1
|
Bill C, Kassumeh S, Hilterhaus C, Tersi N, Speidel AJ, Ohlmann A, Priglinger S, Priglinger C, Wolf A, Wertheimer CM. Conditions for modifying intraocular lenses as drug carriers for methotrexate using poly (lactic-co-glycolic acid). Eur J Ophthalmol 2024; 34:1909-1918. [PMID: 38494950 DOI: 10.1177/11206721241239717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The intraocular lens (IOL) can be used as a slow-release drug carrier in cataract surgery to alleviate posterior capsular opacification (PCO). The following is a systematic development of an IOL using methotrexate and the solvent casting process with poly (lactic-co-glycolic acid) (PLGA) as a carrier polymer. METHODS Different solvents for PLGA and methotrexate were tested for dissolution properties and possible damage to the IOL. The required biological concentration of methotrexate was determined in human capsular bags implanted with an IOL. To detect fibrosis, α-SMA, f-actin, and fibronectin were labelled by immunofluorescence staining. Cell proliferation and extracellular matrix contraction were observed in a lens epithelial cell line (FHL-124). Finally, the IOL was designed, and an ocular pharmacokinetic model was used to measure drug release. RESULTS Solvent mixtures were found to allow coating of the IOL with drug and PLGA without damaging it. PCO in the capsular bag model was inhibited above 1 μM methotrexate (p = 0.02). Proliferation in FHL-124 was significantly reduced above a concentration of 10 nM (p = 0.04) and matrix contraction at 100 nM (p = 0.02). The release profile showed a steady state within therapeutic range. CONCLUSION After determination of the required physicochemical manufacturing conditions, a drug releasing IOL was designed. A favourable release profile in an ocular pharmacokinetics model could be shown.
Collapse
Affiliation(s)
- Clarissa Bill
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Kassumeh
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Christina Hilterhaus
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| | - Natalie Tersi
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Arne J Speidel
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | | | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| | - Christian M Wertheimer
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, University of Ulm, Ulm, Germany
| |
Collapse
|
2
|
VanSlyke JK, Boswell BA, Musil LS. TGFβ overcomes FGF-induced transinhibition of EGFR in lens cells to enable fibrotic secondary cataract. Mol Biol Cell 2024; 35:ar75. [PMID: 38598298 PMCID: PMC11238076 DOI: 10.1091/mbc.e24-01-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To cause vision-disrupting fibrotic secondary cataract (PCO), lens epithelial cells that survive cataract surgery must migrate to the posterior of the lens capsule and differentiate into myofibroblasts. During this process, the cells become exposed to the FGF that diffuses out of the vitreous body. In normal development, such relatively high levels of FGF induce lens epithelial cells to differentiate into lens fiber cells. It has been a mystery as to how lens cells could instead undergo a mutually exclusive cell fate, namely epithelial to myofibroblast transition, in the FGF-rich environment of the posterior capsule. We and others have reported that the ability of TGFβ to induce lens cell fibrosis requires the activity of endogenous ErbBs. We show here that lens fiber-promoting levels of FGF induce desensitization of ErbB1 (EGFR) that involves its phosphorylation on threonine 669 mediated by both ERK and p38 activity. Transinhibition of ErbB1 by FGF is overcome by a time-dependent increase in ErbB1 levels induced by TGFβ, the activation of which is increased after cataract surgery. Our studies provide a rationale for why TGFβ upregulates ErbB1 in lens cells and further support the receptor as a therapeutic target for PCO.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
3
|
VanSlyke JK, Boswell BA, Musil LS. Tonic ErbB signaling underlies TGFβ-induced activation of ERK and is required for lens cell epithelial to myofibroblast transition. Mol Biol Cell 2024; 35:ar35. [PMID: 38170570 PMCID: PMC10916858 DOI: 10.1091/mbc.e23-07-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Fibrosis is a major, but incompletely understood, component of many diseases. The most common vision-disrupting complication of cataract surgery involves differentiation of residual lens cells into myofibroblasts. In serum-free primary cultures of lens epithelial cells (DCDMLs), inhibitors of either ERK or of ErbB signaling prevent TGFβ from upregulating both early (fibronectin) and late (αSMA) markers of myofibroblast differentiation. TGFβ stimulates ERK in DCDMLs within 1.5 h. Kinase inhibitors of ErbBs, but not of several other growth factor receptors in lens cells, reduce phospho ERK to below basal levels in the absence or presence of TGFβ. This effect is attributable to constitutive ErbB activity playing a major role in regulating the basal levels pERK. Additional studies support a model in which TGFβ-generated reactive oxygen species serve to indirectly amplify ERK signaling downstream of tonically active ErbBs to mediate myofibroblast differentiation. ERK activity is in turn essential for expression of ErbB1 and ErbB2, major inducers of ERK signaling. By mechanistically linking TGFβ, ErbB, and ERK signaling to myofibroblast differentiation, our data elucidate a new role for ErbBs in fibrosis and reveal a novel mode by which TGFβ directs lens cell fate.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
4
|
Liu X, Li J, Liu S, Long Y, Kang C, Zhao C, Wei L, Huang S, Luo Y, Dai B, Zhu X. Fabrication of a 3D bioprinting model for posterior capsule opacification using GelMA and PLMA hydrogel-coated resin. Regen Biomater 2024; 11:rbae020. [PMID: 38529352 PMCID: PMC10963077 DOI: 10.1093/rb/rbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/27/2024] Open
Abstract
Posterior capsule opacification (PCO) remains the predominant complication following cataract surgery, significantly impairing visual function restoration. In this study, we developed a PCO model that closely mimics the anatomical structure of the crystalline lens capsule post-surgery. The model incorporated a threaded structure for accurate positioning and observation, allowing for opening and closing. Utilizing 3D printing technology, a stable external support system was created using resin material consisting of a rigid, hollow base and cover. To replicate the lens capsule structure, a thin hydrogel coating was applied to the resin scaffold. The biocompatibility and impact on cellular functionality of various hydrogel compositions were assessed through an array of staining techniques, including calcein-AM/PI staining, rhodamine staining, BODIPY-C11 staining and EdU staining in conjunction with transwell assays. Additionally, the PCO model was utilized to investigate the effects of eight drugs with anti-inflammatory and anti-proliferative properties, including 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), THZ1, sorbinil, 4-octyl itaconate (4-OI), xanthohumol, zebularine, rapamycin and caffeic acid phenethyl ester, on human lens epithelial cells (HLECs). Confocal microscopy facilitated comprehensive imaging of the PCO model. The results demonstrated that the GelMA 60 5% + PLMA 2% composite hydrogel exhibited superior biocompatibility and minimal lipid peroxidation levels among the tested hydrogels. Moreover, compared to using hydrogel as the material for 3D printing the entire model, applying surface hydrogel spin coating with parameters of 2000 rpm × 2 on the resin-based 3D printed base yielded a more uniform cell distribution and reduced apoptosis. Furthermore, rapamycin, 4-OI and AICAR demonstrated potent antiproliferative effects in the drug intervention study. Confocal microscopy imaging revealed a uniform distribution of HLECs along the anatomical structure of the crystalline lens capsule within the PCO model, showcasing robust cell viability and regular morphology. In conclusion, the PCO model provides a valuable experimental platform for studying PCO pathogenesis and exploring potential therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Jiale Li
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuyu Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ching Kang
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Chen Zhao
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Ling Wei
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Luo
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiangjia Zhu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| |
Collapse
|
5
|
Wang Y, Wen C, Jing R, Yang Y, Qin Y, Qi T, Hu C, Bai X, Wu C, Pei C. Self-assembled coating with a metal-polyphenolic network for intraocular lens modification to prevent posterior capsule opacification. Biomed Mater 2024; 19:025011. [PMID: 38194710 DOI: 10.1088/1748-605x/ad1c9e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Posterior capsule opacification (PCO) is a main complication after cataract surgery and intraocular lens (IOLs) implantation and is attributed to residual lens epithelial cells (LECs) migrating to the IOL surface and posterior capsules. IOL surface modification has been a newly-developing research filed in recent years; however, the applicability and economical acquisition of modified materials remain unsolved. In this study, we first applied a metal-polyphenolic network coating with a self-assembly technique on the IOL surface by using tannic acid (TA) combined with AlCl3, which are easily acquire and applying on the IOL surface to solve the IOL transmittance affair. Using wound healing and Transwell assay to verify AZD0364 inhibits cell migration (P< 0.05), the lipopolysaccharide-induced macrophage inflammation model to verify pterostilbene (PTE) inhibits the inflammatory reaction (P< 0.01). By optimizes its self-assembly coating parameters and calculating its drug release kinetics, we successfully loaded these two drugs on the coating, named TA (AZD0364/PTE) IOL. Its surface morphology characteristics were analyzed by scanning electron microscope, x-ray photoelectron spectrometer and water contact angle. The optical performance was carefully investigated by optical instruments and equipment (n= 3). Thein vitroresults showed that TA (AZD0364/PTE) IOL can significantly inhibit cell adhesion and acute inflammation (n= 3,P< 0.0001). Importantly, afterin vivoimplantation for 28 d with eight rabbits PCO models in two groups, the TA (AZD0364/PTE) IOL group maintained clear refracting media and decreased the inflammatory reaction compared with the original IOL group (P< 0.05). This study provides a new applicable and economical strategy for preventing PCO and offers a reference for the next generation of IOLs that benefit cataract patients.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Chan Wen
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Ruihua Jing
- Department of Ophthalmology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yunfei Yang
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yazhou Qin
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Tiantian Qi
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Conghui Hu
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xinshan Bai
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Changrui Wu
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Cheng Pei
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Zhang C, Chen S, Hu J, Shen L, Yu Y. Research Progress Concerning a Novel Intraocular Lens for the Prevention of Posterior Capsular Opacification. Pharmaceutics 2022; 14:1343. [PMID: 35890240 PMCID: PMC9318653 DOI: 10.3390/pharmaceutics14071343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Posterior capsular opacification (PCO) is the most common complication resulting from cataract surgery and limits the long-term postoperative visual outcome. Using Nd:YAG laser-assisted posterior capsulotomy for the clinical treatment of symptomatic PCO increases the risks of complications, such as glaucoma, retinal diseases, uveitis, and intraocular lens (IOL) pitting. Therefore, finding how to prevent PCO development is the subject of active investigations. As a replacement organ, the IOL is implanted into the lens capsule after cataract surgery, but it is also associated with the occurrence of PCO. Using IOL as a medium for PCO prophylaxis is a more facile and efficient method that has demonstrated various clinical application prospects. Thus, scientists have conducted a lot of research on new intraocular lens fabrication methods, such as optimizing IOL materials and design, and IOL surface modification (including plasma/ultraviolet/ozone treatment, chemical grafting, drug loading, coating modification, and layer-by-layer self-assembly methods). This paper summarizes the research progress for different types of intraocular lenses prepared by different surface modifications, including anti-biofouling IOLs, enhanced-adhesion IOLs, micro-patterned IOLs, photothermal IOLs, photodynamic IOLs, and drug-loading IOLs. These modified intraocular lenses inhibit PCO development by reducing the residual intraoperative lens epithelial cells or by regulating the cellular behavior of lens epithelial cells. In the future, more works are needed to improve the biosecurity and therapeutic efficacy of these modified IOLs.
Collapse
Affiliation(s)
- Yidong Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Chengshou Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Silong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Jianghua Hu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
- Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lifang Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Yibo Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| |
Collapse
|
7
|
Factors Affecting Posterior Capsule Opacification in the Development of Intraocular Lens Materials. Pharmaceutics 2021; 13:pharmaceutics13060860. [PMID: 34200928 PMCID: PMC8230425 DOI: 10.3390/pharmaceutics13060860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Posterior capsule opacification (PCO) is the most common complication arising from the corrective surgery used to treat cataract patients. PCO arises when lens epithelial cells (LEC) residing in the capsular bag post-surgery undergo hyper-proliferation and transdifferentiation into myofibroblasts, migrating from the posterior capsule over the visual axis of the newly implanted intraocular lens (IOL). The developmental pathways underlying PCO are yet to be fully understood and the current literature is contradictory regarding the impact of the recognised risk factors of PCO. The aim of this review is firstly to collate the known biochemical pathways that lead to PCO development, providing an up-to-date chronological overview from surgery to established PCO formation. Secondly, the risk factors of PCO are evaluated, focussing on the impact of IOLs’ properties. Finally, the latest experimental model designs used in PCO research are discussed to demonstrate the ongoing development of clinical PCO models, the efficacy of newly developed IOL technology, and potential therapeutic interventions. This review will contribute to current PCO literature by presenting an updated overview of the known developmental pathways of PCO, an evaluation of the impact of the risk factors underlying its development, and the latest experimental models used to investigate PCO. Furthermore, the review should provide developmental routes for research into the investigation of potential therapeutic interventions and improvements in IOL design in the aid of preventing PCO for new and existing patients.
Collapse
|
8
|
Intraocular lenses as drug delivery devices. Int J Pharm 2021; 602:120613. [PMID: 33865952 DOI: 10.1016/j.ijpharm.2021.120613] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022]
Abstract
Cataract surgery is one of the most common and safe surgical procedures nowadays. However, it is not free of risks as endophthalmitis, ocular inflammation and posterior capsule opacification (PCO) can appear as post-surgery complications. The usual eye drop therapy used as prophylaxis for the former two complications has limited bioavailability. In turn, the prevention of PCO involves an adequate surgical technique and a careful choice of intraocular lens (IOL) design and material. Also, different drugs have been tested to reduce incidence of PCO, but no prophylaxis demonstrated to be completely effective. In the past few years, IOLs have been proposed as drug delivery devices to replace or/assist the usual eye drop therapy in the post-operatory period. The great advantage of drug loaded IOLs would be to ensure a continuous drug delivery, independent of patient's compliance without requiring any further action besides IOL implantation. The biggest challenge of drug loaded IOLs production is to achieve a controlled and extended release that meet therapeutic needs without inducing toxicity to the surrounding ocular tissues or affecting the physical properties of the lens. This review starts by addressing the possible complications after cataract surgery, as well as the most commonly adopted prophylaxis for each of them. The various types of IOLs are described and their main advantages/disadvantages are discussed. The different strategies pursued to incorporate drugs into the IOLs and control their release, which include soaking the IOL in the drugs solution, supercritical impregnation, surface modifications, and attachment of drug reservoirs to the IOL, among others, are reported. For each strategy, a summary of the publications is presented, which includes the target complication, the types and amounts of released drugs and the IOL materials. A brief description of each individual study is given afterwards. Optimization of drug loaded IOLs through mathematical modelling and possible issues raised by their sterilization are also tackled. At the end, the future commercialization of drug loaded IOLs is commented.
Collapse
|
9
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
10
|
Mylona I, Tsinopoulos I. A Critical Appraisal of New Developments in Intraocular Lens Modifications and Drug Delivery Systems for the Prevention of Cataract Surgery Complications. Pharmaceuticals (Basel) 2020; 13:E448. [PMID: 33302370 PMCID: PMC7762578 DOI: 10.3390/ph13120448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cataract surgery is the commonest ophthalmic surgery worldwide. The replacement of the diseased lens with a synthetic one (intraocular lens-IOL) remains the treatment of choice, despite its potential complications that include infection, inflammation and posterior capsule opacification. The potential for drug delivery via the IOL has been researched extensively over a period of twenty-five years, yet there is very limited progress in transferring the findings from research to everyday practice. The objective of this review is to assess the progress made in the field of IOL lens modifications and drug delivery systems over the past five years. Thirty-six studies that were conducted during the past five years were identified and deemed suitable for inclusion. They were grouped in three broad categories, studies that described new methods for loading a drug onto the IOL, assessment of the effects of drugs that were loaded to the IOL and studies that assessed the effects of non-pharmaceutical modifications of IOLs. While considerable progress is continually being made with regard to methods and materials, there is still little capitalization upon these research studies, with no commercially available IOL-based drug delivery system being available. Close cooperation between researchers in basic sciences (chemistry, physics, materials science and pharmacy), clinical researchers, IOL manufacturers and the pharmaceutical industry is an important prerequisite for further development.
Collapse
Affiliation(s)
- Ioanna Mylona
- 2nd Department of Ophthalmology, Aristotle University of Thessaloniki, 564 29 Thessaloniki, Greece;
| | | |
Collapse
|
11
|
Topete A, Tang J, Ding X, Filipe HP, Saraiva JA, Serro AP, Lin Q, Saramago B. Dual drug delivery from hydrophobic and hydrophilic intraocular lenses: in-vitro and in-vivo studies. J Control Release 2020; 326:245-255. [DOI: 10.1016/j.jconrel.2020.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/27/2022]
|
12
|
Han Y, Tang J, Liu S, Zhao X, Wang R, Xia J, Qin C, Chen H, Lin Q. Cellular Microenvironment-Sensitive Drug Eluting Coating on Intraocular Lens for Enhanced Posterior Capsular Opacification Prevention and in Vivo Biocompatibility. ACS APPLIED BIO MATERIALS 2020; 3:3582-3593. [PMID: 35025228 DOI: 10.1021/acsabm.0c00331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuemei Han
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Junmei Tang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Sihao Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xia Zhao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiayi Xia
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
13
|
Zhang Y, Li D, Lu Q, Du Y, Lu Y, Zhu X. Proliferative Status in the Aqueous Humor of Eyes With Congenital Cataract. J Pediatr Ophthalmol Strabismus 2020; 57:159-168. [PMID: 32453849 DOI: 10.3928/01913913-20200224-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE To measure the concentrations of growth factors in the aqueous humor of patients with congenital cataract and to investigate the biological effects of a selected cytokine (fibroblast growth factor 4 [FGF4]) on cell proliferation, migration, and transformation. METHODS In the aqueous humor obtained from 55 eyes with congenital cataract and 55 eyes with age-related cataract, 40 growth factors were screened and selected cytokines were confirmed with enzyme-linked immunosorbent assays. After the addition of various concentrations of FGF4 (0, 2.5, 15, or 50 ng/mL) to the incubation medium, cellular functions were evaluated. RESULTS The concentration of FGF4 was significantly higher in the aqueous humor of patients with congenital cataract than in that of patients with age-related cataract. The human SRA01/04 lens epithelial cell line was treated with FGF4 and the cell proliferation increased significantly both dose- and time-dependently. The wound healing assay and Transwell migration assay revealed a significant increase in the migration capacity of the SRA01/04 cell line treated with 15 or 50 ng/mL of FGF4 compared with that of control cells. The intensity of immunofluorescent staining for α-smooth muscle actin increased significantly in the SRA01/04 cell line when treated with FGF4. Cytoskeletal protein (F-actin) staining showed that changes of cell morphology were induced in primary lens epithelial cells by FGF4. CONCLUSIONS This study provides a comprehensive profile of growth factors in congenital cataract. FGF4 induced cellular changes, and may have utility as a biomarker to predict the formation of visual axis opacification. [J Pediatr Ophthalmol Strabismus. 2020;57(3):159-168.].
Collapse
|
14
|
Hillenmayer A, Wertheimer CM, Kassumeh S, von Studnitz A, Luft N, Ohlmann A, Priglinger S, Mayer WJ. Evaluation of posterior capsule opacification of the Alcon Clareon IOL vs the Alcon Acrysof IOL using a human capsular bag model. BMC Ophthalmol 2020; 20:77. [PMID: 32103739 PMCID: PMC7045627 DOI: 10.1186/s12886-020-01349-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Posterior capsule opacification (PCO) after cataract surgery is influenced by intraocular lens (IOL) design and material. The following is an ex vivo comparison of PCO between the Clareon vs. the AcrySof IOL in human capsular bags. METHODS Twenty cadaver capsular bags from 10 human donors were used, with the novel hydrophobic IOL (Clareon, CNA0T0) being implanted in one eye and the other eye of the same donor receiving the AcrySof IOL (SN60WF) following phacoemulsification cataract surgery. Five capsular bags of 3 donors served as controls without IOL. Cellular growth of lens epithelial cells was photo-documented daily. The primary endpoint was the time until full coverage of the posterior capsule by cells. Furthermore, immunofluorescence staining of capsular bags for the fibrotic markers f-actin, fibronectin, alpha smooth muscle actin, and collagen type 1 were performed. RESULTS The new Clareon IOL did not show any disadvantages in terms of days until full cell coverage of the posterior capsule in comparison to the AcrySof (p > 0.99). Both, the Clareon (p = 0.01, 14.8 days) and the AcrySof IOL (p = 0.005, 15.7 days) showed a slower PCO development in comparison to the control (8.6 days). The fibrotic markers f-actin, fibronectin, alpha smooth muscle actin, and collagen type 1 were equally distributed between the two IOLs and differed from the control. CONCLUSIONS A comparable performance has been found in the ex vivo formation of PCO between the two IOLs. Long-term clinical studies are necessary to reach final conclusions.
Collapse
Affiliation(s)
- Anna Hillenmayer
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany
| | - Christian M Wertheimer
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany
| | - Stefan Kassumeh
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany
| | - Annabel von Studnitz
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany
| | - Nikolaus Luft
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany
| | - Andreas Ohlmann
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany
| | - Siegfried Priglinger
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany
| | - Wolfgang J Mayer
- Cell and molecular biology research laboratory, Division of Ophthalmology, Ludwig-Maximilians-University Munich, Mathildenstrasse 8, 80336, Munich, Germany.
| |
Collapse
|
15
|
Kassumeh S, Kueres A, Hillenmayer A, von Studnitz A, Elhardt C, Ohlmann A, Priglinger SG, Wertheimer CM. Development of a drug-eluting intraocular lens to deliver epidermal growth factor receptor inhibitor gefitinib for posterior capsule opacification prophylaxis. Eur J Ophthalmol 2019; 31:436-444. [PMID: 31789061 DOI: 10.1177/1120672119891042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Different molecular targets, such as the epidermal growth factor receptor, have been identified for the prophylaxis of posterior capsule opacification. This led to the proposal of several drugs, yet drug delivery into the capsular bag remains challenging. The intraocular lens as a drug delivery device would provide a convenient method to allow drug release in the location needed. This is to evaluate the effect of a drug-eluting intraocular lens using an epidermal growth factor receptor inhibitor. METHODS Hydrophobic and hydrophilic intraocular lenses were coated with gefitinib using the dip coating technique. The cellular response on the modified intraocular lenses was tested in a human lens epithelial cell line (FHL-124) in an anterior segment model. Furthermore, modified intraocular lenses were implanted into human capsular bags ex vivo. Drug release was determined as well as the biocompatibility on human corneal endothelial cells. Unmodified intraocular lenses served as controls. In addition, immunofluorescence staining with fibronectin as a marker for fibrotic response was conducted. RESULTS Both coated hydrophilic and hydrophobic intraocular lenses could attenuate the cell growth of FHL-124 cells in the human capsular bag in comparison to the unmodified controls. Furthermore, gefitinib-soaked intraocular lenses showed a constant drug release over the first 10 days. No reduction in cell viability of corneal endothelial cells occurred. A decrease in fibronectin expression under gefitinib treatment could be observed. CONCLUSION In vitro epidermal growth factor receptor seems to be a valuable target for the prevention of posterior capsule opacification. The gefitinib-eluting intraocular lens in this study could inhibit cell growth in non-toxic concentrations.
Collapse
Affiliation(s)
- Stefan Kassumeh
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Kueres
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Hillenmayer
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Annabel von Studnitz
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Elhardt
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Ohlmann
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Siegfried G Priglinger
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Christian M Wertheimer
- Cell and Molecular Biology Laboratory, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Shihan MH, Novo SG, Duncan MK. Cataract surgeon viewpoints on the need for novel preventative anti-inflammatory and anti-posterior capsular opacification therapies. Curr Med Res Opin 2019; 35:1971-1981. [PMID: 31328581 PMCID: PMC6995282 DOI: 10.1080/03007995.2019.1647012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: To determine cataract surgeon viewpoints on the efficacy of available therapies/preventatives for two common sequelae of cataract surgery: inflammation and posterior capsular opacification (PCO). Methods: Cataract surgeons practicing worldwide specializing in adult, pediatric and veterinary patients were interviewed between March and August 2018. Results: Ocular inflammation following cataract surgery is treated by either corticosteroids and/or nonsteroidal anti-inflammatories (NSAIDs). Adult and pediatric cataract surgeons are satisfied with current treatments whereas this inflammation is still considered a problem by some in veterinary practice due to its slow resolution. Yttrium-aluminum-garnet (YAG) laser therapy is the PCO treatment of choice for adult cataract surgeons and they are generally pleased with its outcome. However, pediatric cataract surgeons find YAG problematic, especially in patients under 6 years of age, and invasive surgery is often needed to correct PCO/visual axis opacification (VAO). Veterinary ophthalmologists report that YAG is not effective for PCO in animals, especially dogs, due to the density of the fibrotic plaques; 86% of adult and 100% of veterinary and pediatric cataract surgeons surveyed agree that effective anti-PCO therapeutics would improve clinical care. Conclusions: Surgeons treating human patients are pleased with the available treatments for ocular inflammation following cataract surgery, although some veterinary ophthalmologists disagree. The surgeons surveyed agree that PCO/VAO remains an unsolved problem in pediatric and veterinary cataract surgery while the long-term outcome of adult cataract surgery could be improved by additional attention to this issue.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, The University of Delaware , Newark , DE , USA
| | - Samuel G Novo
- Department of Biological Sciences, The University of Delaware , Newark , DE , USA
| | - Melinda K Duncan
- Department of Biological Sciences, The University of Delaware , Newark , DE , USA
| |
Collapse
|
17
|
Shu DY, Lovicu FJ. Enhanced EGF receptor-signaling potentiates TGFβ-induced lens epithelial-mesenchymal transition. Exp Eye Res 2019; 185:107693. [PMID: 31201806 DOI: 10.1016/j.exer.2019.107693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
The ocular lens is exposed to numerous growth factors that influence its behavior in diverse ways. While many of these, such as FGF and EGF promote normal cell behavior, TGFβ is unique in that it can also induce lens cell pathology, namely, the epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) leading to fibrotic cataract formation. The present study explores how EGF impacts on TGFβ-induced EMT in the lens. LECs in explants prepared from 21-day-old Wistar rats were treated with either 200 pg/ml TGFβ2, 5 ng/ml EGF, or a combination of these, with or without a 2-h pre-treatment of an EGFR inhibitor (PD153035), MEK inhibitor (U0126) or Smad3 inhibitor (SIS3). Co-treatment of LECs with TGFβ2 and EGF, compared with TGFβ2 alone, resulted in a more pronounced elongation and transdifferentiation of the LECs into myofibroblastic cells, with higher protein levels of mesenchymal cell markers (α-SMA and tropomyosin). Combining EGF with a less potent lower dose of TGFβ2 (50 pg/ml) induced LECs to undergo EMT equivalent to treatment with a higher dose of TGFβ2 (200 pg/ml) within 5 days of culture. EGF alone, nor the lower dose of TGFβ2, were able to induce EMT in LECs within 5 days. Co-treatment of LECs with EGF and TGFβ2 induced a temporal shift in the phosphorylation levels of Smad2/3, ERK1/2 and EGFR and changed the expression patterns of downstream EMT target genes, compared to treatment of LECs with either growth factor alone. Inhibition of EGFR-signaling with PD153035 blocked the EMT response induced by co-treatment with EGF and TGFβ2. Taken together, our data demonstrate that EGF can potentiate TGFβ2 activity to enhance EMT in LECs, further highlighting the importance of EGFR-signaling in cataract formation. By directly blocking EGFR signaling, the activity of both EGF and TGFβ2 can be simultaneously reduced, thereby serving as a potential target for cataract prevention.
Collapse
Affiliation(s)
- Daisy Y Shu
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, NSW, Australia; Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, NSW, Australia; Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|