1
|
Chen DQ, Que ZQ, Xu WB, Xiao KY, Sun NK, Song HY, Feng JY, Lin GX, Rui G. Nucleotide polymorphism-based study utilizes human plasma liposomes to discover potential therapeutic targets for intervertebral disc disease. Front Endocrinol (Lausanne) 2024; 15:1403523. [PMID: 39211445 PMCID: PMC11357925 DOI: 10.3389/fendo.2024.1403523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background While intervertebral disc degeneration (IVDD) is crucial in numerous spinally related illnesses and is common among the elderly, the complete understanding of its pathogenic mechanisms is still an area of ongoing study. In recent years, it has revealed that liposomes are crucial in the initiation and progression of IVDD. However, their intrinsic mediators and related mechanisms remain unclear. With the development of genomics, an increasing amount of data points to the contribution of genetics in the etiology of disease. Accordingly, this study explored the causality between liposomes and IVDD by Mendelian randomization (MR) analysis and deeply investigated the intermediary roles of undetected metabolites. Methods According to MR analysis, 179 liposomes and 1400 metabolites were evaluated for their causal association with IVDD. Single nucleotide polymorphisms (SNPs) are strongly associated with the concentrations of liposomes and metabolites. Consequently, they were employed as instrumental variables (IVs) to deduce if they constituted risk elements or protective elements for IVDD. Furthermore, mediation analysis was conducted to pinpoint possible metabolic mediators that link liposomes to IVDD. The inverse variance weighting (IVW) was the main analytical technique. Various confidence tests in the causality estimates were performed, including consistency, heterogeneity, pleiotropy, and sensitivity analyses. Inverse MR analysis was also utilized to estimate potential reverse causality. Results MR analysis identified 13 liposomes and 79 metabolites markedly relevant to IVDD. Moreover, the mediation analysis was carried out by choosing the liposome, specifically the triacylglycerol (48:2) levels, which were found to be most notably associated with an increased risk of IVDD. In all, three metabolite-associated mediators were identified (3-methylcytidine levels, inosine 5'-monophosphate (IMP) to phosphate ratio, and adenosine 5'-diphosphate (ADP) to glycine ratio). Conclusion The analysis's findings suggested possible causal connections between liposomes, metabolites, and IVDD, which could act as both forecast and prognosis clinical indicators, thereby aiding in the exploration of the pathogenesis behind IVDD.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Que
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wen-Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ke-Yi Xiao
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Nai-Kun Sun
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hong-Yu Song
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin-Yi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Tachibana T, Notomi S, Funatsu J, Fujiwara K, Nakatake S, Murakami Y, Nakao S, Kanamoto T, Ikeda Y, Ishibashi T, Sonoda KH, Hisatomi T. Intraocular kinetics of pathological ATP after photoreceptor damage in rhegmatogenous retinal detachment. Jpn J Ophthalmol 2024:10.1007/s10384-024-01087-x. [PMID: 39060674 DOI: 10.1007/s10384-024-01087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Extracellular Adenosine triphosphate (ATP) released by dying cells may cause a secondary cell death in neighboring cells in retinal degeneration. We investigated intraocular ATP kinetics to gain mechanical insights into the pathology in rhegmatogenous retinal detachment (RRD). STUDY DESIGN Retrospective clinical study. METHODS Vitreous or subretinal fluids (SRF) were obtained from patients with RRD (n=75), macular hole (MH; n=20), and epiretinal membrane (ERM; n=35) during vitrectomy. ATP levels in those samples were measured by luciferase assay. RESULTS Mean ATP levels in the vitreous from RRD patients were significantly higher compared to those from MH and ERM patients (2.3 and 0.3 nM, respectively. P<0.01). Mean ATP levels in the SRF from RRD (11.7 nM) were higher than those in the vitreous from RRD (P<0.01). Mean ATP levels in the vitreous with short durations (1-8 days) of RRD were higher compared to those with long durations (>8 days) (3.2 and 1.4 nM, respectively. P<0.05). Similarly, ATP in SRF with short durations were higher than those with long durations (23.8 and 3.6 nM, respectively. P<0.05). Furthermore, the concentrations of ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1), a major ATP degradative enzyme, in the vitreous from RRD were higher than those from MH/ERM (1.2 and 0.2 ng/ml, respectively. P<0.01). ENTPD1 expression was localized in the cytoplasm of CD11b-positive infiltrating cells in the vitreous and retinal cells. CONCLUSION ATP increased in the vitreous and SRF in RRD and decreased over time with an upregulation of ENTPD1. The kinetics indicate the pathological mechanism of the excessive extracellular ATP after RRD.
Collapse
Affiliation(s)
- Takashi Tachibana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Ohshima Eye Hospital, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Funatsu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | - Yasuhiro Ikeda
- Department of Ophthalmology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyouin, Chikushino, Fukuoka, 818-8502, Japan.
| |
Collapse
|
3
|
Alanazi AH, Shan S, Narayanan SP, Somanath PR. Comparative Proteomic Analysis of Type 2 Diabetic versus Non-Diabetic Vitreous Fluids. Life (Basel) 2024; 14:883. [PMID: 39063636 PMCID: PMC11278183 DOI: 10.3390/life14070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a leading cause of vision loss, with complex mechanisms. The study aimed to comprehensively explore vitreous humor of diabetic and non-diabetic individuals, paving the way for identifying the potential molecular mechanisms underlying DR. METHODS Vitreous samples from type 2 diabetic and non-diabetic subjects, collected post-mortem, were analyzed using liquid chromatography-mass spectrometry. Pathway enrichment and gene ontology analyses were conducted to identify dysregulated pathways and characterize protein functions. RESULTS Pathway analysis revealed dysregulation in multiple metabolic and signaling pathways associated with diabetes, including glycerolipid metabolism, histidine metabolism, and Wnt signaling. Gene ontology analysis identified proteins involved in inflammation, immune response dysregulation, and calcium signaling. Notably, proteins such as Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2), Calcium homeostasis endoplasmic reticulum protein (CHERP), and Coronin-1A (CORO1A) were markedly upregulated in diabetic vitreous, implicating aberrant calcium signaling, inflammatory responses, and cytoskeletal reorganization in DR. CONCLUSIONS Our study provides valuable insights into the intricate mechanisms underlying DR and highlights the significance of inflammation, immune dysregulation, and metabolic disturbances in disease progression. Identification of specific proteins as potential biomarkers underscores the multifactorial nature of DR. Future research in this area is vital for advancing therapeutic interventions and translating findings into clinical practice.
Collapse
Affiliation(s)
- Abdulaziz H. Alanazi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Clinical Practice, College of Pharmacy, Northern Border University, Rafha 91531, Saudi Arabia
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Olivier E, Rat P. Role of Oxysterols in Ocular Degeneration Mechanisms and Involvement of P2X7 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:277-292. [PMID: 38036885 DOI: 10.1007/978-3-031-43883-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ocular degeneration, including cataracts, glaucoma, macular degeneration, and diabetic retinopathy, is a major public health challenge, as it affects the quality of life of millions of people worldwide and, in its advanced stages, leads to blindness. Ocular degeneration, although it can affect different parts of the eye, shares common characteristics such as oxysterols and the P2X7 receptor. Indeed, oxysterols, which are cholesterol derivatives, are associated with ocular degeneration pathogenesis and trigger inflammation and cell death pathways. Activation of the P2X7 receptor is also linked to ocular degeneration and triggers the same pathways. In age-related macular degeneration, these two key players have been associated, but further studies are needed to extrapolate this interrelationship to other ocular degenerations.
Collapse
Affiliation(s)
| | - Patrice Rat
- Université Paris Cité, CNRS, CiTCoM, Paris, France
| |
Collapse
|
5
|
Mishra N, Kant R, Goswami DG, Petrash JM, Agarwal C, Tewari-Singh N, Agarwal R. Metabolomics for identifying pathways involved in vesicating agent lewisite-induced corneal injury. Exp Eye Res 2023; 236:109672. [PMID: 37797797 PMCID: PMC10843384 DOI: 10.1016/j.exer.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-β-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Dinesh G Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Xiao T, Zhi Y, Tian F, Huang F, Cheng X, Wu A, Tao L, Guo Z, Shen X. Ameliorative effect of black raspberry anthocyanins on diabetes retinopathy by inhibiting axis protein tyrosine phosphatase 1B-endoplasmic reticulum stress. J Funct Foods 2023; 107:105696. [DOI: 10.1016/j.jff.2023.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025] Open
|
7
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Ikeda T, Nakamura K, Kida T, Oku H. Possible roles of anti-type II collagen antibody and innate immunity in the development and progression of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2022; 260:387-403. [PMID: 34379187 PMCID: PMC8786754 DOI: 10.1007/s00417-021-05342-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of both diabetic retinopathy (DR) and rheumatoid arthritis (RA) has recently been considered to involve autoimmunity. Serum and synovial fluid levels of anti-type II collagen antibodies increase early after the onset of RA, thus inducing immune responses and subsequent hydrarthrosis and angiogenesis, which resemble diabetic macular edema and proliferative DR (PDR), respectively. We previously reported that DR is also associated with increased serum levels of anti-type II collagen antibodies. Retinal hypoxia in DR may induce pericytes to express type II collagen, resulting in autoantibody production against type II collagen. As the result of blood-retinal barrier disruption, anti-type II collagen antibodies in the serum come into contact with type II collagen around the retinal vessels. A continued loss of pericytes and type II collagen around the retinal vessels may result in a shift of the immune reaction site from the retina to the vitreous. It has been reported that anti-inflammatory M2 macrophages increased in the vitreous of PDR patients, accompanied by the activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity. M2 macrophages promote angiogenesis and fibrosis, which might be exacerbated and prolonged by dysregulated innate immunity.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Department of Ophthalmology, Osaka Kaisei Hospital, 1-6-10 Miyahara Yodogawa-ku, Osaka City, Osaka, Japan.
| | | | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
9
|
Ernst C, Skov Jensen P, Aalkjaer C, Bek T. Differential Effects of Intra- and Extravascular ATP on the Diameter of Porcine Vessels at Different Branching Levels Ex Vivo. Invest Ophthalmol Vis Sci 2021; 61:8. [PMID: 33035289 PMCID: PMC7552936 DOI: 10.1167/iovs.61.12.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose Adenosine triphosphate (ATP) is involved in the diameter regulation of retinal vessels. The compound has been shown to induce both constriction and dilatation, but the detailed mechanisms underlying these effects and the site of action of the compound are not known in detail. Therefore, the purpose of the present study was to investigate whether the vasoactive effects of ATP on retinal vessels depend on intra- and extravascular application, and to study whether the effects differ at different vascular branching levels. Methods Diameter changes in arterioles, pre-capillary arterioles, and capillaries were studied in perfused porcine hemiretinas (n = 48) ex vivo after intra- and extravascular application of the nondegradable ATP analogue ATP-γ-S or ATP in the presence or not of antagonists to the CD73/ecto-5′-nucleotidase (AOPCP), the P2-purinergic receptor (PPADS), the A3-adenosine receptor (MRS1523), and the synthesis of cyclooxygenase products (ibuprofen). Results Intravascular ATP-induced constriction and extravascular ATP-induced dilatation of retinal arterioles, pre-capillary arterioles and capillaries, and dilatation was inhibited by ibuprofen. Both constriction and dilatation of arterioles were inhibited by antagonizing ATP degradation. Furthermore, constriction at all three branching levels was antagonized by blocking the A3 purinoceptor, whereas constriction in arterioles and pre-capillary arterioles was antagonized by blocking the P2 purinoceptor. Conclusions ATP affects the diameter of retinal arterioles, pre-capillary arterioles, and capillaries through different pathways, and the effects depend on whether the compound is administered intravascularly or extravascularly. This may form the basis for selective interventions on retinal vascular disease with differential involvement of vessels at different branching levels.
Collapse
Affiliation(s)
- Charlotte Ernst
- Department of Ophthalmology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Peter Skov Jensen
- Department of Ophthalmology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine (Physiology), University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| |
Collapse
|
10
|
Patrick AT, He W, Madu J, Sripathi SR, Choi S, Lee K, Samson FP, Powell FL, Bartoli M, Jee D, Gutsaeva DR, Jahng WJ. Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome. J Diabetes Metab Disord 2021; 19:829-848. [PMID: 33520806 DOI: 10.1007/s40200-020-00570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Purpose The current study aims to determine the molecular mechanisms of diabetic retinopathy (DR) using the protein-protein interactome and metabolome map. We examined the protein network of novel biomarkers of DR for direct (physical) and indirect (functional) interactions using clinical target proteins in different models. Methods We used proteomic tools including 2-dimensional gel electrophoresis, mass spectrometry analysis, and database search for biomarker identification using in vivo murine and human model of diabetic retinopathy and in vitro model of oxidative stress. For the protein interactome and metabolome mapping, various bioinformatic tools that include STRING and OmicsNet were used. Results We uncovered new diabetic biomarkers including prohibitin (PHB), dynamin 1, microtubule-actin crosslinking factor 1, Toll-like receptor (TLR 7), complement activation, as well as hypothetical proteins that include a disintegrin and metalloproteinase (ADAM18), vimentin III, and calcium-binding C2 domain-containing phospholipid-binding switch (CAC2PBS) using a proteomic approach. Proteome networks of protein interactions with diabetic biomarkers were established using known DR-related proteome data. DR metabolites were interconnected to establish the metabolome map. Our results showed that mitochondrial protein interactions were changed during hyperglycemic conditions in the streptozotocin-treated murine model and diabetic human tissue. Conclusions Our interactome mapping suggests that mitochondrial dysfunction could be tightly linked to various phases of DR pathogenesis including altered visual cycle, cytoskeletal remodeling, altered lipid concentration, inflammation, PHB depletion, tubulin phosphorylation, and altered energy metabolism. The protein-metabolite interactions in the current network demonstrate the etiology of retinal degeneration and suggest the potential therapeutic approach to treat DR.
Collapse
Affiliation(s)
- Ambrose Teru Patrick
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI USA
| | - Joshua Madu
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Srinivas R Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Seulggie Choi
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kook Lee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Faith Pwaniyibo Samson
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA USA
| | - Manuela Bartoli
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Donghyun Jee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Diana R Gutsaeva
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Wan Jin Jahng
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
11
|
ValdezGuerrero AS, Quintana-Pérez JC, Arellano-Mendoza MG, Castañeda-Ibarra FJ, Tamay-Cach F, Alemán-González-Duhart D. Diabetic Retinopathy: Important Biochemical Alterations and the Main Treatment Strategies. Can J Diabetes 2020; 45:504-511. [PMID: 33341391 DOI: 10.1016/j.jcjd.2020.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/08/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glucose homeostasis, insulin resistance and hyperglycemia. Among its serious multisystemic complications is diabetic retinopathy (DR), which develops slowly and often insidiously. This disorder-the most common cause of vision loss in working-age adults-is characterized by functional and morphological changes in the retina. It results from the exacerbation of ischemic and inflammatory conditions prompted by alterations in the blood vessels, such as the development of leukostasis, thickening of the basement membrane, retinal neovascularization and fibrovascular tissue formation at the vitreoretinal interface. The pathogenic alterations are usually triggered at the biochemical level, involving a greater activity in 4 pathways: the polyol pathway, the hexosamine pathway, the formation of advanced glycation end-products and the activation of protein kinase C isoforms. When acting together, these pathways give rise to increased levels of reactive oxygen species and decreased levels of endogenous antioxidant agents, thus generating oxidative stress. All current therapies are aimed at the later stages of DR, and their application implies side effects. One possible strategy for preventing the complications of DM is to counteract the elevated superoxide production stemming from a high level of blood glucose. Accordingly, some treatments are under study for their capacity to reduce vascular leakage and avoid retinal ischemia, retinal neovascularization and macular edema. The present review summarizes the biochemical aspects of DR and the main approaches for treating it.
Collapse
Affiliation(s)
- Amaranta Sarai ValdezGuerrero
- Laboratory for Research in Applied Biochemistry, Section of Postgraduate Studies and Research, Department of Basic Disciplinary Training, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Julio César Quintana-Pérez
- Laboratory for Research in Applied Biochemistry, Section of Postgraduate Studies and Research, Department of Basic Disciplinary Training, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Mónica Griselda Arellano-Mendoza
- Research Laboratory in Chronic Degenerative Diseases, Section of Postgraduate Studies and Research, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Francisco Javier Castañeda-Ibarra
- Laboratory for Research in Applied Biochemistry, Section of Postgraduate Studies and Research, Department of Basic Disciplinary Training, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Feliciano Tamay-Cach
- Laboratory for Research in Applied Biochemistry, Section of Postgraduate Studies and Research, Department of Basic Disciplinary Training, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico.
| | - Diana Alemán-González-Duhart
- Department of Basic Interdisciplinary Training, Interdisciplinary Center for Health Sciences-Santo Tomás Unit, National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
12
|
Effect of Ocular Hypertension on D- β-Aspartic Acid-Containing Proteins in the Retinas of Rats. J Ophthalmol 2019; 2019:2431481. [PMID: 31240134 PMCID: PMC6556240 DOI: 10.1155/2019/2431481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To investigate the effect of ocular hypertension-induced isomerization of aspartic acid in retinal proteins. Methods Adult Wistar rats with ocular hypertension were used as an experimental model. D-β-aspartic acid-containing proteins were isolated by SDS-PAGE and western blot with an anti-D-β-aspartic acid antibody and identified by liquid chromatography-mass spectrometry analysis. The concentration of ATP was measured by ELISA. Results D-β-aspartic acid was expressed in a protein band at around 44.5 kDa at much higher quantities in the retinas of rats with ocular hypertension than in those of normotensive rats. The 44.5 kDa protein band was mainly composed of α-enolase, S-arrestin, and ATP synthase subunits α and β, in both the ocular hypertensive and normotensive retinas. Moreover, increasing intraocular pressure was correlated with increasing ATP concentrations in the retinas of rats. Conclusion Ocular hypertension affected the expression of proteins containing D-β-aspartic acid, including ATP synthase subunits, and up-regulation of ATP in the retinas of rats.
Collapse
|
13
|
Pavlou S, Augustine J, Cunning R, Harkin K, Stitt AW, Xu H, Chen M. Attenuating Diabetic Vascular and Neuronal Defects by Targeting P2rx7. Int J Mol Sci 2019; 20:ijms20092101. [PMID: 31035433 PMCID: PMC6540042 DOI: 10.3390/ijms20092101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal vascular and neuronal degeneration are established pathological features of diabetic retinopathy. Data suggest that defects in the neuroglial network precede the clinically recognisable vascular lesions in the retina. Therefore, new treatments that target early-onset neurodegeneration would be expected to have great value in preventing the early stages of diabetic retinopathy. Here, we show that the nucleoside reverse transcriptase inhibitor lamivudine (3TC), a newly discovered P2rx7 inhibitor, can attenuate progression of both neuronal and vascular pathology in diabetic retinopathy. We found that the expression of P2rx7 was increased in the murine retina as early as one month following diabetes induction. Compared to non-diabetic controls, diabetic mice treated with 3TC were protected against the formation of acellular capillaries in the retina. This occurred concomitantly with a maintenance in neuroglial function, as shown by improved a- and b-wave amplitude, as well as oscillatory potentials. An improvement in the number of GABAergic amacrine cells and the synaptophysin-positive area was also observed in the inner retina of 3TC-treated diabetic mice. Our data suggest that 3TC has therapeutic potential since it can target both neuronal and vascular defects caused by diabetes.
Collapse
Affiliation(s)
- Sofia Pavlou
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Josy Augustine
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Rónán Cunning
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Kevin Harkin
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
14
|
Soluble and membrane-bound adenylate kinase and nucleotidases augment ATP-mediated inflammation in diabetic retinopathy eyes with vitreous hemorrhage. J Mol Med (Berl) 2019; 97:341-354. [PMID: 30617853 PMCID: PMC6394560 DOI: 10.1007/s00109-018-01734-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Abstract ATP and adenosine are important signaling molecules involved in vascular remodeling, retinal function, and neurovascular coupling in the eye. Current knowledge on enzymatic pathways governing the duration and magnitude of ocular purinergic signaling is incompletely understood. By employing sensitive analytical assays, this study dissected ocular purine homeostasis as a complex and coordinated network. Along with previously characterized ecto-5′-nucleotidase/CD73 and adenylate kinase activities, other enzymes have been identified in vitreous fluids, including nucleoside triphosphate diphosphohydrolase (NTPDase), adenosine deaminase, and alkaline phosphatase. Strikingly, activities of soluble adenylate kinase, adenosine deaminase, ecto-5′-nucleotidase/CD73, and alkaline phosphatase, as well as intravitreal concentrations of ATP and ADP, were concurrently upregulated in patients suffering from diabetic retinopathy (DR) with non-clearing vitreous hemorrhage (VH), when compared to DR eyes without VH and control eyes operated due to macular hole or pucker. Additional histochemical analysis revealed selective distribution of key ecto-nucleotidases (NTPDase1/CD39, NTPDase2, ecto-5′-nucleotidase/CD73, and alkaline phosphatase) in the human sensory neuroretina and optic nerve head, and also in pathological neofibrovascular tissues surgically excised from patients with advanced proliferative DR. Collectively, these data provide evidence for specific hemorrhage-related shifts in purine homeostasis in DR eyes from the generation of anti-inflammatory adenosine towards a pro-inflammatory and pro-angiogenic ATP-regenerating phenotype. In the future, identifying the exact mechanisms by which a broad spectrum of soluble and membrane-bound enzymes coordinately regulates ocular purine levels and the further translation of purine-converting enzymes as potential therapeutic targets in the treatment of proliferative DR and other vitreoretinal diseases will be an area of intense interest. Key messages NTPDase, alkaline phosphatase, and adenosine deaminase circulate in human vitreous. Purinergic enzymes are up-regulated in diabetic eyes with vitreous hemorrhage. Soluble adenylate kinase maintains high ATP levels in diabetic retinopathy eyes. Ecto-nucleotidases are co-expressed in the human retina and optic nerve head. Alkaline phosphatase is expressed on neovascular tissues excised from diabetic eyes.
Electronic supplementary material The online version of this article (10.1007/s00109-018-01734-0) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring Vision to the Blind with Chemical Photoswitches. Chem Rev 2018; 118:10748-10773. [PMID: 29874052 DOI: 10.1021/acs.chemrev.7b00723] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degenerative retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) affect millions of people around the world and lead to irreversible vision loss if left untreated. A number of therapeutic strategies have been developed over the years to treat these diseases or restore vision to already blind patients. In this Review, we describe the development and translational application of light-sensitive chemical photoswitches to restore visual function to the blind retina and compare the translational potential of photoswitches with other vision-restoring therapies. This therapeutic strategy is enabled by an efficient fusion of chemical synthesis, chemical biology, and molecular biology and is broadly applicable to other biological systems. We hope this Review will be of interest to chemists as well as neuroscientists and clinicians.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Center , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Department of Neurobiology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Michael A Kienzler
- Department of Chemistry , University of Maine , Orono , Maine 04469 , United States
| | - Ehud Isacoff
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States.,Bioscience Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
16
|
Gucciardo E, Loukovaara S, Korhonen A, Repo P, Martins B, Vihinen H, Jokitalo E, Lehti K. The microenvironment of proliferative diabetic retinopathy supports lymphatic neovascularization. J Pathol 2018. [PMID: 29536540 DOI: 10.1002/path.5070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proliferative diabetic retinopathy (PDR) is a major diabetic microvascular complication characterized by pathological angiogenesis. Several retinopathy animal models have been developed to study the disease mechanisms and putative targets. However, knowledge on the human proliferative disease remains incomplete, relying on steady-state results from thin histological neovascular tissue sections and vitreous samples. New translational models are thus required to comprehensively understand the disease pathophysiology and develop improved therapeutic interventions. We describe here a clinically relevant model, whereby the native multicellular PDR landscape and neo(fibro)vascular processes can be analysed ex vivo and related to clinical data. As characterized by three-dimensional whole-mount immunofluorescence and electron microscopy, heterogeneity in patient-derived PDR neovascular tissues included discontinuous capillaries coupled with aberrantly differentiated, lymphatic-like and tortuous endothelia. Spatially confined apoptosis and proliferation coexisted with inflammatory cell infiltration and unique vascular islet formation. Ex vivo-cultured explants retained multicellularity, islet patterning and capillary or fibrotic outgrowth in response to vitreoretinal factors. Strikingly, PDR neovascular tissues, whose matched vitreous samples enhanced lymphatic endothelial cell sprouting, contained lymphatic-like capillaries in vivo and developed Prox1+ capillaries and sprouts with lymphatic endothelial ultrastructures ex vivo. Among multiple vitreal components, vascular endothelial growth factor C was one factor found at lymphatic endothelium-activating concentrations. These results indicate that the ischaemia-induced and inflammation-induced human PDR microenvironment supports pathological neolymphovascularization, providing a new concept regarding PDR mechanisms and targeting options. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programmes Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ani Korhonen
- Research Programmes Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pauliina Repo
- Research Programmes Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Research Programmes Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kaisa Lehti
- Research Programmes Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Loukovaara S, Piippo N, Kinnunen K, Hytti M, Kaarniranta K, Kauppinen A. NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy. Acta Ophthalmol 2017; 95:803-808. [PMID: 28271611 DOI: 10.1111/aos.13427] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Innate immunity and dysregulation of inflammatory processes play a role in vascular diseases like atherosclerosis or diabetes. Nucleotide-binding domain and Leucine-rich repeat Receptor containing a Pyrin domain 3 (NLRP3) inflammasomes are pro-inflammatory signalling complexes that were found in 2002. In addition to pathogens and other extracellular threats, they can be activated by various endogenous danger signals. The purpose of this study was to find out whether NLRP3 activation occurs in patients with sight-threatening forms of diabetic retinopathy (DR). METHODS Inflammasome components NLRP3 and caspase-1, inflammasome-related pro-inflammatory cytokines IL-1β and IL-18, vascular endothelial growth factor (VEGF), acute-phase cytokines TNF-α and IL-6, as well as adaptive immunity-related cytokine interferon gamma (IFN-γ) were measured from the vitreous samples of 15 non-proliferative diabetic retinopathy (non-PDR) and 23 proliferative diabetic retinopathy (PDR) patients using the enzyme-linked immunosorbent assay (ELISA) method. The adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) was determined using the Western blot technique. RESULTS Inflammasome components were present in the vitreous of DR patients. Along with VEGF, the levels of caspase-1 and IL-18 were significantly increased, especially in PDR eyes. Interestingly, clearly higher levels of NLRP3 were found in the PDR eyes with tractional retinal detachment (TRD) than from PDR eyes with fully attached retina. There were no significant differences in the amounts of IL-1β, TNF-α, IL-6, and IFN-γ that were detectable in the vitreous of both non-PDR and PDR patients. CONCLUSION Our results suggest that NLRP3 inflammasome activation can be associated especially with the pathogenesis of PDR. The lack of differences in TNF-α, IL-6, and IFN-γ also alludes that acute inflammation or T-cell-mediated responses do not dominate in PDR pathogenesis.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery; Department of Ophthalmology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Niina Piippo
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
| | - Kati Kinnunen
- Department of Ophthalmology; Kuopio University Hospital; Kuopio Finland
| | - Maria Hytti
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Kuopio University Hospital; Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
18
|
How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina. Neuron 2016; 92:100-113. [PMID: 27667006 DOI: 10.1016/j.neuron.2016.08.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 07/02/2016] [Accepted: 08/25/2016] [Indexed: 01/13/2023]
Abstract
Azobenzene photoswitches confer light sensitivity onto retinal ganglion cells (RGCs) in blind mice, making these compounds promising candidates as vision-restoring drugs in humans with degenerative blindness. Remarkably, photosensitization manifests only in animals with photoreceptor degeneration and is absent from those with intact rods and cones. Here we show that P2X receptors mediate the entry of photoswitches into RGCs, where they associate with voltage-gated ion channels, enabling light to control action-potential firing. All charged photoswitch compounds require permeation through P2X receptors, whose gene expression is upregulated in the blind retina. Photoswitches and membrane-impermeant fluorescent dyes likewise penetrate through P2X receptors to label a subset of RGCs in the degenerated retina. Electrophysiological recordings and mapping of fluorescently labeled RGC dendritic projections together indicate that photosensitization is highly selective for OFF-RGCs. Hence, P2X receptors are a natural conduit allowing cell-type-selective and degeneration-specific delivery of photoswitches to restore visual function in blinding disease.
Collapse
|
19
|
Deregulation of ocular nucleotide homeostasis in patients with diabetic retinopathy. J Mol Med (Berl) 2016; 95:193-204. [PMID: 27638339 DOI: 10.1007/s00109-016-1472-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Clear signaling roles for ATP and adenosine have been established in all tissues, including the eye. The magnitude of signaling responses is governed by networks of enzymes; however, little is known about the regulatory mechanisms of purinergic signaling in the eye. By employing thin-layer chromatographic assays with 3H-labeled substrates, this study aimed to evaluate the role of nucleotide homeostasis in the pathogenesis of vitreoretinal diseases in humans. We have identified soluble enzymes ecto-5'-nucleotidase/CD73, adenylate kinase-1, and nucleoside diphosphate kinase in the vitreous fluid that control active cycling between pro-inflammatory ATP and anti-inflammatory adenosine. Strikingly, patients with proliferative form of diabetic retinopathy (DR) had higher adenylate kinase activity and ATP concentration, when compared to non-proliferative DR eyes and non-diabetic controls operated for rhegmatogenous retinal detachment, macular hole, and pucker. The non-parametric correlation analysis revealed positive correlations between intravitreal adenylate kinase and concentrations of ATP, ADP, and other angiogenic (angiopoietins-1 and -2), profibrotic (transforming growth factor-β1), and proteolytic (matrix metalloproteinase-9) factors but not erythropoietin and VEGF. Immunohistochemical staining of postmortem human retina additionally revealed selective expression of ecto-5'-nucleotidase/CD73 on the rod-and-cone-containing photoreceptor cells. Collectively, these findings provide novel insights into the regulatory mechanisms that influence purinergic signaling in diseased eye and open up new possibilities in the development of enzyme-targeted therapeutic approaches for prevention and treatment of DR. KEY MESSAGE Ecto-5'-nucleotidase/CD73 and adenylate kinase-1 circulate in human vitreous fluid. Adenylate kinase activity is high in diabetic eyes with proliferative retinopathy. Diabetic eyes display higher intravitreal ATP/ADP ratio than non-diabetic controls. Soluble adenylate kinase maintains resynthesis of inflammatory ATP in diabetic eyes.
Collapse
|
20
|
Cao D, Zhang H, Yang C, Zhang L. Akreos Adapt AO Intraocular lens opacification after vitrectomy in a diabetic patient: a case report and review of the literature. BMC Ophthalmol 2016; 16:82. [PMID: 27277708 PMCID: PMC4898468 DOI: 10.1186/s12886-016-0268-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Postoperative optic opacification of hydrophilic acrylic intraocular lenses (IOLs) is an uncommon complication leading to IOL explantation. In the past decade, several studies reported that the granular deposits responsible for the opacification were probably calcium and phosphate salts; however, the exact mechanism causing calcification of IOLs is unknown. The aim of this study is to describe clinical and laboratory findings of a case of late postoperative opacification of an aspheric hydrophilic acrylic IOL (Akreos Adapt AO) after vitrectomy. CASE PRESENTATION A 60-year-old woman diagnosed with cataract and severe nonproliferative diabetic retinopathy (NPDR) underwent uneventful phacoemulsification and hydrophilic acrylic IOL (Akreos Adapt AO, Bausch & Lomb) implantation in both eyes. Seven months later, the woman came back with a complaint of blurry vision in the left eye. Fundus examination revealed vitreous hemorrhage in the left eye veiling the retinal detail. A 23-gauge vitrectomy with endolaser treatment was performed in the left eye. Ten months after the vitrectomy, the patient complained of decreased visual acuity in the left eye again. On slit-lamp examination, we observed a well circumscribed centrally and paracentrally located opacification within the pupillary area localized to the anterior surface of the IOL. The IOL was explanted from the left eye together with the capsular bag, and an iris-claw lens (Artisan Aphakia OPHTEC) was implanted. The explanted IOL was examined under pathological evaluation (alizarin red method). CONCLUSIONS IOL opacification is a rare event. We described a case of postoperative opacification of the Akreos Adapt AO IOL after vitrectomy in a patient with proliferative diabetic retinopathy and found the deposits on the anterior surface of the IOL consisted of calcium aggregates. Given the higher frequency of postoperative opacification observed in diabetic patients, hydrophilic acrylic IOLs should be used with caution in patients with diabetes.
Collapse
Affiliation(s)
- Dan Cao
- Department of Ophthalmology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongyang Zhang
- Department of Ophthalmology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cheng Yang
- Department of Ophthalmology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Zhang
- Department of Ophthalmology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
21
|
Simvastatin use associated with low intraocular ADP levels in patients with sight-threatening diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254:1643-1644. [PMID: 27084086 DOI: 10.1007/s00417-016-3349-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022] Open
|