1
|
Jamali MC, Mohamed AH, Jamal A, Kamal MA, Al Abdulmonem W, Saeed BA, Mansuri N, Ahmad F, Mudhafar M, Shafie A, Hattiwale HM. Biological mechanisms and therapeutic prospects of interleukin-33 in pathogenesis and treatment of allergic disease. J Inflamm (Lond) 2025; 22:17. [PMID: 40355878 PMCID: PMC12070619 DOI: 10.1186/s12950-025-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/15/2025] [Indexed: 05/15/2025] Open
Abstract
Allergic diseases significantly impact the quality of life of people around the world. Cytokines play a crucial role in regulating the immune system. Due to their importance in pro-inflammatory mechanisms, cytokines are used to understand pathogenesis and serve as biomarkers in many diseases. One such cytokine is interleukin-33, a member of the IL-1 family, including IL- 1α, IL-1β, and IL-18. The IL-33 receptor is a heterodimer of IL-1 receptor-like 1 and IL-1 receptor accessory protein. IL-33 plays a critical role in regulating innate and adaptive immune responses. The primary targets of IL-33 in vivo are tissue-resident immune cells, including mast cells, group 2 innate lymphoid cells, regulatory T cells, T helper 2 cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, B cells, neutrophils, and macrophages. However, IL-33 appears to act as an alarm signal that is promptly released by producing cells under cellular damage or stress conditions. IL-33 regulates signaling and various biological functions, including induction of pro-inflammatory cytokines, regulation of cell proliferation, and involvement in tissue remodeling. IL-33 is fundamental in immune-related diseases and plays a critical role in the control of inflammation. Recently, IL-33 has been shown to significantly impact allergic diseases, primarily by inducing Th2 immune responses. IL-33 is a key regulator of mast cell function and a promising therapeutic target for treating allergic diseases. This review provides an overview of the current understanding of the role of IL-33 in allergy pathogenesis and potential clinical approaches.
Collapse
Affiliation(s)
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Al-Majmaah 11952,, Saudi Arabia
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952 , Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Nasrin Mansuri
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713 , Saudi Arabia
| | - Mustafa Mudhafar
- Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala, 56001, Karbala, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff university college, 56001, Kerbala, Iraq
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952 , Saudi Arabia.
| |
Collapse
|
2
|
Teräsjärvi JT, Toivonen L, Mertsola J, Peltola V, He Q. ST2 and IL-33 polymorphisms and the development of childhood asthma: a prospective birth cohort study in Finnish children. APMIS 2024; 132:515-525. [PMID: 38566447 DOI: 10.1111/apm.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The ST2/IL-33 signaling pathway has an important role in the host inflammatory response. Here we aimed to study the association of ST2 and IL-33 polymorphisms with serum soluble (s) ST2 and IL-33 concentrations in healthy Finnish children and, in addition, their association with childhood asthma. In total, 146 children were followed from birth to the age 7 years for the development of asthma. Single-nucleotide polymorphisms (SNPs) in ST2 and IL-33 were determined, and associations of the SNP variants with serum levels of sST2 and IL-33 at age of 13 months and with recurrent wheezing and childhood asthma at 7 years of age were analyzed. Children with ST2 rs1041973 AC/AA genotypes had significantly lower level of serum sST2 (2453 pg/mL; IQR 2265) than those with CC genotype (5437 pg/mL; IQR 2575; p = < 0.0001). Similar difference was also observed with ST2 rs13408661. No differences were observed between subjects with studied IL-33 SNPs. Children who carried genetic variants of ST2 rs1041973 or rs13408661 seemed to have a higher risk of asthma. In contrast, children who carried genetic variants of IL-33 rs12551268 were less often diagnosed with asthma. Even though these SNPs seemed to associate with asthma, the differences were not statistically significant.
Collapse
Affiliation(s)
- Johanna T Teräsjärvi
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Laura Toivonen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Jussi Mertsola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| | - Qiushui He
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Maher SA, AbdAllah NB, Ageeli EA, Riad E, Kattan SW, Abdelaal S, Abdelfatah W, Ibrahim GA, Toraih EA, Awadalla GA, Fawzy MS, Ibrahim A. Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents. CHILDREN (BASEL, SWITZERLAND) 2024; 11:657. [PMID: 38929236 PMCID: PMC11202101 DOI: 10.3390/children11060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Several single nucleotide polymorphisms (SNPs) in multiple interleukin receptor genes could be associated with asthma risk and/or phenotype. Interleukin-17 (IL-17) has been implicated in tissue inflammation and autoimmune diseases. As no previous studies have uncovered the potential role of IL17 receptor A (RA) gene variants in asthma risk, we aimed to explore the association of four IL17RA SNPs (i.e., rs4819554A/G, rs879577C/T, rs41323645G/A, and rs4819555C/T) with asthma susceptibility/phenotype in our region. TaqMan allelic discrimination analysis was used to genotype 192 individuals. We found that the rs4819554 G/G genotype significantly reduced disease risk in the codominant (OR = 0.15, 95%CI = 0.05-0.45, p < 0.001), dominant (OR = 0.49, 95%CI = 0.26-0.93, p = 0.028), and recessive (OR = 0.18, 95%CI = 0.07-0.52, p < 0.001) models. Similarly, rs879577 showed reduced disease risk associated with the T allele across all genetic models. However, the A allele of rs41323645 was associated with increased disease risk in all models. The G/A and A/A genotypes have higher ORs of 2.47 (95%CI = 1.19-5.14) and 3.86 (95%CI = 1.62-9.18), respectively. Similar trends are observed in the dominant 2.89 (95%CI = 1.47-5.68, p = 0.002) and recessive 2.34 (95%CI = 1.10-4.98, p = 0.025) models. For the rs4819555 variant, although there was no significant association identified under any models, carriers of the rs4819554*A demonstrated an association with a positive family history of asthma (71.4% in carriers vs. 27% in non-carriers; p = 0.025) and the use of relievers for >2 weeks (52.2% of carriers vs. 28.8% of non-carriers; p = 0.047). Meanwhile, the rs4819555*C carriers displayed a significant divergence in the asthma phenotype, specifically atopic asthma (83.3% vs. 61.1%; p = 0.007), showed a higher prevalence of chest tightness (88.9% vs. 61.5%; p = 0.029), and were more likely to report comorbidities (57.7% vs. 16.7%, p = 0.003). The most frequent haplotype in the asthma group was ACAC, with a frequency of 22.87% vs. 1.36% in the controls (p < 0.001). In conclusion, the studied IL17RA variants could be essential in asthma susceptibility and phenotype in children and adolescents.
Collapse
Affiliation(s)
- Shymaa Ahmed Maher
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nouran B. AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| | - Essam Al Ageeli
- Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan 45141, Saudi Arabia;
| | - Eman Riad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (E.R.); (W.A.)
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia;
| | - Sherouk Abdelaal
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| | - Wagdy Abdelfatah
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (E.R.); (W.A.)
| | - Gehan A. Ibrahim
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Ghada A. Awadalla
- Biochemistry Department, Animal Health Research Institute, Mansoura Branch, Giza 12618, Egypt;
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
| | - Ahmed Ibrahim
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| |
Collapse
|
4
|
Makrinioti H, Zhu Z, Saglani S, Camargo CA, Hasegawa K. Infant Bronchiolitis Endotypes and the Risk of Developing Childhood Asthma: Lessons From Cohort Studies. Arch Bronconeumol 2024; 60:215-225. [PMID: 38569771 DOI: 10.1016/j.arbres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Gaurav R, Poole JA. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J Asthma 2022; 59:2530-2538. [PMID: 34928757 PMCID: PMC9234100 DOI: 10.1080/02770903.2021.2020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES PubMed, clinicaltrials.gov. STUDY SELECTIONS A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|