequently, antithrombotic medications are administered, which often cannot eliminate thrombosis and further compromise patient survival by introducing an additional risk of severe bleeding events. MCS thrombosis is induced and affected by the combined interplay of patient pathology, the foreign artificial biomaterial's surface properties, and pathological flow conditions. From a device design perspective, the latter 2 may be controlled for and redesigned to minimize the thrombotic response. This review examines how MCS thrombosis is affected by the biomaterial properties of surface roughness and topography, chemistry and charge, wettability, and bioactive coatings and the hemodynamic flow properties of margination, low flow and coagulation, high flow and platelet activation, von Willebrand factor activation, and hemolysis. For each property, we explain its well-established underlying biological, chemical, or physical effects on thrombosis and highlight current and proposed design strategies that could reduce MCS thrombosis. We review the potential reasons thrombosis still complicates MCS devices and postulate that an improved understanding of the dominant thrombotic process occurring at specific regions of devices and mechanistic insights into the combined effects of material properties with flow are still required. Together, we provide a guide for potential biomaterial and flow design changes to reduce thrombosis in MCS, emphasizing that novel biomaterials and device geometries should be tested under operationally and clinically relevant flow conditions to develop safer future-generation devices with reduced thrombotic responses.
Collapse
Affiliation(s)
- Tiffany Goh
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Schuster MR, Dirkes N, Key F, Elgeti S, Behr M. Exploring the influence of parametrized pulsatility on left ventricular washout under LVAD support: a computational study using reduced-order models. Comput Methods Biomech Biomed Engin 2025; 28:800-817. [PMID: 39772939 DOI: 10.1080/10255842.2024.2320747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 01/11/2025]
Abstract
Introducing pulsatility in LVADs is known to reduce complications such as stagnation and thrombosis, but it is an ongoing topic of research on what the optimal form is. We present a framework consisting of parametrized full-order simulations, reduced-order models, and sensitivity analysis to systematically quantify the effects of parametrized pulsatility on washout. As a sample problem, we study the washout in an idealized 2D left ventricle and a parametrized sinusoidal LVAD flow rate. The framework yields speed-ups proportional to the number of samples required in the sensitivity analysis. In our setting, we find that short, intense pulses wash out the left ventricle best, while the time between consecutive pulses does not play a significant role.
Collapse
Affiliation(s)
| | - N Dirkes
- RWTH Aachen University, Aachen, Germany
| | - F Key
- Institute of Lightweight Design and Structural Biomechanics, Vienna, Austria
| | - S Elgeti
- Institute of Lightweight Design and Structural Biomechanics, Vienna, Austria
| | - M Behr
- RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Azimi M, Almeida DFD, Khamooshi M, Liao S, Šeman M, Taylor A, McGiffin D, Gregory SD. Statistical shape modelling of the left ventricle for patients with HeartMate2 and HeartMate3 ventricular assist devices. Comput Biol Med 2025; 189:109921. [PMID: 40031108 DOI: 10.1016/j.compbiomed.2025.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Left ventricular assist devices (LVADs) have demonstrated promising outcomes in the management of end-stage heart failure. However, the altered intraventricular flow dynamics following LVAD implantation can lead to non-physiological shear rates and stagnant or recirculating zones, which increase the risk of thrombosis around the inflow cannula. There are conflicting recommendations regarding the optimal inflow cannula design and its association with thrombosis risk, possibly due to anatomical variations among patients. To explore the sources of these discrepancies, statistical shape models (SSMs) of the left ventricle (LV) were utilized to numerically evaluate the impact of anatomical variations on thrombosis risk. Nineteen CT scans of LVAD patients, consisting of 5 HeartMate2 (HM2) and 14 HeartMate3 (HM3) devices, were manually segmented. The coherent point drift (CPD) algorithm was implemented to register the segmented LVs. Separate SSMs were developed for HM2 and HM3 cohorts using a principal component analysis (PCA). Multiple anatomical metrics such as LV volume, sphericity, and cross-sectional circularity were compared. A computational fluid dynamics (CFD) analysis was performed for an end-stage heart failure condition characterised by rigid LV walls, closed aortic valve and LVAD flow rate of 5 L/min. Thrombosis risk was assessed by wall shear stress (WSS), stasis volume, turbulent kinetic energy (TKE) and washout. The HM2 and HM3 cohorts exhibited differences in sphericity, apical circularity, and conicity, which may be attributed to device shape and implantation technique. For both SSMs, larger LV volume was the main anatomical feature contributing to increased stasis volume and slower blood clearance, leading to higher thrombosis risk. The second anatomical metric contributing to increased thrombosis risk was reduced LV sphericity (HM2 patients) and formation of an apical bulge (HM3 patients). This study highlighted the statistical differences in LV shape between HM2 and HM3 patients, demonstrating how specific geometrical features of the LV may predispose patients to thrombus formation after LVAD implantation.
Collapse
Affiliation(s)
- Marjan Azimi
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia.
| | | | - Mehrdad Khamooshi
- School of Mechanical, Medical and Process Engineering and the Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sam Liao
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Michael Šeman
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia; School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia; Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew Taylor
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
| | - David McGiffin
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia; Department of Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Shaun D Gregory
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia; School of Mechanical, Medical and Process Engineering and the Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Widhalm G, Aigner P, Gruber B, Moscato F, Moayedifar R, Schaefer AK, Dimitrov K, Zimpfer D, Riebandt J, Schlöglhofer T. Preoperative anatomical landmarks and longitudinal HeartMate 3 pump position in X-rays: Relevance for adverse events. Artif Organs 2024; 48:1502-1512. [PMID: 39105573 DOI: 10.1111/aor.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Left ventricular assist device (LVAD) malposition has been linked to hemocompatibility-related adverse events (HRAEs). This study aimed to identify preoperative anatomical landmarks and postoperative pump position, associated with HRAEs during LVAD support. METHODS Pre- and postoperative chest X-ray measures (≤14 days pre-implantation, first postoperative standing, 6, 12, 18, and 24 months post-implantation) were analyzed for their association with HRAEs over 24 months in 33 HeartMate 3 (HM3) patients (15.2% female, age 66 (9.5) years). RESULTS HM3 patients with any HRAE showed significantly lower preoperative distances between left ventricle and thoracic outline (dLVT) (25.3 ± 10.2 mm vs. 40.3 ± 15.5 mm, p = 0.004). A ROC-derived cutoff dLVT ≤ 29.2 mm provided 85.7% sensitivity and 72.2% specificity predicting any HRAE during HM3 support (76.2% (>29.2 mm) vs. 16.7% (≤29.2 mm) freedom from HRAE, p < 0.001) and significant differences in cardiothoracic ratio (0.58 ± 0.04 vs. 0.62 ± 0.04, p = 0.045). Postoperative X-rays indicated lower pump depths in patients with ischemic strokes (9.1 ± 16.2 mm vs. 38.0 ± 18.5 mm, p = 0.007), reduced freedom from any neurological event (pump depth ≤ 28.7 mm: 45.5% vs. 94.1%, p = 0.004), and a significant correlation between pump depth and inflow cannula angle (r = 0.66, p < 0.001). Longitudinal changes were observed in heart-pump width (F(4,60) = 5.61, p < 0.001). CONCLUSION Preoperative X-ray markers are associated with postoperative HRAE occurrence. Applying this knowledge in clinical practice may enhance risk stratification, guide therapy optimization, and improve HM3 recipient management.
Collapse
Affiliation(s)
- Gregor Widhalm
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Gruber
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Roxana Moayedifar
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Kamen Dimitrov
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Schlöglhofer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
5
|
Zijderhand CF, Peek JJ, Sjatskig J, Manintveld OC, Bekkers JA, Bogers AJJC, Caliskan K. Influence of the Outflow Graft Angular Position on the Outcomes in Patients With a Left Ventricular Assist Device. ASAIO J 2024; 70:861-867. [PMID: 38595102 DOI: 10.1097/mat.0000000000002189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
This study aimed to explore the potential impact of the angular position of the outflow graft on thromboembolic events and aortic valve regurgitation in people with a left ventricular assist device (LVAD). We analyzed contrast computed tomography (CT) data of patients with LVAD implantation between 2016 and 2021. Three-dimensional reconstructions of the outflow graft and aortic arch were performed to calculate the horizontal (azimuth) angle and vertical (polar) angle, as well as the relative distance between the outflow graft, aortic valve, and brachiocephalic artery. Among 59 patients (median age 57, 68% male), a vertical angle ≥107° correlated significantly with increased cerebrovascular accidents (hazard ratio [HR]: 5.8, 95% confidence interval [CI]: 1.3-26.3, p = 0.022) and gastrointestinal bleeding (HR: 3.4, 95% CI: 1.0-11.2, p = 0.049) during a median 25 month follow-up. No significant differences were found between the vertical angle and aortic valve regurgitation or survival. The horizontal angle and relative distance did not show differences regarding clinical adverse events. This study emphasizes the importance of the LVAD outflow graft angular position to prevent life-threatening thromboembolic events. This study suggests the need for prospective research to further validate these findings.
Collapse
Affiliation(s)
- Casper F Zijderhand
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jette J Peek
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jelena Sjatskig
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olivier C Manintveld
- Thoraxcenter, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jos A Bekkers
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Cameli M, Aboumarie HS, Pastore MC, Caliskan K, Cikes M, Garbi M, Lim HS, Muraru D, Mandoli GE, Pergola V, Plein S, Pontone G, Soliman OI, Maurovich-Horvat P, Donal E, Cosyns B, Petersen SE. Multimodality imaging for the evaluation and management of patients with long-term (durable) left ventricular assist devices. Eur Heart J Cardiovasc Imaging 2024; 25:e217-e240. [PMID: 38965039 DOI: 10.1093/ehjci/jeae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
Left ventricular assist devices (LVADs) are gaining increasing importance as therapeutic strategy in advanced heart failure (HF), not only as bridge to recovery or to transplant but also as destination therapy. Even though long-term LVADs are considered a precious resource to expand the treatment options and improve clinical outcome of these patients, these are limited by peri-operative and post-operative complications, such as device-related infections, haemocompatibility-related events, device mis-positioning, and right ventricular failure. For this reason, a precise pre-operative, peri-operative, and post-operative evaluation of these patients is crucial for the selection of LVAD candidates and the management LVAD recipients. The use of different imaging modalities offers important information to complete the study of patients with LVADs in each phase of their assessment, with peculiar advantages/disadvantages, ideal application, and reference parameters for each modality. This clinical consensus statement sought to guide the use of multimodality imaging for the evaluation of patients with advanced HF undergoing LVAD implantation.
Collapse
Affiliation(s)
- Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Hatem Soliman Aboumarie
- Department of Anaesthetics, Critical Care and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield Hospitals, London, UK
- School of Cardiovascular, Metabolic Sciences and Medicine, King's College, WC2R 2LS London, UK
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Kadir Caliskan
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maja Cikes
- Department of Cardiovascular Diseases, University Hospital Centre, Zagreb, Croatia
| | | | - Hoong Sern Lim
- Institute of Cardiovascular Sciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Denisa Muraru
- Department of Cardiology, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medicine and Surgery, University Milano-Bicocca, Milan, Italy
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Valeria Pergola
- Department of Cardiology, Padua University Hospital, Padua 35128, Italy
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Osama I Soliman
- Department of Cardiology, College of Medicine, Nursing and Health Sciences, National University of Galway, Galway, Ireland
| | | | - Erwan Donal
- University of Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, Rennes F-35000, France
| | - Bernard Cosyns
- Centrum Voor Harten Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- In Vivo Cellular and Molecular Imaging (ICMI) Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Steffen E Petersen
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, UK
| |
Collapse
|
7
|
Hollis IB, Jennings DL, Krim S, Ton VK, Ducharme A, Cowger J, Looby M, Eulert-Green JJ, Bansal N, Horn E, Byku M, Katz J, Michaud CJ, Rajapreyar I, Campbell P, Vale C, Cosgrove R, Hernandez-Montfort J, Otero J, Ingemi A, Raj S, Weeks P, Agarwal R, Martinez ES, Tops LF, Ahmed MM, Kiskaddon A, Kremer J, Keebler M, Ratnagiri RK. An ISHLT consensus statement on strategies to prevent and manage hemocompatibility related adverse events in patients with a durable, continuous-flow ventricular assist device. J Heart Lung Transplant 2024; 43:1199-1234. [PMID: 38878021 DOI: 10.1016/j.healun.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/15/2024] Open
Abstract
Life expectancy of patients with a durable, continuous-flow left ventricular assist device (CF-LVAD) continues to increase. Despite significant improvements in the delivery of care for patients with these devices, hemocompatability-related adverse events (HRAEs) are still a concern and contribute to significant morbility and mortality when they occur. As such, dissemination of current best evidence and practices is of critical importance. This ISHLT Consensus Statement is a summative assessment of the current literature on prevention and management of HRAEs through optimal management of oral anticoagulant and antiplatelet medications, parenteral anticoagulant medications, management of patients at high risk for HRAEs and those experiencing thrombotic or bleeding events, and device management outside of antithrombotic medications. This document is intended to assist clinicians caring for patients with a CF-LVAD provide the best care possible with respect to prevention and management of these events.
Collapse
Affiliation(s)
- Ian B Hollis
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina; University of North Carolina Medical Center, Chapel Hill, North Carolina.
| | - Douglas L Jennings
- New York Presbyterian Columbia Irving Medical Center/Long Island University College of Pharmacy, New York, New York
| | - Selim Krim
- John Ochsner Heart and Vascular Institute, New Orleans, Louisiana
| | - Van-Khue Ton
- Massachusetts General Hospital, Boston, Massachusetts
| | - Anique Ducharme
- Montreal Heart Institute/Université de Montréal, Montreal, Quebec, Canada
| | | | - Mary Looby
- Inova Fairfax Medical Campus, Falls Church, Virginia
| | | | - Neha Bansal
- Mount Sinai Kravis Children's Hospital, New York, New York
| | - Ed Horn
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mirnela Byku
- University of North Carolina Medical Center, Chapel Hill, North Carolina
| | - Jason Katz
- Division of Cardiology, NYU Grossman School of Medicine & Bellevue Hospital, New York, New York
| | | | | | | | - Cassandra Vale
- The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Richard Cosgrove
- Cornerstone Specialty Hospital/University of Arizona College of Pharmacy, Tucson, Arizona
| | | | - Jessica Otero
- AdventHealth Littleton Hospital, Littleton, Colorado
| | | | | | - Phillip Weeks
- Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Richa Agarwal
- Duke University Medical Center, Durham, North Carolina
| | | | - Laurens F Tops
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Amy Kiskaddon
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mary Keebler
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|
8
|
Thum KY, Liao S, Šeman M, Khamooshi M, Carberry J, McGiffin D, Gregory SD. Effect of RVAD Cannulation Length on Right Ventricular Thrombosis Risk: An In Silico Investigation. Ann Biomed Eng 2024; 52:1604-1616. [PMID: 38418690 PMCID: PMC11082033 DOI: 10.1007/s10439-024-03474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Left ventricular assist devices (LVADs) have been used off-label as long-term support of the right heart due to the lack of a clinically approved durable right VAD (RVAD). Whilst various techniques to reduce RVAD inflow cannula protrusion have been described, the implication of the protrusion length on right heart blood flow and subsequent risk of thrombosis remains poorly understood. This study investigates the influence of RVAD diaphragmatic cannulation length on right ventricular thrombosis risk using a patient-specific right ventricle in silico model validated with particle image velocimetry. Four cannulation lengths (5, 10, 15 and 25 mm) were evaluated in a one-way fluid-structure interaction simulation with boundary conditions generated from a lumped parameter model, simulating a biventricular supported condition. Simulation results demonstrated that the 25-mm cannulation length exhibited a lower thrombosis risk compared to 5-, 10- and 15-mm cannulation lengths due to improved flow energy distribution (25.2%, 24.4% and 17.8% increased), reduced stagnation volume (72%, 68% and 49% reduction), better washout rate (13.0%, 11.6% and 9.1% faster) and lower blood residence time (6% reduction). In the simulated scenario, our findings suggest that a longer RVAD diaphragmatic cannulation length may be beneficial in lowering thrombosis risk; however, further clinical studies are warranted.
Collapse
Affiliation(s)
- Kar Ying Thum
- Cardiorespiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.
| | - Sam Liao
- Cardiorespiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| | - Michael Šeman
- Cardiorespiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
- School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
| | - Mehrdad Khamooshi
- Cardiorespiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| | - Josie Carberry
- Cardiorespiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| | - David McGiffin
- Department of Cardiothoracic Surgery and Transplantation, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Shaun D Gregory
- Cardiorespiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Xi Y, Li Y, Wang H, Sun A, Deng X, Chen Z, Fan Y. Effect of veno-arterial extracorporeal membrane oxygenation lower-extremity cannulation on intra-arterial flow characteristics, oxygen content, and thrombosis risk. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108204. [PMID: 38728829 DOI: 10.1016/j.cmpb.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE This study aimed to investigate the effects of lower-extremity cannulation on the intra-arterial hemodynamic environment, oxygen content, blood damage, and thrombosis risk under different levels of veno-arterial (V-A) ECMO support. METHODS Computational fluid dynamics methods were used to investigate the effects of different levels of ECMO support (ECMO flow ratios supplying oxygen-rich blood 100-40 %). Flow rates and oxygen content in each arterial branch were used to determine organ perfusion. A new thrombosis model considering platelet activation and deposition was proposed to determine the platelet activation and thrombosis risk at different levels of ECMO support. A red blood cell damage model was used to explore the risk of hemolysis. RESULTS Our study found that partial recovery of cardiac function improved the intra-arterial hemodynamic environment, with reduced impingement of the intra-arterial flow field by high-velocity blood flow from the cannula, a flow rate per unit time into each arterial branch closer to physiological levels, and improved perfusion in the lower extremities. Partial recovery of cardiac function helps reduce intra-arterial high shear stress and residence time, thereby reducing blood damage. The overall level of hemolysis and platelet activation in the aorta decreased with the gradual recovery of cardiac contraction function. The areas at high risk of thrombosis under V-A ECMO femoral cannulation support were the aortic root and the area distal to the cannula, which moved to the descending aorta when cardiac function recovered to 40-60 %. However, with the recovery of cardiac contraction function, hypoxic blood pumped by the heart is insufficient in supplying oxygen to the front of the aortic arch, which may result in upper extremity hypoxia. CONCLUSION We developed a thrombosis risk prediction model applicable to ECMO cannulation and validated the model accuracy using clinical data. Partial recovery of cardiac function contributed to an improvement in the aortic hemodynamic environment and a reduction in the risk of blood damage; however, there is a potential risk of insufficient perfusion of oxygen-rich blood to organs.
Collapse
Affiliation(s)
- Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
10
|
Baturalp TB, Bozkurt S. Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling. Biomimetics (Basel) 2024; 9:269. [PMID: 38786479 PMCID: PMC11117906 DOI: 10.3390/biomimetics9050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Preclinical testing of medical devices is an essential step in the product life cycle, whereas testing of cardiovascular implants requires specialised testbeds or numerical simulations using computer software Ansys 2016. Existing test setups used to evaluate physiological scenarios and test cardiac implants such as mock circulatory systems or isolated beating heart platforms are driven by sophisticated hardware which comes at a high cost or raises ethical concerns. On the other hand, computational methods used to simulate blood flow in the cardiovascular system may be simplified or computationally expensive. Therefore, there is a need for low-cost, relatively simple and efficient test beds that can provide realistic conditions to simulate physiological scenarios and evaluate cardiovascular devices. In this study, the concept design of a novel left ventricular simulator made of latex rubber and actuated by pneumatic artificial muscles is presented. The designed left ventricular simulator is geometrically similar to a native left ventricle, whereas the basal diameter and long axis length are within an anatomical range. Finite element simulations evaluating left ventricular twisting and shortening predicted that the designed left ventricular simulator rotates approximately 17 degrees at the apex and the long axis shortens around 11 mm. Experimental results showed that the twist angle is 18 degrees and the left ventricular simulator shortens 5 mm. Twist angles and long axis shortening as in a native left ventricle show it is capable of functioning like a native left ventricle and simulating a variety of scenarios, and therefore has the potential to be used as a test platform.
Collapse
Affiliation(s)
- Turgut Batuhan Baturalp
- Department of Mechanical Engineering, Texas Tech University, P.O. Box 41021, Lubbock, TX 79409, USA
| | - Selim Bozkurt
- School of Engineering, Ulster University, York Street, Belfast BT15 1AP, UK
| |
Collapse
|
11
|
Kang J, Jayaraman A, Antaki JF, Kirby B. Shear Histories Alter Local Shear Effects on Thrombus Nucleation and Growth. Ann Biomed Eng 2024; 52:1039-1050. [PMID: 38319505 DOI: 10.1007/s10439-023-03439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Our goal was to determine the impact of physiological and pathological shear histories on platelet nucleation and thrombus growth at various local shear rates. We designed and characterized a microfluidic device capable of subjecting platelets to shear histories reaching as high as 6700 s- 1 in a single passage. Time-lapse videos of platelets and thrombi are captured using fluorescence microscopy. Thrombi are tracked, and the degree of thrombosis is evaluated through surface coverage, platelet nucleation maps, and ensemble-averaged aggregate areas and intensities. Surface coverage rates were the lowest when platelets deposited at high shear rates following a pathological shear history and were highest at low shear rates following a pathological shear history. Early aggregate area growth rates were significantly larger for thrombi developing at high shear following physiological shear history than at high shear following a pathological shear history. Aggregate vertical growth was restricted when depositing at low shear following a pathological shear history. In contrast, thrombi grew faster vertically following physiological shear histories. These results show that physiological shear histories pose thrombotic risks via volumetric growth, and pathological shear histories drastically promote nucleation. These findings may inform region-based geometries for biomedical devices and refine thrombosis simulations.
Collapse
Affiliation(s)
- Junhyuk Kang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
| | - Anjana Jayaraman
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brian Kirby
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill-Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Vu V, Rossini L, del Alamo JC, Dembitsky W, Gray RA, May-Newman K. Benchtop Models of Patient-Specific Intraventricular Flow During Heart Failure and LVAD Support. J Biomech Eng 2023; 145:111010. [PMID: 37565996 PMCID: PMC10777504 DOI: 10.1115/1.4063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The characterization of intraventricular flow is critical to evaluate the efficiency of fluid transport and potential thromboembolic risk but challenging to measure directly in advanced heart failure (HF) patients with left ventricular assist device (LVAD) support. The study aims to validate an in-house mock loop (ML) by simulating specific conditions of HF patients with normal and prosthetic mitral valves (MV) and LVAD patients with small and dilated left ventricle volumes, then comparing the flow-related indices result of vortex parameters, residence time (RT), and shear-activation potential (SAP). Patient-specific inputs for the ML studies included heart rate, end-diastolic and end-systolic volumes, ejection fraction, aortic pressure, E/A ratio, and LVAD speed. The ML effectively replicated vortex development and circulation patterns, as well as RT, particularly for HF patient cases. The LVAD velocity fields reflected altered flow paths, in which all or most incoming blood formed a dominant stream directing flow straight from the mitral valve to the apex. RT estimation of patient and ML compared well for all conditions, but SAP was substantially higher in the LVAD cases of the ML. The benchtop system generated comparable and reproducible hemodynamics and fluid dynamics for patient-specific conditions, validating its reliability and clinical relevance. This study demonstrated that ML is a suitable platform to investigate the fluid dynamics of HF and LVAD patients and can be utilized to investigate heart-implant interactions.
Collapse
Affiliation(s)
- Vi Vu
- Bioengineering Program, Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182;Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993
| | - Lorenzo Rossini
- Mechanical and Aerospace Engineering Department, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093
| | - Juan C. del Alamo
- Center for Cardiovascular Biology & Mechanical Engineering Department, University of Washington, 1400 NE Campus Parkway, Seattle, WA 98195
| | - Walter Dembitsky
- Cardiothoracic Surgery, Mechanical Assist Program, Sharp Memorial Hospital, San Diego 7901 Frost Street, San Diego, CA 92123
| | - Richard A. Gray
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993
| | - Karen May-Newman
- Bioengineering Program, Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| |
Collapse
|
13
|
Khamooshi M, Azimi M, Gregory SD. Computational analysis of thrombosis risk with variations in left ventricular assist device inflow cannula design in a multi-patient model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107730. [PMID: 37531687 DOI: 10.1016/j.cmpb.2023.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Left ventricular assist devices (LVADs) are mechanical pumps used to support patients with end-stage heart failure. The inflow cannula is a critical component of the LVAD as it connects the pump to the left ventricle, allowing blood to be drawn from the heart. However, the design of the cannula can significantly impact LV hemodynamics and cause complications, including thrombosis. Therefore, this study aimed to analyze the numerical effects of left ventricle (LV) size on cannula design in order to enhance hemodynamic performance using post-operative left ventricular assist device (LVAD) models. METHODS A parametric design evaluation of two different inflow cannulas were carried out on left ventricles (LV) of varying sizes (ranging from 154 to 430 ml) constructed from computerized tomography (CT) data from VAD patients using computational fluid dynamics (CFD) simulations. The study analyzed three key factors contributing to thrombosis formation: blood residence time, blood stagnation ratio, and wall shear stress. RESULTS Results showed higher blood residence time and stagnation ratio for larger left ventricular sizes. In addition, increasing the insertion length of the cannula reduced the average wall shear stress. CONCLUSION Overall, the study's findings suggest that the optimal cannula shape for LVADs varies with left ventricular size.
Collapse
Affiliation(s)
- Mehrdad Khamooshi
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.
| | - Marjan Azimi
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| | - Shaun D Gregory
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Lilja D, Schalit I, Espinoza A, Fiane AE, Dahle G, Littorin-Sandbu H, Pettersen FJ, Russell KE, Thiara APS, Elle OJ, Halvorsen PS. Detection of inflow obstruction in left ventricular assist devices by accelerometer: A porcine model study. J Heart Lung Transplant 2023; 42:1005-1014. [PMID: 37023840 DOI: 10.1016/j.healun.2023.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Left ventricular assist devices (LVAD) provide circulatory blood pump support for severe heart failure patients. Pump inflow obstructions may lead to stroke and pump malfunction. We aimed to verify in vivo that gradual inflow obstructions, representing prepump thrombosis, are detectable by a pump-attached accelerometer, where the routine use of pump power (PLVAD) is deficient. METHOD In a porcine model (n = 8), balloon-tipped catheters obstructed HVAD inflow conduits by 34% to 94% in 5 levels. Afterload increases and speed alterations were conducted as controls. We computed nonharmonic amplitudes (NHA) of pump vibrations captured by the accelerometer for the analysis. Changes in NHA and PLVAD were tested by a pairwise nonparametric statistical test. Detection sensitivities and specificities were investigated by receiver operating characteristics with areas under the curves (AUC). RESULTS NHA remained marginally affected during control interventions, unlike PLVAD. NHA elevated during obstructions within 52-83%, while mass pendulation was most pronounced. Meanwhile, PLVAD changed far less. Increased pump speeds tended to amplify the NHA elevations. The corresponding AUC was 0.85-1.00 for NHA and 0.35-0.73 for PLVAD. CONCLUSION Elevated NHA provides a reliable indication of subclinical gradual inflow obstructions. The accelerometer can potentially supplement PLVAD for earlier warnings and localization of pump.
Collapse
Affiliation(s)
- Didrik Lilja
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Itai Schalit
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
| | - Andreas Espinoza
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
| | - Arnt Eltvedt Fiane
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Gry Dahle
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Helen Littorin-Sandbu
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
| | - Fred-Johan Pettersen
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | | | - Amrit P S Thiara
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Ole Jakob Elle
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Department of Informatics, University of Oslo, Norway
| | - Per Steinar Halvorsen
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Magkoutas K, Chala N, Wu X, Poulikakos D, Mazza E, Meboldt M, Falk V, Ferrari A, Giampietro C, Schmid Daners M. In-vitro investigation of endothelial monolayer retention on an inflow VAD cannula inside a beating heart phantom. BIOMATERIALS ADVANCES 2023; 152:213485. [PMID: 37302211 DOI: 10.1016/j.bioadv.2023.213485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Ventricular assist devices (VADs) provide an alternative solution to heart transplantation for patients with end-stage heart failure. Insufficient hemocompatibility of VAD components can result in severe adverse events, such as thromboembolic stroke, and readmissions. To enhance VAD hemocompatibility, and avoid thrombus formation, surface modification techniques and endothelialization strategies are employed. In this work, a free form patterning topography is selected to facilitate the endothelialization of the outer surface of the inflow cannula (IC) of a commercial VAD. An endothelialization protocol for convoluted surfaces such as the IC is produced, and the retainment of the endothelial cell (EC) monolayer is evaluated. To allow this evaluation, a dedicated experimental setup is developed to simulate realistic flow phenomena inside an artificial, beating heart phantom with a VAD implanted on its apex. The procedural steps of mounting the system result to the impairment of the EC monolayer, which is further compromised by the developed flow and pressure conditions, as well as by the contact with the moving inner structures of the heart phantom. Importantly, the EC monolayer is better maintained in the lower part of the IC, which is more susceptible to thrombus formation and may therefore aid in minimizing the hemocompatibility related adverse events after the VAD implantation.
Collapse
Affiliation(s)
- Konstantinos Magkoutas
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Xi Wu
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland; Experimental Continuum Mechanics, EMPA, Dubendorf, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Clinic for Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland; Experimental Continuum Mechanics, EMPA, Dubendorf, Switzerland.
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Biological Response to Sintered Titanium in Left Ventricular Assist Devices: Pseudoneointima, Neointima, and Pannus. ASAIO J 2023; 69:1-10. [PMID: 35649199 DOI: 10.1097/mat.0000000000001777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Titanium alloys have traditionally been used in blood-contacting cardiovascular devices, including left ventricular assist devices (LVADs). However, titanium surfaces are susceptible to adverse coagulation, leading to thrombogenesis and stroke. To improve hemocompatibility, LVAD manufacturers introduced powder sintering on blood-wetted surfaces in the 1980s to induce endothelialization. This technique has been employed in multiple contemporary LVADs on the pump housing, as well as the interior and exterior of the inflow cannula. Despite the wide adoption of sintered titanium, reported biologic response over the past several decades has been highly variable and apparently unpredictable-including combinations of neointima, pseudoneoimtima, thrombus, and pannus. We present a history of sintered titanium used in LVAD, a review of accumulated clinical outcomes, and a synopsis of gross appearance and composition of various depositions found clinically and in animal studies, which is unfortunately confounded by the variability and inconsistency in terminology. Therefore, this review endeavors to introduce a unified taxonomy to harmonize published observations of biologic response to sintered titanium in LVADs. From these data, we are able to deduce the natural history of the biologic response to sintered titanium, toward development of a deterministic model of the genesis of a hemocompatible neointima.
Collapse
|
17
|
Exarchos V, Neuber S, Meyborg H, Giampietro C, Chala N, Moimas S, Hinkov H, Kaufmann F, Pramotton FM, Krüger K, Rodriguez Cetina Biefer H, Cesarovic N, Poulikakos D, Falk V, Emmert MY, Ferrari A, Nazari-Shafti TZ. Anisotropic topographies restore endothelial monolayer integrity and promote the proliferation of senescent endothelial cells. Front Cardiovasc Med 2022; 9:953582. [PMID: 36277782 PMCID: PMC9579341 DOI: 10.3389/fcvm.2022.953582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs.
Collapse
Affiliation(s)
- Vasileios Exarchos
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Meyborg
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland,Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Silvia Moimas
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Hristian Hinkov
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Friedrich Kaufmann
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Francesca M. Pramotton
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland,Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Katrin Krüger
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,Clinic for Cardiovascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hector Rodriguez Cetina Biefer
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Cardiac Surgery, City Hospital of Zürich, Site Triemli, Zurich, Switzerland
| | - Nikola Cesarovic
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Volkmar Falk
- Clinic for Cardiovascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland,Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany
| | - Maximilian Y. Emmert
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,Clinic for Cardiovascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Aldo Ferrari
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland,Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland,Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany,Translational Cardiovascular Regenerative Technologies Group, BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Timo Z. Nazari-Shafti,
| |
Collapse
|
18
|
Ghodrati-Misek M, Schlöglhofer T, Gross C, Maurer A, Zimpfer D, Beitzke D, Zonta F, Moscato F, Schima H, Aigner P. Left atrial appendage occlusion in ventricular assist device patients to decrease thromboembolic events: A computer simulation study. Front Physiol 2022; 13:1010862. [PMID: 36246102 PMCID: PMC9557157 DOI: 10.3389/fphys.2022.1010862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial fibrillation (AF) is a common comorbidity in left ventricular assist device (LVAD) patients and has been identified as a risk factor for thromboembolic stroke. Blood stagnation within the left atrial appendage (LAA) is considered a possible major source of thrombosis and clinical studies have shown reduced thromboembolic risk after LAA occlusion (LAAO). Therefore, this study aims to investigate the effect of LAAO on thrombosis-related parameters using patient-specific simulations. Left ventricular and left atrial geometries of an LVAD patient were obtained from computed tomography and combined with hemodynamic data with either sinus rhythm (SR) or AF generated by a lumped parameter model. In four simulations applying contractile walls, stagnation volume and blood residence times were evaluated with or without AF and with or without LAAO. Reduced atrial contraction in AF resulted in unfavorable flow dynamics within the left atrium. The average atrial velocity was lower for the AF simulation when compared to SR, resulting in a 55% increase in the atrial stagnation volume (from 4.2 to 6.5 cm3). Moreover, blood remained in the LAA for more than 8 cardiac cycles. After LAAO the atrial stagnation decreased from 4.2 to 1.4 cm3 for SR and from 6.5 to 2.3 cm3 for the AF simulation. A significant stagnation volume was found in the LAA for both SR and AF, with larger values occurring with AF. These regions are known as potential sources for thrombus formation and can be diminished by LAAO. This significantly improved the thrombus-related flow parameters and may also lower the risk of thromboembolic events from the appendage.
Collapse
Affiliation(s)
- Mojgan Ghodrati-Misek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- *Correspondence: Mojgan Ghodrati-Misek,
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Gross
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexander Maurer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Francesco Zonta
- Institute of Fluid Dynamics and Heat Transfer, Technical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
19
|
Kannojiya V, Das AK, Das PK. Effect of left ventricular assist device on the hemodynamics of a patient-specific left heart. Med Biol Eng Comput 2022; 60:1705-1721. [DOI: 10.1007/s11517-022-02572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
|
20
|
A new way to evaluate thrombotic risk in failure heart and ventricular assist devices. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Kaufmann F, Hoermandinger C, Knosalla C, Falk V, Potapov E. Thrombus formation at the inflow cannula of continuous-flow left ventricular assist devices - a systematic analysis. Artif Organs 2022; 46:1573-1584. [PMID: 35230721 DOI: 10.1111/aor.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite numerous design iterations, thrombus formation at the inflow cannula of continuous-flow left ventricular assist devices (CF-LVAD) remains an unsolved problem. We systematically investigated the impact of cannula surface on thrombus formation. METHODS Thrombus appearance was photographically documented in 177 explanted hearts with the polished (N=46) or sintered (N=131) inflow cannula of the HVAD. Thrombus load was compared for both inflow cannula types. Mean thrombus length was correlated with protruding cannula length. Support duration and the extent of thrombus growth were examined. The prevalence of thrombi at the left ventricular entry site and at the sintered-to-polished transition zone was correlated with left ventricular geometry and hemodynamic parameters. RESULTS Polished inflow cannulas showed a greater percentage and also a greater mean length of thrombus formation at the entry site than sintered cannulas (91.3% [Pol] vs. 36.7% [sTi]; p<0.0001; mean 7.6 mm vs. 1.9 mm; p<0.0001). A comparison of the early postoperative period (POD1-90) with long-term support (POD>90) showed an increase in thrombus length originating from the transition zone (1.96, ±3.41 mm vs. 3.03 ±2.91 mm; p=0.013). CONCLUSIONS A sintered titanium surface at the entry site is crucial to enable anchoring of myocardial tissue to the cannula. As thrombus growth progresses on polished surfaces, a greater sintered length seems to be beneficial. After an initial three-month healing period, thrombus load appears to decline during prolonged support duration at the sintered entry site but not at the transition zone.
Collapse
Affiliation(s)
- Friedrich Kaufmann
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Christoph Hoermandinger
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Translational Cardiovascular Technology, Zurich, Switzerland
| | - Evgenij Potapov
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
22
|
Liu L, Mu Z, Kang Y, Huang S, Qiu X, Xue X, Fu M, Xue Q, Lv H, Gao B, Li S, Zhao P, Ding H, Wang Z. Hemodynamic mechanism of pulsatile tinnitus caused by venous diverticulum treated with coil embolization. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106617. [PMID: 35021137 DOI: 10.1016/j.cmpb.2022.106617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Coil embolization has become a new treatment method for pulsatile tinnitus (PT) caused by sigmoid sinus diverticulum (SSD). Although this therapy has achieved good results in clinical reports, the hemodynamic mechanism of coils in the treatment of PT in SSD remained unclear. METHODS Finite element method (FEM) and computational fluid dynamics (CFD) were combined to explore the hemodynamic mechanism of coil embolization in SSD treatment. Three personalized geometric models of sigmoid sinus were established according to the CTA data of patients. Coil model were established by FEM, and the hemodynamic differences of SSD before and after coiling were compared by transient CFD method. RESULTS Velocity streamlines disappeared in the SSD after coiling. At the peak time (t1 = 0.22 s), the SSD-average velocity decreased in every patient. The average value of the decreased in three patients was 0.154 ± 0.028 m/s (mean ± SD). Wall average pressure (Pavg) also showed a decline in every patient. Average of decrements of three patients was 17.69 ± 4.91 Pa (mean ± SD). Average WSS (WSSavg) was also reduced in every patient. The average value of WSS drop was 9.74 ± 3.02 Pa (mean ± SD). After coiling, the proportion of low-velocity region in the sigmoid sinus cortical plate dehiscence (SSCPD) area increased. Average of increments was 22.1 ± 5.36% (mean ± SD). CONCLUSIONS A reduction in SSD-average velocity, wall pressure, and WSS were the short-term hemodynamic mechanism of coil embolization for PT. Coil embolization increased the proportion of low-velocity region in the SSCPD area, thereby creating a hemodynamic environment that easily produced thrombus and protects blood vessels from the impact of blood flow. This phenomenon was the long-term effect of coil embolization.
Collapse
Affiliation(s)
- Li Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhenxia Mu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yizhou Kang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Suqin Huang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Qiu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaofei Xue
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Minrui Fu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qingxin Xue
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bin Gao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Shu Li
- National Institutes for Food and Drug Control Institute for Medical Device Control, China.
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
23
|
Schlöglhofer T, Aigner P, Migas M, Beitzke D, Dimitrov K, Wittmann F, Riebandt J, Granegger M, Wiedemann D, Laufer G, Moscato F, Schima H, Zimpfer D. Inflow cannula position as risk factor for stroke in patients with HeartMate 3 left ventricular assist devices. Artif Organs 2022; 46:1149-1157. [PMID: 34978722 PMCID: PMC9305857 DOI: 10.1111/aor.14165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023]
Abstract
Background A relation between the left ventricular assist device inflow cannula (IC) malposition and pump thrombus has been reported. This study aimed to investigate if the pump position, derived from chest X‐rays in HeartMate 3 (HM3) patients, correlates with neurological dysfunction (ND), ischemic stroke (IS), hemorrhagic stroke (HS) and survival. Methods This analysis was performed on routinely acquired X‐rays of 42 patients implanted with a HM3 between 2014 and 2017. Device position was quantified in patients with and without ND from frontal and lateral X‐rays characterizing the IC and pump in relation to spine, diaphragm or horizontal line. The primary end‐point was freedom from stroke and survival one‐year after HM3 implantation stratified by pump position. Results The analysis of X‐rays, 33.5 (41.0) days postoperative, revealed a significant smaller IC angle of HM3 patients with ND versus no ND (0.1° ± 14.0° vs. 12.9° ± 10.1°, p = 0.005). Additionally, the IC angle in the frontal view, IS: 4.1 (20.9)° versus no IS: 13.8 (7.5)°, p = 0.004 was significantly smaller for HM3 patients with IS. Using receiver operating characteristics derived cut‐off, IC angle <10° provided 75% sensitivity and 100% specificity (C‐statistic = 0.85) for predicting IS. Stratified by IC angle, freedom from IS at 12 months was 100% (>10°) and 60% (<10°) respectively (p = 0.002). No significant differences were found in any end‐point between patients with and without HS. One‐year survival was significantly higher in patients with IC angle >10° versus <10° (100% vs. 71.8%, p = 0.012). Conclusions IC malposition derived from standard chest X‐rays serves as a risk factor for ND, IS and worse survival in HM3 patients.
Collapse
Affiliation(s)
- Thomas Schlöglhofer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marcel Migas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kamen Dimitrov
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Wittmann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Granegger
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik Wiedemann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Heinrich Schima
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
24
|
Mu Z, Liu L, Sun Y, Gao B, Lv H, Zhao P, Liu Y, Wang Z. Multiphysics coupling numerical simulation of flow-diverting stents in the treatment of patients with pulsatile tinnitus. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3526. [PMID: 34463060 DOI: 10.1002/cnm.3526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Patients with pulsatile tinnitus (PT) have unstable treatment effects after resurfacing surgery. Flow-diverting stents (FDS) are proposed as a potential method for the treatment of PT, but the therapeutic effect is not clear. This study aimed to investigate the efficacy of FDS in the treatment of patients with PT induced by sigmoid sinus diverticulum (SSD) and sigmoid sinus wall dehiscence (SSWD). In addition, we aimed to explore the treatment mechanism of PT. Transient-state multiphysics coupling numerical simulation method based on computed tomography angiography of five patients was used to clarify the biomechanical and acoustic states before and after FDS placement. FDS was placed to prevent the blood flow from impacting the vessel wall in the SSD and SSWD areas. Low blood flow velocity (<0.0391 m/s), high relative residence time (>10 Pa-1 ), and low wall shear stress of SSD might lead to thrombosis after FDS placement. The average pressure on the SSWD area of each patient decreased by 13.77%, 18.82%, 29.23%, 19.03%, and 11.20%. The average displacement of the vessel wall on the SSWD area showed acute pulsation and decreased by 15.29%, 14.64%, 30.22%, 41.03%, and 21.28%. The average sound pressure level at the tympanum decreased by 14.01%, 9.33%, 17.66%, 18.88%, and 25.18%, respectively. In brief, FDS was placed to avoid blood flow impacting vessels and reduce the vibration of vessels in the short term, thereby attenuating the degree of PT. The long-term prognosis was that the SSWD area was blocked after SSD thrombosis. Therefore, FDS might be an effective method for the treatment of PT induced by SSD and SSWD. This study would provide a theoretical basis for the treatment of PT and an exploration of FDS design in the treatment of PT.
Collapse
Affiliation(s)
- Zhenxia Mu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Li Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yufeng Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Bin Gao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Gerhard EF, Wang L, Singh R, Schueler S, Genovese LD, Woods A, Tang D, Smith NR, Psotka MA, Tovey S, Desai SS, Jakovljevic DG, MacGowan GA, Shah P. LVAD decommissioning for myocardial recovery: Long-term ventricular remodeling and adverse events. J Heart Lung Transplant 2021; 40:1560-1570. [PMID: 34479776 PMCID: PMC8627486 DOI: 10.1016/j.healun.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Left ventricular assist devices (LVADs) mechanically unload the heart and coupled with neurohormonal therapy can promote reverse cardiac remodeling and myocardial recovery. Minimally invasive LVAD decommissioning with the device left in place has been reported to be safe over short-term follow-up. Whether device retention reduces long-term safety, or sustainability of recovery is unknown. METHODS This is a dual-center retrospective analysis of patients who had achieved responder status (left ventricular ejection fraction, LVEF ≥40% and left ventricular internal diastolic diameter, LVIDd ≤6.0 cm) and underwent elective LVAD decommissioning for myocardial recovery from May 2010 to January 2020. All patients had outflow graft closure and driveline resection with the LVAD left in place. Emergent LVAD decommissioning for an infection or device thrombosis was excluded. Patients were followed with serial echocardiography for up to 3-years. The primary clinical outcome was survival free of heart failure hospitalization, LVAD reimplantation, or transplant. RESULTS During the study period 515 patients received an LVAD and 29 (5.6%) achieved myocardial recovery, 12 patients underwent total device explantation or urgent device decommissioning, 17 patients underwent elective LVAD decommissioning, and were included in the analysis. Median age of patients at LVAD implantation was 42 years (interquartile range, IQR: 25-54 years), all had a nonischemic cardiomyopathy, and 5 (29%) were female. At LVAD implantation, median LVEF was 10% (IQR: 5%-15%), and LVIDd 6.6 cm (IQR: 5.8-7.1 cm). There were 11 hydrodynamically levitated centrifugal-flow (65%), and 6 axial-flow LVADs (35%). The median duration of LVAD support before decommissioning was 28.7 months (range 13.5-36.2 months). As compared to the turndown study parameters, 1-month post-decommissioning, median LVEF decreased from 55% to 48% (p = 0.03), and LVIDd increased from 4.8 cm to 5.2 cm (p = 0.10). There was gradual remodeling until 6 months, after which there was no statistical difference on follow-up through 3-years (LVEF 42%, LVIDd 5.6 cm). Recurrent infections affected 41% of patients leading to 3 deaths and 1 complete device explant. Recurrent HF occurred in 1 patient who required a transplant. Probability of survival free of HF, LVAD, or transplant was 94% at 1-year, and 78% at 3-years. CONCLUSIONS LVAD decommissioning for myocardial recovery was associated with excellent long-term survival free from recurrent heart failure and preservation of ventricular size and function up to 3-years. Reducing the risk of recurrent infections, remains an important therapeutic goal for this management strategy.
Collapse
Affiliation(s)
- Eleanor F Gerhard
- Heart Failure, Mechanical Circulatory Support and Transplantation, Inova Heart and Vascular Institute, Falls Church, Virginia; George Washington University School of Medicine, Washington DC, Washington DC
| | - Lu Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ramesh Singh
- Cardiac Surgery, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Stephan Schueler
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Leonard D Genovese
- Heart Failure, Mechanical Circulatory Support and Transplantation, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Andrew Woods
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Daniel Tang
- Cardiac Surgery, Inova Heart and Vascular Institute, Falls Church, Virginia
| | | | - Mitchell A Psotka
- Heart Failure, Mechanical Circulatory Support and Transplantation, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Sian Tovey
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Shashank S Desai
- Heart Failure, Mechanical Circulatory Support and Transplantation, Inova Heart and Vascular Institute, Falls Church, Virginia
| | | | - Guy A MacGowan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Palak Shah
- Heart Failure, Mechanical Circulatory Support and Transplantation, Inova Heart and Vascular Institute, Falls Church, Virginia.
| |
Collapse
|
26
|
Manning KB, Nicoud F, Shea SM. Mathematical and Computational Modeling of Device-Induced Thrombosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100349. [PMID: 35071850 PMCID: PMC8769491 DOI: 10.1016/j.cobme.2021.100349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Given the extensive and routine use of cardiovascular devices, a major limiting factor to their success is the thrombotic rate that occurs. This both poses direct risk to the patient and requires counterbalancing with anticoagulation and other treatment strategies, contributing additional risks. Developing a better understanding of the mechanisms of device-induced thrombosis to aid in device design and medical management of patients is critical to advance the ubiquitous use and durability. Thus, mathematical and computational modelling of device-induced thrombosis has received significant attention recently, but challenges remain. Additional areas that need to be explored include microscopic/macroscopic approaches, reconciling physical and numerical timescales, immune/inflammatory responses, experimental validation, and incorporating pathologies and blood conditions. Addressing these areas will provide engineers and clinicians the tools to provide safe and effective cardiovascular devices.
Collapse
Affiliation(s)
- Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Franck Nicoud
- CNRS, IMAG, Université de Montpellier, Montpellier, France
| | - Susan M. Shea
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Martinolli M, Cornat F, Vergara C. Computational Fluid-Structure Interaction Study of a New Wave Membrane Blood Pump. Cardiovasc Eng Technol 2021; 13:373-392. [PMID: 34773241 DOI: 10.1007/s13239-021-00584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Wave membrane blood pumps (WMBP) are novel pump designs in which blood is propelled by means of wave propagation by an undulating membrane. In this paper, we computationally studied the performance of a new WMBP design (J-shaped) for different working conditions, in view of potential applications in human patients. METHODS Fluid-structure interaction (FSI) simulations were conducted in 3D pump geometries and numerically discretized by means of the extended finite element method (XFEM). A contact model was introduced to capture membrane-wall collisions in the pump head. Mean flow rate and membrane envelope were determined to evaluate hydraulic performance. A preliminary hemocompatibility analysis was performed via calculation of fluid shear stress. RESULTS Numerical results, validated against in vitro experimental data, showed that the hydraulic output increases when either the frequency or the amplitude of membrane oscillations were higher, with limited increase in the fluid stresses, suggesting good hemocompatibility properties. Also, we showed better performance in terms of hydraulic power with respect to a previous design of the pump. We finally studied an operating point which achieves physiologic flow rate target at diastolic head pressure of 80 mmHg. CONCLUSION A new design of WMBP was computationally studied. The proposed FSI model with contact was employed to predict the new pump hydraulic performance and it could help to properly select an operating point for the upcoming first-in-human trials.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
28
|
Ghodrati M, Schlöglhofer T, Maurer A, Khienwad T, Zimpfer D, Beitzke D, Zonta F, Moscato F, Schima H, Aigner P. Effects of the atrium on intraventricular flow patterns during mechanical circulatory support. Int J Artif Organs 2021; 45:421-430. [PMID: 34715752 PMCID: PMC8922056 DOI: 10.1177/03913988211056018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simulations of the ventricular flow patterns during left ventricular assist device (LVAD) support are mainly performed with idealized cylindrical inflow, neglecting the influence of the atrial vortex. In this study, the influence of the left atrium (LA) on the intra-ventricular flow was investigated via Computational Fluid Dynamics (CFD) simulations. Ventricular flow was simulated by a combined Eulerian (carrier flow)/Lagrangian (particles) approach taking into account either the LA or a cylindrical inflow section to mimic a fully support condition. The flow deviation at the mitral valve, the blood low-velocity volume as well as the residence time and shear stress history of the particles were calculated. Inclusion of the LA deflects the flow at the mitral valve by 25°, resulting in an asymmetric flow jet entering the left ventricle. This reduced the ventricular low-velocity volume by 40% (from 6.4 to 3.9 cm3), increased (40%) the shear stress experienced by particles and correspondingly increased (27%) their residence time. Under the studied conditions, the atrial geometry plays a major role in the development of intraventricular flow patterns. A reliable prediction of blood flow dynamics and consequently thrombosis risk analysis within the ventricle requires the consideration of the LA in computational simulations.
Collapse
Affiliation(s)
- Mojgan Ghodrati
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexander Maurer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Thananya Khienwad
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Francesco Zonta
- Institute of Fluid Dynamics and Heat Transfer, Technical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
29
|
Ramaswamy RK, Marimuthu SK, Ramarathnam KK, Vijayasekharan S, Rao KGS, Balakrishnan KR. Virtual reality-guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol 2021; 14:388-392. [PMID: 34667413 PMCID: PMC8457285 DOI: 10.4103/apc.apc_81_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
Virtual reality (VR) is increasingly used for presurgical planning and teaching during surgery. However, VR aided presurgical planning toolbox for left ventricular assist device (LVAD) implantation is not widely available. We investigated the use of a VR environment with wearable headsets and touch controllers in simulating an implant in an 11-year-old boy. The technology played a significant role in the optimal positioning of the LVAD.
Collapse
Affiliation(s)
| | - Sathish Kumar Marimuthu
- Department of Engineering Design, Indian Institute of Technology, Chennai, Tamil Nadu, India
| | | | - Srinath Vijayasekharan
- Department of Heart and Lung Transplant/Mechanical Circulatory Support, Institute of Heart and Lung Transplant, MGM Health Care, Chennai, Tamil Nadu, India
| | - Kemundel Genny Suresh Rao
- Department of Heart and Lung Transplant/Mechanical Circulatory Support, Institute of Heart and Lung Transplant, MGM Health Care, Chennai, Tamil Nadu, India
| | - Komarakshi R Balakrishnan
- Department of Heart and Lung Transplant/Mechanical Circulatory Support, Institute of Heart and Lung Transplant, MGM Health Care, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Méndez Rojano R, Zhussupbekov M, Antaki JF. Multi-constituent simulation of thrombus formation at LVAD inlet cannula connection: Importance of Virchow's triad. Artif Organs 2021; 45:1014-1023. [PMID: 33683718 PMCID: PMC9987618 DOI: 10.1111/aor.13949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
As pump thrombosis is reduced in current-generation ventricular assist devices (VAD), adverse events such as bleeding or stroke remain at unacceptable rates. Thrombosis around the VAD inlet cannula (IC) has been highlighted as a possible source of stroke events. Recent computational fluid dynamics (CFD) studies have attempted to characterize the thrombosis risk of different IC-ventricle configurations. However, purely CFD simulations relate thrombosis risk to ad hoc criteria based on flow characteristics, with little consideration of biochemical factors. This study investigates the genesis of IC thrombosis including two elements of the Virchow's triad: endothelial injury and hypercoagulability. To this end a multi-scale thrombosis simulation that includes platelet activity and coagulation reactions was performed. Our results show significant thrombin formation in stagnation regions (|u| < 0.005 m/s) close to the IC wall. In addition, high shear-mediated platelet activation was observed over the leading-edge tip of the cannula. The current study reveals the importance of biochemical factors to the genesis of thrombosis at the ventricular-cannula junction in a perioperative state. This study is a first step toward the long-term objective of including clinically relevant pharmacological kinetics such as heparin or aspirin in simulations of inflow cannula thrombosis.
Collapse
Affiliation(s)
| | - Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Left Ventricular Assist Device Support-Induced Alteration of Mechanical Stress on Aortic Valve and Aortic Wall. ASAIO J 2021; 68:516-523. [PMID: 34261872 DOI: 10.1097/mat.0000000000001522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The aim of this study was to evaluate the fluid dynamics in the aortic valve and proximal aorta during continuous-flow left ventricular assist device (LVAD) support using epiaortic echocardiography and vector flow mapping technology. A total of 12 patients who underwent HeartMate 3 implantation between December 2018 and February 2020 were prospectively examined. The wall shear stress (WSS) on the ascending aorta, aortic root, and aortic valve was evaluated before and after LVAD implantation. The median age of the cohort was 62 years and 17% were women. The peak WSS on the ascending aorta (Pre 1.48 [0.86-1.69] [Pascal {Pa}] vs. Post 0.33 [0.21-0.58] [Pa]; p = 0.002), aortic root (Pre 0.46 [0.31-0.58] (Pa) vs. Post 0.18 [0.12-0.25] (Pa); p = 0.001), and ventricularis of the aortic valve (Pre 1.76 [1.59-2.30] (Pa) vs. Post 0.30 [0.10-0.61] (Pa); p = 0.001) was significantly lower after LVAD implantation. No difference in WSS was observed on the fibrosa of the aortic valve (Pre 0.36 [0.22-0.53] (Pa) vs. Post 0.38 [0.38-0.52] (Pa); p = 0.850) before and after implantation. The WSS on the ascending aorta, aortic root, and ventricularis of the aortic valve leaflets was significantly altered by LVAD implantation, providing preliminary data on the potential contribution of fluid dynamics to LVAD-induced aortic insufficiency and root thrombus.
Collapse
|
32
|
Aigner P, Schlöglhofer T, Plunger LC, Beitzke D, Wielandner A, Schima H, Zimpfer D, Moscato F. Pump position and thrombosis in ventricular assist devices: Correlation of radiographs and CT data. Int J Artif Organs 2021; 44:956-964. [PMID: 34088235 PMCID: PMC8581720 DOI: 10.1177/03913988211017552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malpositioning of left ventricular assist devices (LVAD) is a risk factor for thrombosis, but its identification from clinical imaging remains challenging. X-rays and CT scans were analyzed and parameters identified that correlated to pump thrombosis. Retrospective imaging data of patients (n = 115) with HeartmateII (HMII) or HVAD were analyzed in two groups (pump-thrombosis PT, n = 15 vs matched control group NT, n = 15) using routine X-rays and CT scans. In CT, directional deviations of the inflow cannula in three-chamber and two-chamber view (α and β angles) were identified. In HVAD PT frontal radiographs showed reduced pump body area and smaller minor axis (PT 41.3 ± 4.8 mm vs NT 34.9 ± 6.0 mm, p = 0.026), and in the lateral radiographs the visibility of the inflow cannula served as a predictive parameter for PT. In HMII patients, no parameters were associated with PT. The angle α differed significantly (NT −1.2 ± 7.5°, PT −22.0 ± 4.7°, p = 0.006) in HVAD patients. Further, correlations of x-ray parameters with CT angles α and β showed that radiographs can be used to identify malpositioned pumps. Well-aligned inflow cannula positions are essential. HVAD patients with a posterior rotation of the inflow cannula have a higher risk of pump thrombosis. This risk can reliably be identified from routine radiographs.
Collapse
Affiliation(s)
- Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Division for Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Lea Carmen Plunger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alice Wielandner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Division for Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Division for Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
33
|
Entezari S, Shakiba A, Niazmand H. Numerical investigation of the effects of cannula geometry on hydraulic blood flow to prevent the risk of thrombosis. Comput Biol Med 2021; 134:104484. [PMID: 34004574 DOI: 10.1016/j.compbiomed.2021.104484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/17/2023]
Abstract
Despite significant advances in left ventricular assist devices and the cannula, unfavorable events leading to the death of patients, including bleeding, infection, neurological disorders, hemolysis, and thrombosis, are still being reported. Local parameters of blood flow, including static flow, vorticity and critical values of shear stress on the wall of ventricle and cannula, increase the risk of thrombosis. Therefore, the analysis of blood flow domains inside the ventricle and cannula is necessary to investigate the probability of forming thrombosis in the cannula of left ventricular assist devices. In this study, blood flow is investigated in a Medtronic DLP 16F clinical cannula by using computational fluid dynamics through three-dimensional modeling of the left ventricle and cannula based on real geometry. Apart from the fact that blood is considered non-Newtonian fluid, the effect of heart movement in the left ventricle is also applied. In this research, blood flow in the cannula has been examined and some problems resulting from the use of the cannulas have been investigated. The results indicate that changing the geometry of input holes, such as their number and size, on the tip of the cannula, alter the probability of forming thrombosis and the standard mode shows a better performance.
Collapse
Affiliation(s)
- Soroush Entezari
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shakiba
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hamid Niazmand
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
34
|
Ghodrati M, Maurer A, Schlöglhofer T, Khienwad T, Zimpfer D, Beitzke D, Zonta F, Moscato F, Schima H, Aigner P. The influence of left ventricular assist device inflow cannula position on thrombosis risk. Artif Organs 2020; 44:939-946. [PMID: 32302423 PMCID: PMC7496759 DOI: 10.1111/aor.13705] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
The use of left ventricular assist devices (LVADs) as a treatment method for heart failure patients has been steadily increasing; however, pathological studies showed presence of thrombi around the HeartWare ventricular assist device inflow cannula (IC) in more than 95% of patients after device explantation. Flow fields around the IC might trigger thrombus formation and require further investigation. In this study flow dynamics parameters were evaluated for different patient geometries using computational fluid dynamics (CFD) simulations. Left ventricular (LV) models of two LVAD patients were obtained from CT scans. The LV volumes of Patient 1 (P1) and Patient 2 (P2) were 264 and 114 cm3 with an IC angle of 20° and 9° from the mitral-IC tip axis at the coronal plane. The IC insertion site at the apex was central for P1, whereas it was lateral for P2. Transient CFD simulations were performed over 9 cardiac cycles. The wedge area was defined from the cannula tip to the wall of the LV apex. Mean velocity magnitude and blood stagnation region (volume with mean velocity <5 mm/s) as well as the wall shear stress (WSS) at the IC surface were calculated. Cardiac support resulted in a flow mainly crossing the ventricle from the mitral valve to the LVAD cannula for P2, while the main inflow jet deviated toward the septal wall in P1. Lower WSS at the IC surface and consequently larger stagnation volumes were observed for P2 (P1: 0.17, P2: 0.77 cm3 ). Flow fields around an LVAD cannula can be influenced by many parameters such as LV size, IC angle, and implantation site. Careful consideration of influencing parameters is essential to get reliable evaluations of the apical flow field and its connection to apical thrombus formation. Higher blood washout and lower stagnation were observed for a central implantation of the IC at the apex.
Collapse
Affiliation(s)
- Mojgan Ghodrati
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Alexander Maurer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
- Department for Cardiac SurgeryMedical University of ViennaViennaAustria
| | - Thananya Khienwad
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Daniel Zimpfer
- Department for Cardiac SurgeryMedical University of ViennaViennaAustria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image Guided TherapyMedical University of ViennaViennaAustria
| | - Francesco Zonta
- Institute of Fluid Dynamics and Heat TransferTechnical University of ViennaViennaAustria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
- Department for Cardiac SurgeryMedical University of ViennaViennaAustria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| |
Collapse
|
35
|
Sciomer S, Rellini C, Agostoni P, Moscucci F. A new pathophysiology in heart failure patients. Artif Organs 2020; 44:1303-1305. [PMID: 32639613 DOI: 10.1111/aor.13770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/30/2020] [Indexed: 01/28/2023]
Abstract
In the treatment of patients with severe heart failure, left ventricle assist device plays an important role, especially as a destination therapy. Nevertheless, even in successful cases, patients' progressive weaning is rarely taken into consideration. The recovery of more physiological circulation conditions is not a main goal. This hypothesis is discussed in this article.
Collapse
Affiliation(s)
- Susanna Sciomer
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, University of Rome "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Carlotta Rellini
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, University of Rome "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Moscucci
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, University of Rome "Sapienza", Policlinico Umberto I, Rome, Italy
| |
Collapse
|
36
|
Imamura T, Narang N, Nitta D, Fujino T, Nguyen A, Kim G, Raikhelkar J, Rodgers D, Ota T, Jeevanandam V, Sayer G, Uriel N. Optimal cannula positioning of HeartMate 3 left ventricular assist device. Artif Organs 2020; 44:e509-e519. [PMID: 32557769 DOI: 10.1111/aor.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022]
Abstract
Cannula position in HeartMate II and HeartWare left ventricular assist devices (LVADs) is associated with clinical outcome. This study aimed to investigate the clinical implication of the device positioning in HeartMate 3 LVAD cohort. Consecutive patients who underwent HeartMate 3 LVAD implantation were followed for one year from index discharge. At index discharge, chest X-ray parameters were measured: (a) cannula coronal angle, (b) height of pump bottom, (c) cannula sagittal angle, and (d) cannula lumen area. The association of each measurement of cannula position with one-year clinical outcomes was investigated. Sixty-four HeartMate 3 LVAD patients (58 years old, 64% male) were enrolled. In the multivariable Cox regression model, the cannula coronal angle was a significant predictor of death or heart failure readmission (hazard ratio 1.27 [1.01-1.60], P = .045). Patients with a cannula coronal angle ≤28° had lower central venous pressure (P = .030), lower pulmonary capillary wedge pressure (P = .027), and smaller left ventricular size (P = .019) compared to those with the angle >28°. Right ventricular size and parameters of right ventricular function were also better in the narrow angle group, as was one-year cumulative incidence of death or heart failure readmission (10% vs. 50%, P = .008). Narrow cannula coronal angle in patients with HeartMate 3 LVADs was associated with improved cardiac unloading and lower incidence of death or heart failure readmission. Larger studies to confirm the implication of optimal device positioning are warranted.
Collapse
Affiliation(s)
- Teruhiko Imamura
- Division of Cardiology, University of Chicago Medical Center, Chicago, IL, USA.,Second Department of Internal Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Nikhil Narang
- Division of Cardiology, University of Chicago Medical Center, Chicago, IL, USA
| | - Daisuke Nitta
- Division of Cardiology, University of Chicago Medical Center, Chicago, IL, USA
| | - Takeo Fujino
- Division of Cardiology, University of Chicago Medical Center, Chicago, IL, USA
| | - Ann Nguyen
- Division of Cardiology, University of Chicago Medical Center, Chicago, IL, USA
| | - Gene Kim
- Division of Cardiology, University of Chicago Medical Center, Chicago, IL, USA
| | - Jayant Raikhelkar
- Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Daniel Rodgers
- Division of Cardiology, University of Chicago Medical Center, Chicago, IL, USA
| | - Takeyoshi Ota
- Department of Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | | | - Gabriel Sayer
- Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Nir Uriel
- Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Li S, Zimpfer D, Mahr C. Commentary: Transcending acceptable, moving toward optimal: Standardizing surgical configurations of ventricular assist device therapy. J Thorac Cardiovasc Surg 2020; 162:1566-1567. [PMID: 32534746 DOI: 10.1016/j.jtcvs.2020.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Song Li
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Wash
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Claudius Mahr
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Wash.
| |
Collapse
|