1
|
Lan X, Xie Z, Fang X, Luo S, Xiao X, Lin Y, Lin Z, Wu H. Ocular surface squamous neoplasia: Growth, diagnosis, and treatment. Eur J Ophthalmol 2025:11206721251337166. [PMID: 40270095 DOI: 10.1177/11206721251337166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
BackgroundOcular surface squamous neoplasia (OSSN) is the most common malignancy of the ocular surface, often presenting as a non-pigmented lesion with atypical squamous epithelialization. It is usually asymptomatic and can be confused with benign conditions such as pterygium or conjunctival cysts. If untreated, OSSN may progress to invasive squamous cell carcinoma, causing vision loss or metastasis. The gold standard for diagnosing OSSN is histopathological examination after tumor resection. However, there are still unresolved issues in the clinical management of treatment.Main textIn this review, we have discussed the clinical characteristics, diagnostic techniques, and treatment options for OSSN. OSSN occurs due to changes in the living environment and ocular surface state. It starts as a benign squamous epithelial tumor, which can progress to atypical intraepithelial neoplasia and eventually turn into invasive squamous cell carcinoma. The postoperative pathological histology also shows a corresponding degree of differentiation. Various diagnostic techniques, such as diagnostic imaging, cell biology, and molecular biology, are emerging as valuable tools for distinguishing OSSN. Although surgical resection is the primary treatment for OSSN, drug therapy can also be applied for better management of OSSN treatment.ConclusionAccurately diagnosing OSSN requires advanced examination techniques before and after operation. This is crucial for healthcare professionals to evaluate and treat the condition effectively. Based on our clinical expertise, administering drug treatment before or after surgical resection may serve as a comprehensive and effective management approach for OSSN. This research holds immense potential for the future of personalized and precise medical care.
Collapse
Affiliation(s)
- Xi Lan
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Zhiwen Xie
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Xie Fang
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Shunrong Luo
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Xianwen Xiao
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Zhirong Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Shi M, Zhou R, Shen W, Liang Y, Zhang Y, Liu L, Shao R, Fang Y, Zhao C, Wu L. LncRNA ENST00000581911 Regulates Extraocular Muscle Remodeling by Interacting With KHSRP in Thyroid Eye Disease. Invest Ophthalmol Vis Sci 2025; 66:46. [PMID: 40116677 PMCID: PMC11935560 DOI: 10.1167/iovs.66.3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose Thyroid eye disease (TED) is a visually debilitating and cosmetically disfiguring orbital disorder, characterized by the remodeling of extraocular muscles (EOMs). This study aimed to investigate the role of long non-coding RNA (lncRNA) ENST00000581911 in the EOMs of TED. Methods LncRNA microarray analysis was performed on EOM tissues sampled from patients with TED and patients with concomitant esotropia. LncRNA ENST00000581911 was identified and subjected to bioinformatics analysis. High-throughput RNA sequencing, CCK-8 assay, CFSE staining, and ELISA were used to investigate the regulatory function of ENST00000581911 in vitro. Furthermore, RNA pull-down, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and western blot (WB) analyses were applied to identify the RNA-binding protein (RBP) interacting with ENST00000581911. Results A total of 1261 lncRNAs were found to be differentially expressed in the EOMs of TED, with 648 upregulated and 613 downregulated lncRNAs. Among these, the upregulated lncRNA ENST00000581911 exhibited the highest expression level, as validated by quantitative real-time PCR (qRT-PCR). Functional analysis demonstrated that ENST00000581911 might be involved in inflammatory response, regulation of muscle contraction, and amino sugar and nucleotide sugar metabolism. RNA sequencing of ENST00000581911-overexpressing and control orbital fibroblasts (OFs) showed that ENST00000581911 might play a regulatory role in DNA replication, extracellular matrix, and cell cycle. Furthermore, KHSRP was identified as the RBP of ENST00000581911. Overexpression of ENST00000581911 promoted cell proliferation and hyaluronic acid secretion in OFs, whereas silencing KHSRP attenuated these effects. Conclusions This study provides novel insights into the role of lncRNA ENST00000581911 in the pathogenesis of EOM remodeling in TED. ENST00000581911 may serve as a potential therapeutic target of TED.
Collapse
Affiliation(s)
- Mingsu Shi
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Rongmei Zhou
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Weiai Shen
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lingyun Liu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Runyi Shao
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yanxi Fang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
3
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2025; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
4
|
Sood S, Tiwari A, Sangwan J, Vohra M, Sinha NR, Tripathi R, Sangwan VS, Mohan RR. Role of epigenetics in corneal health and disease. Prog Retin Eye Res 2025; 104:101318. [PMID: 39547455 PMCID: PMC11710990 DOI: 10.1016/j.preteyeres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Epigenetics plays a vital role in corneal health and diseases. Epigenetic changes regulate the expression of genes by altering the accessibility of chromatin via histone modifications, DNA methylation and miRNAs without altering DNA sequence. Ocular trauma and infections are common causes of corneal damage, vision impairment, and mono/bilateral blindness worldwide. Mounting literature shows that epigenetic modifications can modulate corneal clarity, function, and pathogenesis including inflammation, wound healing, fibrosis, and neovascularization. Additionally, epigenetic modifications can be targeted to reverse corneal pathologies and develop interventional therapies. However, current understanding on how epigenetic modifications lead to corneal abnormalities and diseases is limited. This review provides in-depth knowledge and mechanistic understanding of epigenetics alterations in corneal pathogenesis, and information on potential epigenetic targets for treatment of corneal diseases.
Collapse
Affiliation(s)
- Swati Sood
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA
| | - Anil Tiwari
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Jyoti Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Nishant R Sinha
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Virender S Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Rajiv R Mohan
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Ou S, Lin Y, Zhang Y, Shi K, Wu H. Epidemiology and tumor microenvironment of ocular surface and orbital tumors on growth and malignant transformation. Front Oncol 2024; 14:1388156. [PMID: 39421442 PMCID: PMC11484446 DOI: 10.3389/fonc.2024.1388156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The ocular surface and orbit constitute unique microenvironments in the human body. Current advances in molecular research have deepened our understanding of tumor development in these regions. Tumors exhibit greater heterogeneity compared to normal tissues, as revealed by pathological and histological examinations. The tumor microenvironment (TME) plays a crucial role in the proliferation and progression of cancer cells. Factors from the external environment or the body's own inflammation and microcirculation interact within the TME, maintaining a delicate balance. Disruption of this balance, through uncontrolled signal pathway activation, can transform normal or benign tissues into malignant ones. In recent years, various systemic immunotherapies have been developed for cancer treatment. This study reviews the epidemiology of ocular surface and orbital tumors include squamous cell carcinoma, basal cell carcinoma, sebaceous carcinoma and lymphoma in conjunction with their occurrence, growth, and underlying mechanisms. We propose that by examining clinical histopathological images, we can identify specific and shared microscopic features of tumors. By collecting, classifying, and analyzing data from these clinical histopathological images, we can pinpoint independent diagnostic factors characteristic of tumors. We hope this study provides a basis for future exploration of the mechanisms underlying different ocular diseases.
Collapse
Affiliation(s)
- Shangkun Ou
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yujie Zhang
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Ke Shi
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Wang F, Suo XG, Wang JN, Liu CY, Liu CC, Wang C, Li J, Duan ZH, Zhang FS, Xia YM, Jiang JJ, Hao YW, Li GY, Meng XM, Shao YX, Wang FC. SFN promotes renal fibrosis via binding with MYH9 in chronic kidney disease. Eur J Pharmacol 2024; 979:176806. [PMID: 38986830 DOI: 10.1016/j.ejphar.2024.176806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Chronic kidney disease (CKD) is a clinical syndrome characterized by persistent renal function decline. Renal fibrosis is the main pathological process in CKD, but an effective treatment does not exist. Stratifin (SFN) is a highly-conserved, multi-function soluble acidic protein. Therefore, this study explored the effects of SFN on renal fibrosis. First, we found that SFN was highly expressed in patients with CKD, as well as in renal fibrosis animal and cell models. Next, transforming growth factor-beta 1 (TGF-β1) induced injury and fibrosis in human renal tubule epithelial cells, and SFN knockdown reversed these effects. Furthermore, SFN knockdown mitigated unilateral ureteral obstruction (UUO)-induced renal tubular dilatation and renal interstitial fibrosis in mice. Liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP), and immunofluorescence co-localization assays demonstrated that SFN bound the non-muscle myosin-encoding gene, myosin heavy chain 9 (MYH9), in the cytoplasm of renal tubular epithelial cells. MYH9 knockdown also reduced Col-1 and α-SMA expression, which are fibrosis markers. Finally, silencing SFN decreased MYH9 expression, alleviating renal fibrosis. These results suggest that SFN promotes renal fibrosis in CKD by interacting with MYH9. This study may provide potential strategies for the treatment of CKD.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Cheng-Yi Liu
- Department of Urology, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Cheng-Cheng Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Cong Wang
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Jing Li
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Zi-Hao Duan
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Feng-Sen Zhang
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Yi-Miao Xia
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Jun-Jie Jiang
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Yun-Wu Hao
- Department of Urology, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Guang-Yuan Li
- Department of Urology, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yun-Xia Shao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China; Wuhu Hospital, East China Normal University (The Second People's Hospital of Wuhu), Wuhu, 241000, China.
| | - Fa-Cai Wang
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
7
|
Zhang L, Yu X, Hong N, Xia Y, Zhang X, Wang L, Xie C, Dong F, Tong J, Shen Y. CircRNA expression profiles and regulatory networks in the vitreous humor of people with high myopia. Exp Eye Res 2024; 241:109827. [PMID: 38354945 DOI: 10.1016/j.exer.2024.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Myopia is a global health and economic issue. Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of many ocular diseases. We first evaluated the circRNA profiles and possible roles in vitreous humor samples of individuals with high myopia by a competitive endogenous RNA (ceRNA) array. Vitreous humor samples were collected from 15 high myopic (5 for ceRNA array, and 10 for qPCR) and 15 control eyes (5 for ceRNA array, and 10 for qPCR) with idiopathic epiretinal membrane (ERM) and macular hole (MH). 486 circRNAs (339 upregulated and 147 downregulated) and 264 mRNAs (202 upregulated and 62 downregulated) were differentially expressed between the high myopia and control groups. The expression of hsa_circ_0033079 (hsa-circDicer1), hsa_circ_0029989 (hsa-circNbea), hsa_circ_0019072 (hsa-circPank1) and hsa_circ_0089716 (hsa-circEhmt1) were validated by qPCR. Pearson analysis and multivariate regression analysis showed positive and significant correlations for axial length with hsa-circNbea and hsa-circPank1. KEGG analysis showed that the target genes of circRNAs were enriched in the mTOR, insulin, cAMP, and VEGF signaling pathways. GO analysis indicated that circRNAs mainly targeted transcription, cytoplasm, and protein binding. CircRNA-associated ceRNA network analysis and PPI network analysis identified several critical genes for myopia. The expression of circNbea, circPank1, miR-145-5p, miR-204-5p, Nras, Itpr1 were validated by qPCR in the sclera of form-deprivation myopia (FDM) mice model. CircPank1/miR-145-5p/NRAS and circNbea/miR-204-5p/ITPR1 were identified and may be important in the progression of myopia. Our findings suggest that circRNAs may contribute to the pathogenesis of myopia and may serve as potential biomarkers.
Collapse
Affiliation(s)
- Liyue Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Yu
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Nan Hong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutong Xia
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuhong Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liyin Wang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Feng Dong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Jianping Tong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ye Shen
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Gurnani B, Kaur K. Molecular and epigenetic mechanisms governing ocular surface squamous neoplasia: opportunities for diagnostics. Expert Rev Mol Diagn 2023:1-15. [PMID: 38131180 DOI: 10.1080/14737159.2023.2298681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Ocular surface squamous neoplasia (OSSN) is the most common ocular malignancy; the pathophysiology is influenced by molecular, genetic, and epigenetic mechanisms. The incidence of OSSN is associated with the anatomy and physiology of the ocular surface, limbal stem cell configuration, limbal vulnerability, cancer stem cells, dysplasia, neoplasia, angiogenesis, invasion, and metastasis. The key etiological factors involved are human papillomavirus (HPV), human immunodeficiency virus (HIV), immunosuppression, p53 tumor suppressor gene, hypovitaminosis A, and failure of Deoxyribonucleic acid (DNA) repair mechanisms. AREAS COVERED This special report is a focussed attempt to understand the molecular mechanism, genetic and epigenetic mechanism, and diagnostic modalities for OSSN. EXPERT OPINION While these mechanisms contribute to genome instability, promoter-specific hypermethylation might facilitate and promote tumor formation by silencing tumor suppressor genes. OSSN understanding has improved with increased literature available on various genetic, molecular, and epigenetic mechanisms, although the exact genetic and epigenetic mechanisms still need to be elucidated. It is important to note that the molecular mechanisms of OSSN can vary among individuals, and further research is required to elucidate the underlying processes fully. Understanding these mechanisms is crucial for the development of targeted therapies and improved management of OSSN.
Collapse
Affiliation(s)
- Bharat Gurnani
- Cataract, Cornea, Refractive Services, Trauma, External Diseases, Contact Lens and Ocular Surface, Sadguru Netra Chikitsalya, Shri Sadguru Seva Sangh Trust, Chitrakoot, India
| | - Kirandeep Kaur
- Children Eye Care Centre, Department of Pediatric Ophthalmology and Strabismus, Sadguru Netra Chikitsalya, Shri Sadguru Seva Sangh Trust, Janaki Kund, Chitrakoot, India
| |
Collapse
|
9
|
Shahraki K, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. Promotor methylation in ocular surface squamous neoplasia development: epigenetics implications in molecular diagnosis. Expert Rev Mol Diagn 2023; 23:753-769. [PMID: 37493058 DOI: 10.1080/14737159.2023.2240238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Cancer is heavily influenced by epigenetic mechanisms that include DNA methylation, histone modifications, and non-coding RNA. A considerable proportion of human malignancies are believed to be associated with global DNA hypomethylation, with localized hypermethylation at promoters of certain genes. AREA COVERED The present review aims to emphasize on recent investigations on the epigenetic landscape of ocular surface squamous neoplasia, that could be targeted/explored using novel approaches such as personalized medicine. EXPERT OPINION While the former is thought to contribute to genomic instability, promoter-specific hypermethylation might facilitate tumorigenesis by silencing tumor suppressor genes. Ocular surface squamous neoplasia, the most prevalent type of ocular surface malignancy, is suggested to be affected by epigenetic mechanisms, as well. Although the exact role of epigenetics in ocular surface squamous neoplasia has mostly been unexplored, recent findings have greatly contributed to our understanding regarding this pathology of the eye.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
- Cornea Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
10
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
11
|
Zhao X, Wang E, Xu H, Zhang L. Stratifin promotes the growth and proliferation of hepatocellular carcinoma. Tissue Cell 2023; 82:102080. [PMID: 36996719 DOI: 10.1016/j.tice.2023.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the second leading cancer cause of death worldwide. SFN plays a vital role in some malignancies. The purpose of this study was to investigate the role of SFN in the development of HCC. METHODS The bioinformatics database was used to detect the expression of SFN and its prognosis in HCC patients. And the protein-protein interaction network was established. IHC and Elisa were used to analyze the expression level and clinical characteristics of SFN in HCC patients. Subsequently, siRNA knockdown of SFN expression in HCC cell lines was used to explore whether SFN could promote the development of HCC. RESULTS SFN was highly expressed in the tissues and serum of hepatocellular carcinoma, and its expression level was correlated with the tumor which was single or not in patients. Bioanalysis and histochemistry results showed that CDC25B was co-expressed with SFN in HCC, which may be the upstream and downstream signaling molecule of SFN. Knockdown of SFN can inhibit cell proliferation, migration, invasion and promote apoptosis. CONCLUSIONS Our results suggest that SFN may play an important role in HCC progression and may interact with CDC25B to promote malignant progression of HCC, providing a molecular target for future HCC therapy.
Collapse
|
12
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
13
|
Role of Candida albicans in Oral Carcinogenesis. PATHOPHYSIOLOGY 2022; 29:650-662. [PMID: 36548207 PMCID: PMC9786125 DOI: 10.3390/pathophysiology29040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oral carcinogenesis is also dependent on the balance of the oral microbiota. Candida albicans is a member oral microbiota that acts as an opportunistic pathogen along with changes in the epithelium that can predispose to premalignancy and/or malignancy. This systematic review uses the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines to analyze the role of Candida albicans in the process of oral carcinogenesis. Eleven articles qualified inclusion criteria, matched keywords, and provided adequate information about the carcinogenesis parameters of Candida albicans in oral cancer. Candida albicans in oral carcinogenesis can be seen as significant virulent factors for patients with oral squamous cell carcinoma (OSCC) or potentially malignant disorder (OPMD) with normal adjacent mucosa. Candida albicans have a role in the process of oral carcinogenesis concerning morphological phenotype changes in cell structure and genotype and contribute to the formation of carcinogenic substances that can affect cell development towards malignancy.
Collapse
|