1
|
Kemppainen E, Albó O, Kaunisto H, Siukola E, Lindfors K. Differential immune responses behind different celiac disease manifestations. Semin Immunol 2025; 78:101941. [PMID: 40086411 DOI: 10.1016/j.smim.2025.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
In celiac disease (CeD), dietary gluten serves as the driver for a comparatively well characterized small bowel mucosal immune response that generally results in small bowel mucosal villous atrophy and crypt hyperplasia along with a disease-specific transglutaminase 2 (TG2) targeting autoantibody response. Individuals with positive TG2 autoantibodies but normal small intestinal mucosal morphology are regarded at increased risk of developing CeD and represent patients with potential CeD. The removal of gluten from the diet leads to disappearance of the autoantibodies and normalization of the mucosal architecture in most cases. However, refractory CeD patients deviate from this dogma as they present with abnormal T cell compartment, persistent symptoms and villous atrophy despite a strict gluten-free diet. The heterogeneity of CeD presentation is further diversified by varying symptomatology. Gastrointestinal symptoms are the most canonical signs of CeD, and they include for instance diarrhea, vomiting, constipation and abdominal pain. Yet, a great portion of the patients manifest the disease at extraintestinal sites such as skin, musculoskeletal system or neuronal tissues. Beyond the involvement of various transglutaminase autoantibodies, the detailed immune mechanisms contributing to the development of these manifestations remains elusive, though. This review highlights the current understanding of the immunological differences in various manifestations of CeD. As the immunological basis of the different CeD phenotypes is at present insufficiently understood, more research on the subject is warranted before such data could be maximally applied to clinical practice.
Collapse
Affiliation(s)
- Esko Kemppainen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Olga Albó
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Helka Kaunisto
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emilia Siukola
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Inchingolo AD, Dipalma G, Viapiano F, Netti A, Ferrara I, Ciocia AM, Mancini A, Di Venere D, Palermo A, Inchingolo AM, Inchingolo F. Celiac Disease-Related Enamel Defects: A Systematic Review. J Clin Med 2024; 13:1382. [PMID: 38592254 PMCID: PMC10932357 DOI: 10.3390/jcm13051382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION This systematic review aims to elucidate the intricate correlation between celiac disease (CD) and dental enamel defects (DED), exploring pathophysiological mechanisms, oral health implications, and a dentist's role in early diagnosis. MATERIALS AND METHODS Following PRISMA guidelines, a comprehensive search from 1 January 2013 to 1 January 2024 across PubMed, Cochrane Library, Scopus, and Web of Science identified 153 publications. After exclusions, 18 studies met the inclusion criteria for qualitative analysis. Inclusion criteria involved study types (RCTs, RCCTs, case series), human participants, English language, and full-text available. RESULTS The search yielded 153 publications, with 18 studies meeting the inclusion criteria for qualitative analysis. Notable findings include a high prevalence of DED in CD patients, ranging from 50 to 94.1%. Symmetrical and chronological defects, according to Aine's classification, were predominant, and significant associations were observed between CD severity and enamel defect extent. CONCLUSIONS The early recognition of oral lesions, particularly through Aine's classification, may signal potential CD even in the absence of gastrointestinal symptoms. Correlations between CD and dental health conditions like molar incisor hypomineralization (MIH) emphasize the dentist's crucial role in early diagnosis. Collaboration between dentists and gastroenterologists is essential for effective monitoring and management. This review consolidates current knowledge, laying the groundwork for future research and promoting interdisciplinary collaboration for improved CD-related oral health outcomes. Further large-scale prospective research is recommended to deepen our understanding of these issues.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Anna Netti
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Irene Ferrara
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| |
Collapse
|
3
|
Gruper Y, Wolff ASB, Glanz L, Spoutil F, Marthinussen MC, Osickova A, Herzig Y, Goldfarb Y, Aranaz-Novaliches G, Dobeš J, Kadouri N, Ben-Nun O, Binyamin A, Lavi B, Givony T, Khalaila R, Gome T, Wald T, Mrazkova B, Sochen C, Besnard M, Ben-Dor S, Feldmesser E, Orlova EM, Hegedűs C, Lampé I, Papp T, Felszeghy S, Sedlacek R, Davidovich E, Tal N, Shouval DS, Shamir R, Guillonneau C, Szondy Z, Lundin KEA, Osicka R, Prochazka J, Husebye ES, Abramson J. Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease. Nature 2023; 624:653-662. [PMID: 37993717 DOI: 10.1038/s41586-023-06776-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.
Collapse
Affiliation(s)
- Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anette S B Wolff
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Liad Glanz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Mihaela Cuida Marthinussen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yonatan Herzig
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Goretti Aranaz-Novaliches
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Binyamin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lavi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomáš Wald
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Mrazkova
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Carmel Sochen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marine Besnard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elisaveta M Orlova
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow, Russian Federation
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - István Lampé
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Papp
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Esti Davidovich
- Department of Pediatric Dentistry, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Noa Tal
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S Shouval
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raanan Shamir
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Knut E A Lundin
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Eystein S Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
van Meijeren-van Lunteren AW, Liu X, Veenman FCH, Grgic O, Dhamo B, van der Tas JT, Prijatelj V, Roshchupkin GV, Rivadeneira F, Wolvius EB, Kragt L. Oral and craniofacial research in the Generation R study: an executive summary. Clin Oral Investig 2023:10.1007/s00784-023-05076-1. [PMID: 37301790 DOI: 10.1007/s00784-023-05076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/04/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Oral conditions are of high prevalence and chronic character within the general population. Identifying the risk factors and determinants of oral disease is important, not only to reduce the burden of oral diseases, but also to improve (equal access to) oral health care systems, and to develop effective oral health promotion programs. Longitudinal population-based (birth-)cohort studies are very suitable to study risk factors on common oral diseases and have the potential to emphasize the importance of a healthy start for oral health. In this paper, we provide an overview of the comprehensive oral and craniofacial dataset that has been collected in the Generation R study: a population-based prospective birth cohort in the Netherlands that was designed to identify causes of health from fetal life until adulthood. METHODS Within the multidisciplinary context of the Generation R study, oral and craniofacial data has been collected from the age of 3 years onwards, and continued at the age of six, nine, and thirteen. Data collection is continuing in 17-year-old participants. RESEARCH OUTCOMES In total, the cohort population comprised 9749 children at birth, and 7405 eligible participants at the age of seventeen. Based on questionnaires, the dataset contains information on oral hygiene, dental visits, oral habits, oral health-related quality of life, orthodontic treatment, and obstructive sleep apnea. Based on direct measurements, the dataset contains information on dental caries, developmental defects of enamel, objective orthodontic treatment need, dental development, craniofacial characteristics, mandibular cortical thickness, and 3D facial measurements. CONCLUSIONS Several research lines have been set up using the oral and craniofacial data linked with the extensive data collection that exists within the Generation R study. CLINICAL RELEVANCE Being embedded in a multidisciplinary and longitudinal birth cohort study allows researchers to study several determinants of oral and craniofacial health, and to provide answers and insight into unknown etiologies and oral health problems in the general population.
Collapse
Affiliation(s)
- Agatha W van Meijeren-van Lunteren
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Xianjing Liu
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Francien C H Veenman
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Olja Grgic
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Brunilda Dhamo
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Justin T van der Tas
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Vid Prijatelj
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Gennady V Roshchupkin
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Eppo B Wolvius
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Lea Kragt
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
- The Generation R Study Group, Erasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Elwenspoek MM, Thom H, Sheppard AL, Keeney E, O'Donnell R, Jackson J, Roadevin C, Dawson S, Lane D, Stubbs J, Everitt H, Watson JC, Hay AD, Gillett P, Robins G, Jones HE, Mallett S, Whiting PF. Defining the optimum strategy for identifying adults and children with coeliac disease: systematic review and economic modelling. Health Technol Assess 2022; 26:1-310. [PMID: 36321689 PMCID: PMC9638887 DOI: 10.3310/zuce8371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Coeliac disease is an autoimmune disorder triggered by ingesting gluten. It affects approximately 1% of the UK population, but only one in three people is thought to have a diagnosis. Untreated coeliac disease may lead to malnutrition, anaemia, osteoporosis and lymphoma. OBJECTIVES The objectives were to define at-risk groups and determine the cost-effectiveness of active case-finding strategies in primary care. DESIGN (1) Systematic review of the accuracy of potential diagnostic indicators for coeliac disease. (2) Routine data analysis to develop prediction models for identification of people who may benefit from testing for coeliac disease. (3) Systematic review of the accuracy of diagnostic tests for coeliac disease. (4) Systematic review of the accuracy of genetic tests for coeliac disease (literature search conducted in April 2021). (5) Online survey to identify diagnostic thresholds for testing, starting treatment and referral for biopsy. (6) Economic modelling to identify the cost-effectiveness of different active case-finding strategies, informed by the findings from previous objectives. DATA SOURCES For the first systematic review, the following databases were searched from 1997 to April 2021: MEDLINE® (National Library of Medicine, Bethesda, MD, USA), Embase® (Elsevier, Amsterdam, the Netherlands), Cochrane Library, Web of Science™ (Clarivate™, Philadelphia, PA, USA), the World Health Organization International Clinical Trials Registry Platform ( WHO ICTRP ) and the National Institutes of Health Clinical Trials database. For the second systematic review, the following databases were searched from January 1990 to August 2020: MEDLINE, Embase, Cochrane Library, Web of Science, Kleijnen Systematic Reviews ( KSR ) Evidence, WHO ICTRP and the National Institutes of Health Clinical Trials database. For prediction model development, Clinical Practice Research Datalink GOLD, Clinical Practice Research Datalink Aurum and a subcohort of the Avon Longitudinal Study of Parents and Children were used; for estimates for the economic models, Clinical Practice Research Datalink Aurum was used. REVIEW METHODS For review 1, cohort and case-control studies reporting on a diagnostic indicator in a population with and a population without coeliac disease were eligible. For review 2, diagnostic cohort studies including patients presenting with coeliac disease symptoms who were tested with serological tests for coeliac disease and underwent a duodenal biopsy as reference standard were eligible. In both reviews, risk of bias was assessed using the quality assessment of diagnostic accuracy studies 2 tool. Bivariate random-effects meta-analyses were fitted, in which binomial likelihoods for the numbers of true positives and true negatives were assumed. RESULTS People with dermatitis herpetiformis, a family history of coeliac disease, migraine, anaemia, type 1 diabetes, osteoporosis or chronic liver disease are 1.5-2 times more likely than the general population to have coeliac disease; individual gastrointestinal symptoms were not useful for identifying coeliac disease. For children, women and men, prediction models included 24, 24 and 21 indicators of coeliac disease, respectively. The models showed good discrimination between patients with and patients without coeliac disease, but performed less well when externally validated. Serological tests were found to have good diagnostic accuracy for coeliac disease. Immunoglobulin A tissue transglutaminase had the highest sensitivity and endomysial antibody the highest specificity. There was little improvement when tests were used in combination. Survey respondents (n = 472) wanted to be 66% certain of the diagnosis from a blood test before starting a gluten-free diet if symptomatic, and 90% certain if asymptomatic. Cost-effectiveness analyses found that, among adults, and using serological testing alone, immunoglobulin A tissue transglutaminase was most cost-effective at a 1% pre-test probability (equivalent to population screening). Strategies using immunoglobulin A endomysial antibody plus human leucocyte antigen or human leucocyte antigen plus immunoglobulin A tissue transglutaminase with any pre-test probability had similar cost-effectiveness results, which were also similar to the cost-effectiveness results of immunoglobulin A tissue transglutaminase at a 1% pre-test probability. The most practical alternative for implementation within the NHS is likely to be a combination of human leucocyte antigen and immunoglobulin A tissue transglutaminase testing among those with a pre-test probability above 1.5%. Among children, the most cost-effective strategy was a 10% pre-test probability with human leucocyte antigen plus immunoglobulin A tissue transglutaminase, but there was uncertainty around the most cost-effective pre-test probability. There was substantial uncertainty in economic model results, which means that there would be great value in conducting further research. LIMITATIONS The interpretation of meta-analyses was limited by the substantial heterogeneity between the included studies, and most included studies were judged to be at high risk of bias. The main limitations of the prediction models were that we were restricted to diagnostic indicators that were recorded by general practitioners and that, because coeliac disease is underdiagnosed, it is also under-reported in health-care data. The cost-effectiveness model is a simplification of coeliac disease and modelled an average cohort rather than individuals. Evidence was weak on the probability of routine coeliac disease diagnosis, the accuracy of serological and genetic tests and the utility of a gluten-free diet. CONCLUSIONS Population screening with immunoglobulin A tissue transglutaminase (1% pre-test probability) and of immunoglobulin A endomysial antibody followed by human leucocyte antigen testing or human leucocyte antigen testing followed by immunoglobulin A tissue transglutaminase with any pre-test probability appear to have similar cost-effectiveness results. As decisions to implement population screening cannot be made based on our economic analysis alone, and given the practical challenges of identifying patients with higher pre-test probabilities, we recommend that human leucocyte antigen combined with immunoglobulin A tissue transglutaminase testing should be considered for adults with at least a 1.5% pre-test probability of coeliac disease, equivalent to having at least one predictor. A more targeted strategy of 10% pre-test probability is recommended for children (e.g. children with anaemia). FUTURE WORK Future work should consider whether or not population-based screening for coeliac disease could meet the UK National Screening Committee criteria and whether or not it necessitates a long-term randomised controlled trial of screening strategies. Large prospective cohort studies in which all participants receive accurate tests for coeliac disease are needed. STUDY REGISTRATION This study is registered as PROSPERO CRD42019115506 and CRD42020170766. FUNDING This project was funded by the National Institute for Health and Care Research ( NIHR ) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 44. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Martha Mc Elwenspoek
- National Institute for Health and Care Research Applied Research Collaboration West, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Howard Thom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Athena L Sheppard
- National Institute for Health and Care Research Applied Research Collaboration West, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Edna Keeney
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rachel O'Donnell
- National Institute for Health and Care Research Applied Research Collaboration West, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Joni Jackson
- National Institute for Health and Care Research Applied Research Collaboration West, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Cristina Roadevin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Hazel Everitt
- Primary Care Research Centre, Population Sciences and Medical Education, University of Southampton, Southampton, UK
| | - Jessica C Watson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alastair D Hay
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Gillett
- Paediatric Gastroenterology, Hepatology and Nutrition Department, Royal Hospital for Sick Children, Edinburgh, UK
| | - Gerry Robins
- Department of Gastroenterology, York Teaching Hospital NHS Foundation Trust, York, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sue Mallett
- Centre for Medical Imaging, University College London, London, UK
| | - Penny F Whiting
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Lima LJS, Ramos-Jorge ML, Soares MEC. Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis. Clin Oral Investig 2021; 25:6501-6516. [PMID: 34414520 DOI: 10.1007/s00784-021-04146-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The etiology of hypomineralized second primary molar (HSPM) appears to be multifactorial but remains uncertain. Thus, the objective was to systematically review studies that investigated adverse health conditions in the prenatal, perinatal and postnatal periods associated with HSPM. MATERIAL AND METHODS The search was carried out in five databases and in gray literature. The risk of bias of observational studies was analyzed according to the Newcastle-Ottawa scale. RESULTS A total of 1878 studies were identified. Fourteen were eligible, and seven were included in the meta-analysis. Maternal smoking (OR = 2.88; 95%CI: 1.62-5.15) and presence of maternal hypertension (OR = 2.91; 95%CI: 1.35-6.28) were significantly associated with higher odds of HSPM. In the perinatal period, factors associated with HSPM were low birth weight (OR = 1.50; 95%CI: 1.15-1.96), prematurity (OR = 1.93; 95%CI: 1.37-2.71), delivery complications (OR = 2.42; 95%CI: 1.52-3.83) and need for an incubator (OR = 1.65; 95%CI: 1.01-2.70). Not breastfeeding (OR = 1.26; 95%CI: 1.01-1.58), use of antibiotics by the child (OR = 1.24; 95%CI: 1.04-1.48), fever (OR = 1.37; 95%CI: 1.10-1.72) and asthma (OR = 1.91; 95%CI: 1.16-3.13) were the postnatal factors associated with HSPM. CONCLUSION Maternal smoking, maternal hypertension, low birth weight, prematurity, delivery complications, need for incubation, not breastfeeding, antibiotic use, fever and childhood asthma were associated with HSPM. Well-designed prospective cohort studies are needed. Clinical relevance Understanding the etiological factors can be guiding aspects for individual clinical approaches, as well as guiding the design of preventive interventions for HSPM.
Collapse
Affiliation(s)
- Laura Jordana Santos Lima
- Department of Dentistry, School of Biological and Health Sciences, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Rua da Glória, n. 187, Centro, Diamantina, Minas Gerais, Brazil.
| | - Maria Letícia Ramos-Jorge
- Department of Dentistry, School of Biological and Health Sciences, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Rua da Glória, n. 187, Centro, Diamantina, Minas Gerais, Brazil
| | - Maria Eliza Consolação Soares
- Department of Dentistry, School of Biological and Health Sciences, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Rua da Glória, n. 187, Centro, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
7
|
Nieri M, Tofani E, Defraia E, Giuntini V, Franchi L. Enamel defects and aphthous stomatitis in celiac and healthy subjects: Systematic review and meta-analysis of controlled studies. J Dent 2017; 65:1-10. [DOI: 10.1016/j.jdent.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022] Open
|