1
|
Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10:2351-2365. [PMID: 37554175 PMCID: PMC10404889 DOI: 10.1016/j.gendis.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Obesity has become a major health crisis in the past ∼50 years. The fat mass and obesity-associated (FTO) gene, identified by genome-wide association studies (GWAS), was first reported to be positively associated with obesity in humans. Mice with more copies of the FTO gene were observed to be obese, while loss of the gene in mice was found to protect from obesity. Later, FTO was found to encode an m6A RNA demethylase and has a profound effect on many biological and metabolic processes. In this review, we first summarize recent studies that demonstrate the critical roles and regulatory mechanisms of FTO in obesity and metabolic disease. Second, we discuss the ongoing debates concerning the association between FTO polymorphisms and obesity. Third, since several small molecule drugs and micronutrients have been found to regulate metabolic homeostasis through controlling the expression or activity of FTO, we highlight the broad potential of targeting FTO for obesity treatment. Improving our understanding of FTO and the underlying mechanisms may provide new approaches for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
2
|
Lee GY, Han SN. Direct-to-Consumer Genetic Testing in Korea: Current Status and Significance in Clinical Nutrition. Clin Nutr Res 2021; 10:279-291. [PMID: 34796133 PMCID: PMC8575646 DOI: 10.7762/cnr.2021.10.4.279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Direct-to-consumer genetic testing (DTC-GT) provides a means for consumers to gain insights into their genetic background and how it relates to their health without the involvement of medical institutions. In Korea, DTC-GT was introduced in 2016 in accordance with the legislation on Paragraph (3) 2 of Article 50 of the Bioethics and Safety Act. Only 12 genetic test items involving 46 genes were approved at first, but the approved items were expanded to 70 in November 2020. However, the genetic test items of DTC-GT services in Korea are still restricted to the wellness area, and access to disease risk related information is only permitted to medical institutions. Further, studies revealing the relationship between genotype differences and responses to nutrients, food components, or nutritional status are increasing, and this association appears to be robust for some genes. This strong association between genetic variations and nutrition suggests that DTC-GT can be used as an important tool by clinical nutritionists to gain insights into an individual's genetic susceptibilities and provide guidance on nutritional counseling and meal planning based on the patient's genetic information. This review summarized the history and current status of DTC-GT and investigated the relationship between genetic variations with associated phenotypic traits to clarify further the importance of DTC-GT in the field of clinical nutrition.
Collapse
Affiliation(s)
- Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Czogała W, Czogała M, Strojny W, Wątor G, Wołkow P, Wójcik M, Bik Multanowski M, Tomasik P, Wędrychowicz A, Kowalczyk W, Miklusiak K, Łazarczyk A, Hałubiec P, Skoczeń S. Methylation and Expression of FTO and PLAG1 Genes in Childhood Obesity: Insight into Anthropometric Parameters and Glucose-Lipid Metabolism. Nutrients 2021; 13:1683. [PMID: 34063412 PMCID: PMC8155878 DOI: 10.3390/nu13051683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of childhood obesity is influenced by both genetic and epigenetic factors. FTO (FTO alpha-ketoglutarate dependent dioxygenase) is a gene of well-established connection with adiposity, while a protooncogene PLAG1 (PLAG1 zinc finger) has been only recently linked to this condition. We performed a cross-sectional study on a cohort of 16 obese (aged 6.6-17.7) and 10 healthy (aged 11.4-16.9) children. The aim was to evaluate the relationship between methylation and expression of the aforementioned genes and the presence of obesity as well as alterations in anthropometric measurements (including waist circumference (WC), body fat (BF_kg) and body fat percent (BF_%)), metabolic parameters (lipid profile, blood glucose and insulin levels, presence of insulin resistance) and blood pressure. Expression and methylation were measured in peripheral blood mononuclear cells using a microarray technique and a method based on restriction enzymes, respectively. Multiple regression models were constructed to adjust for the possible influence of age and sex on the investigated associations. We showed significantly increased expression of the FTO gene in obese children and in patients with documented insulin resistance. Higher FTO expression was also associated with an increase in WC, BF_kg, and BF_% as well as higher fasting concentration of free fatty acids (FFA). FTO methylation correlated positively with WC and BF_kg. Increase in PLAG1 expression was associated with higher BF%. Our results indicate that the FTO gene is likely to play an important role in the development of childhood adiposity together with coexisting impairment of glucose-lipid metabolism.
Collapse
Affiliation(s)
- Wojciech Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Wojciech Strojny
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Gracjan Wątor
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Mirosław Bik Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław Tomasik
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Andrzej Wędrychowicz
- Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Wojciech Kowalczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Karol Miklusiak
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Agnieszka Łazarczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Przemysław Hałubiec
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
4
|
Ferenc K, Pilžys T, Garbicz D, Marcinkowski M, Skorobogatov O, Dylewska M, Gajewski Z, Grzesiuk E, Zabielski R. Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status. Sci Rep 2020; 10:13029. [PMID: 32747736 PMCID: PMC7400765 DOI: 10.1038/s41598-020-69856-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies in the FTO gene have identified SNPs correlating with obesity and type 2 diabetes. In mice, lack of Fto function leads to intrauterine growth retardation and lean phenotype, whereas in human it is lethal. The aim of this study in a pig model was to determine the localization of the FTO protein in different tissues and cell compartments, in order to investigate potential targets of FTO action. To better understand physiological role of FTO protein, its expression was studied in pigs of different age, metabolic status and nutrition, using both microscopic methods and Western blot analysis. For the first time, FTO protein was found in vivo in the cytoplasm, of not all, but specific tissues and cells e.g. in the pancreatic β-cells. Abundant FTO protein expression was found in the cerebellum, salivary gland and kidney of adult pigs. No FTO protein expression was detected in blood, saliva, and bile, excluding its role in cell-to-cell communication. In the pancreas, FTO protein expression was positively associated with energy intake, whereas in the muscles it was strictly age-related. In IUGR piglets, FTO protein expression was much higher in the cerebellum and kidneys, as compared to normal birth body weight littermates. In conclusion, our data suggest that FTO protein may play a number of distinct, yet unknown intracellular functions due to its localization. Moreover, it may play a role in animal growth/development and metabolic state, although additional studies are necessary to clarify the detailed mechanism(s) of action.
Collapse
Affiliation(s)
- Karolina Ferenc
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Oleksandr Skorobogatov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Zdzisław Gajewski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Romuald Zabielski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland.
| |
Collapse
|
5
|
Vasconcelos A, Santos T, Ravasco P, Neves PM. Dairy Products: Is There an Impact on Promotion of Prostate Cancer? A Review of the Literature. Front Nutr 2019; 6:62. [PMID: 31139629 PMCID: PMC6527888 DOI: 10.3389/fnut.2019.00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
This review of the literature aims to study potential associations between high consumption of milk and/or dairy products and prostate cancer (PC). Literature is scarce, yet there is a direct relationship between mTORC1 activation and PC; several ingredients in milk/dairy products, when in high concentrations, increase signaling of the mTORC1 pathway. However, there are no studies showing an unequivocal relationship between milk products PC initiation and/or progression. Three different reviews were conducted with articles published in the last 5 years: (M1) PC and intake of dairy products, taking into account the possible mTORC1signaling mechanism; (M2) Intake of milk products and incidence/promotion of PC; (M3) mTORC1 activation signaling pathway, levels of IGF-1 and PC; (M4) mTORC pathway and dairy products. Of the 32 reviews identified, only 21 met the inclusion criteria and were analyzed. There is little scientific evidence that directly link the three factors: incidence/promotion of PC, intake of dairy products and PC, and PC and increased mTORC1 signaling. Persistent hyper-activation of mTORC1 is associated with PC promotion. The activity of exosomal mRNA in cellular communication may lead to different impacts of different types of milk and whether or not mammalian milks will have their own characteristics within each species. Based on this review of the literature, it is possible to establish a relationship between the consumption of milk products and the progression of PC; we also found a possible association with PC initiation, hence it is likely that the intake of dairy products should be reduced or minimized in mens' diet.
Collapse
Affiliation(s)
| | - Teresa Santos
- European University of Lisbon, Lisbon, Portugal.,Faculdade de Medicina, Instituto de Saúde Ambiental, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Ciências da Saúde, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Paula Ravasco
- University Hospital of Santa Maria, University of Lisbon, Lisbon, Portugal.,Centre for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Pedro Miguel Neves
- Centre for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| |
Collapse
|
6
|
Doaei S, Kalantari N, Keshavarz Mohammadi N, Izadi P, Gholamalizadeh M, Eini-Zinab H, Salonurmi T, Mosavi Jarrahi A, Rafieifar S, Najafi R, Sadeghypor M, Azizi Tabesh G, Goodarzi MO. The Role of FTO Genotype in the Association Between FTO Gene Expression and Anthropometric Measures in Obese and Overweight Adolescent Boys. Am J Mens Health 2018; 13:1557988318808119. [PMID: 30373434 PMCID: PMC6771125 DOI: 10.1177/1557988318808119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of FTO genotype in the effect of FTO gene expression level on change in body mass index and body composition has not been studied. This study aimed to investigate the role of FTO genotype in the association between change in the expression level of the FTO gene with changes in anthropometric measurements in obese and overweight adolescent boys. Eighty-four boys aged 12 to 16 years participated in this longitudinal study. A bioimpedance analyzer (BIA) was used to estimate percentage of body fat (%body fat) and percentage of skeletal muscle (%skeletal muscle). The FTO gene expression level in peripheral blood mononuclear cells (PBMCs) was assessed using quantitative Real Time PCR (qPCR). The DNA samples were genotyped for the FTO gene polymorphisms by DNA sequencing. All measurements were performed at baseline and after intervention. A significant association was observed between the level of gene expression and %skeletal muscle. The gene expression fold change was significantly associated with change in %skeletal muscle in AA or AG genotype carriers (β = 0.34, p = .02). No significant association was detected between the change in FTO gene expression with change in anthropometric indices in GG genotype carriers. In conclusion, the association between FTO gene expression and body composition can be influenced by FTO genotype. Future studies are required to assess the interactions between FTO genotype, FTO gene expression in different tissues, and body composition.
Collapse
Affiliation(s)
- Saeid Doaei
- 1 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,2 Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.,3 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Kalantari
- 4 Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Pantea Izadi
- 6 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- 3 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Eini-Zinab
- 4 Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tuire Salonurmi
- 7 Department of Internal Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Shahram Rafieifar
- 8 Health Promotion and Education Department, Ministry of Health, Tehran, Iran
| | - Rahim Najafi
- 9 Deputy of Education and Training of Naja, Tehran, Iran
| | - Mahnaz Sadeghypor
- 10 Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghasem Azizi Tabesh
- 11 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mark O Goodarzi
- 12 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
7
|
MIÐEIKIENË R, PAKAÐIÛTË I, BIÞIENË R, PEÈIULAITIENË N, MICEIKIENË I, MAKÐTUTIENË N, MORKÛNIENË K. Association between FTO gene polymorphism and productivity traits in Lithuanian pigs population. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i1.79511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
FTO in pigs have reported associations of several single nucleotide polymorphisms with some fat-related traits. The purpose of our study was to investigate the FTO gene single nucleotide polymorphism (SNP) (g.400C>G) in the population of pigs and to evaluate the influence of polymorphism on productivity traits. This study of porcine FTO gene g.400C>G SNP was established from the isolated genomic DNA, amplified by nested polymerase chain reaction (PCR) and digested with restriction enzymes, then DNA fragments were separated by agarose gel electrophoresis. Allele C observed with frequency 0.4, allele G – 0.6. The most common genotype was GG, genotype CC was the rarest. CC genotype pigs consume the most feed per kilogram of weight gain compared with other genotypes. The highest values for backfat thickness at the last vertebra at Fat1 and Fat2 were observed in animals with genotype CC. The lowest muscularity (%) was also observed in CC genotype. It was found that almost all pig production traits were significantly influenced by breed. The breed and genotype interaction influence was statistically significant for muscularity of the carcasses and backfat at the Fat2 thickness.
Collapse
|
8
|
Lineker C, Kerr PM, Nguyen P, Bloor I, Astbury S, Patel N, Budge H, Hemmings DG, Plane F, Symonds ME, Bell RC. High fructose consumption in pregnancy alters the perinatal environment without increasing metabolic disease in the offspring. Reprod Fertil Dev 2018; 28:2007-2015. [PMID: 26143929 DOI: 10.1071/rd15119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/04/2015] [Indexed: 12/12/2022] Open
Abstract
Maternal carbohydrate intake is one important determinant of fetal body composition, but whether increased exposure to individual sugars has long-term adverse effects on the offspring is not well established. Therefore, we examined the effect of fructose feeding on the mother, placenta, fetus and her offspring up to 6 months of life when they had been weaned onto a standard rodent diet and not exposed to additional fructose. Dams fed fructose were fatter, had raised plasma insulin and triglycerides from mid-gestation and higher glucose near term. Maternal resistance arteries showed changes in function that could negatively affect regulation of blood pressure and tissue perfusion in the mother and development of the fetus. Fructose feeding had no effect on placental weight or fetal metabolic profiles, but placental gene expression for the glucose transporter GLUT1 was reduced, whereas the abundance of sodium-dependent neutral amino acid transporter-2 was raised. Offspring born to fructose-fed and control dams were similar at birth and had similar post-weaning growth rates, and neither fat mass nor metabolic profiles were affected. In conclusion, raised fructose consumption during reproduction results in pronounced maternal metabolic and vascular effects, but no major detrimental metabolic effects were observed in offspring up to 6 months of age.
Collapse
Affiliation(s)
- Christopher Lineker
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Paul M Kerr
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Patricia Nguyen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ian Bloor
- Early Life Research Group, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham NG7 2UH, UK
| | - Stuart Astbury
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Nikhil Patel
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Helen Budge
- Early Life Research Group, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham NG7 2UH, UK
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Frances Plane
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael E Symonds
- Early Life Research Group, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham NG7 2UH, UK
| | - Rhonda C Bell
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
9
|
Ritz BR, Chatterjee N, Garcia-Closas M, Gauderman WJ, Pierce BL, Kraft P, Tanner CM, Mechanic LE, McAllister K. Lessons Learned From Past Gene-Environment Interaction Successes. Am J Epidemiol 2017; 186:778-786. [PMID: 28978190 PMCID: PMC5860326 DOI: 10.1093/aje/kwx230] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic and environmental factors are both known to contribute to susceptibility to complex diseases. Therefore, the study of gene-environment interaction (G×E) has been a focus of research for several years. In this article, select examples of G×E from the literature are described to highlight different approaches and underlying principles related to the success of these studies. These examples can be broadly categorized as studies of single metabolism genes, genes in complex metabolism pathways, ranges of exposure levels, functional approaches and model systems, and pharmacogenomics. Some studies illustrated the success of studying exposure metabolism for which candidate genes can be identified. Moreover, some G×E successes depended on the availability of high-quality exposure assessment and longitudinal measures, study populations with a wide range of exposure levels, and the inclusion of ethnically and geographically diverse populations. In several examples, large population sizes were required to detect G×Es. Other examples illustrated the impact of accurately defining scale of the interactions (i.e., additive or multiplicative). Last, model systems and functional approaches provided insights into G×E in several examples. Future studies may benefit from these lessons learned.
Collapse
Affiliation(s)
- Beate R. Ritz
- Correspondence to Dr. Beate R. Ritz, Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, 650 Charles Young Drive South, Los Angeles, CA 90095 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou Y, Hambly BD, McLachlan CS. FTO associations with obesity and telomere length. J Biomed Sci 2017; 24:65. [PMID: 28859657 PMCID: PMC5580219 DOI: 10.1186/s12929-017-0372-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1 and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation. Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain some of the non-consistent relationship between weight phenotype and telomere length that is observed in population studies investigating obesity.
Collapse
Affiliation(s)
- Yuling Zhou
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Craig S McLachlan
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
11
|
Salgado-Montilla JL, Rodríguez-Cabán JL, Sánchez-García J, Sánchez-Ortiz R, Irizarry-Ramírez M. Impact of FTO SNPs rs9930506 and rs9939609 in Prostate Cancer Severity in a Cohort of Puerto Rican Men. ACTA ACUST UNITED AC 2017; 5. [PMID: 29333375 DOI: 10.21767/2254-6081.1000148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Obesity is prevalent in PR and has been associated with prostate cancer (PCa) mortality and aggressiveness. Polymorphisms (SNPs) rs9930506 and rs9939609 in the FTO gene have been associated with both obesity and PCa. The aim of this work was to ascertain whether the presence of these SNPs is associated with PCa risk and severity in a cohort of Puerto Rican men. Methods and findings The study population consisted of 513 Puerto Rican men age ranging from 40-79 years old who underwent radical prostatectomy (RP) as the first treatment for PCa and 128 healthy Puerto Rican men age ranging from 40-79 years old. Genomic DNA (gDNA) was extracted and SNPs were determined by Real-Time PCR. PCa severity was defined based on RP stage and Gleason Score. The relationship of FTO SNPs with demographic, clinical characteristics, PCa status and PCa severity were assessed. Logistic regression models with a 95% confidence interval (CI) determined SNPs interaction with PCa risk and severity odds ratio (ORs). Results and discussion BMI, age and PSA were considered as confounders. Hardy-Weinberg equilibrium was present for both SNPs. The heterozygous forms (A/G; T/A) were the most prevalent genotypes and the frequency of alleles and genotypes for both SNPs agreed with those published in 1000 genomes. Results suggest an inverse association between the mutated rs9939609 and the risk of having PCa (OR: 0.53, 95% CI: 0.31-0.92) and a positive association with overweight (OR: 1.05, 95% CI: 0.68-1.62). Importantly, among the cases that were overweight, those with mutated rs9939609 had a greater chance of high severity PCa (OR: 1.39, 95% CI: 0.84-2.32) although these results were not statistical significant upon adjustment. Limitations of the study were the relatively small cohort and lack of access to the weight history of all our subjects. Conclusion Results offer a research line to be followed with an expanded number of subjects that may provide a better statistical significance, to unravel the high mortality rate in this population.
Collapse
Affiliation(s)
- Jeannette L Salgado-Montilla
- University of Puerto Rico/MD Anderson Cancer Center Partnership for Excellence in Cancer Research, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Jorge L Rodríguez-Cabán
- School of Health Professions, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Jonathan Sánchez-García
- School of Public Health, Department of Biostatistics and Epidemiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Rico, USA
| | - Ricardo Sánchez-Ortiz
- School of Medicine, Urology Section, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Margarita Irizarry-Ramírez
- School of Health Professions, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| |
Collapse
|
12
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
13
|
Andraweera PH, Dekker GA, Leemaqz S, McCowan L, Roberts CT. The obesity associated FTO gene variant and the risk of adverse pregnancy outcomes: Evidence from the SCOPE study. Obesity (Silver Spring) 2016; 24:2600-2607. [PMID: 27768255 DOI: 10.1002/oby.21662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate whether the FTO rs9939609 single nucleotide polymorphism (SNP), which is a risk factor for obesity and vascular diseases, is also associated with pregnancy complications including pre-eclampsia, gestational hypertension, small for gestational age pregnancy (SGA), and spontaneous preterm birth (sPTB). METHODS A case-control study of 1,741 nulliparous Caucasian women, their partners, and infants was conducted. DNA was extracted from peripheral blood or saliva from parents and cord blood from infants and genotyped using the Sequenom MassARRAY system. RESULTS The prevalence of maternal and infant AA genotype of FTO rs9939609 was increased in the SGA group compared with the uncomplicated pregnancy group (19.2% vs. 13.4%, OR = 1.7, 95% CI = 1.1-2.6, P = 0.02 and 24.6% vs. 12.5%, OR = 2.7, 95% CI = 1.6-4.6, P = 0.0002). The prevalence of maternal and infant AA genotype of FTO rs9939609 was also increased in the sPTB group compared with the uncomplicated pregnancy group (20.8% vs. 13.4%, OR = 2.1, 95% CI = 1.2-3.8, P = 0.009 and 20.0% vs. 12.5%, OR = 2.4, 95% CI = 1.0-5.3, P = 0.03). CONCLUSIONS The maternal and infant AA genotype of the obesity associated FTO rs9939609 SNP associates with increased risk for SGA and sPTB. This SNP may be important in predicting the risk of these pregnancy complications and subsequent vascular diseases.
Collapse
Affiliation(s)
- Prabha H Andraweera
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Gustaaf A Dekker
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- Women's and Children's Division, Lyell McEwin Hospital, Adelaide, South Australia
| | - Shalem Leemaqz
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Lesley McCowan
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Claire T Roberts
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
14
|
Palaniswamy S, Williams D, Järvelin MR, Sebert S. Vitamin D and the Promotion of Long-Term Metabolic Health from a Programming Perspective. Nutr Metab Insights 2016; 8:11-21. [PMID: 26843814 PMCID: PMC4737521 DOI: 10.4137/nmi.s29526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/14/2023] Open
Abstract
Studies linking vitamin D and long-term metabolic health have generated much debate. Recommendations for the intake of vitamin D by the general public and by the health care professionals have been complicated by a number of inconsistencies in the literature. These caveats relate to the methodological approaches, differences in the populations (and the species) of study, and the definitions used for thresholds of vitamin D status. This review addresses current evidence available for assessing the potential programming of long-term metabolic health of offspring by maternal vitamin D status in pregnancy. It summarizes knowledge on the early origins of metabolic health and analyzes evidence for an association between the vitamin D status in pregnancy and maternal and fetal health status. In addition, we analyze the link between the regulation of inflammation and the vitamin D status in the general population to inform on the general mechanisms through which early vitamin D might affect the programming of long-term health. The evidence suggests an association between the vitamin D status in early life and the programming of long-term health. However, to the best of our knowledge, the current finding is insufficient to draw a final conclusion for evidence-based preventive actions. The data warrant replication in prospective studies and additional research substantiating the causal factors and pathways.
Collapse
Affiliation(s)
- Saranya Palaniswamy
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.; Biocenter Oulu, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Dylan Williams
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Marjo-Riitta Järvelin
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.; Biocenter Oulu, Faculty of Medicine, University of Oulu, Oulu, Finland.; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK.; MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College, London, UK.; Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Sylvain Sebert
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.; Biocenter Oulu, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 2015; 13:385. [PMID: 26691922 PMCID: PMC4687119 DOI: 10.1186/s12967-015-0746-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N6-methyladenosine (m6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
16
|
Maternal health and eating habits: metabolic consequences and impact on child health. Trends Mol Med 2015; 21:126-33. [PMID: 25662028 DOI: 10.1016/j.molmed.2014.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/21/2022]
Abstract
Apart from direct inheritance and the effects of a shared environment, maternal health, eating habits and diet can affect offspring health by developmental programming. Suboptimal maternal nutrition (i.e., either a reduction or an increase above requirement) or other insults experienced by the developing fetus can induce significant changes in adipose tissue and brain development, energy homeostasis, and the structure of vital organs. These can produce long-lasting adaptations that influence later energy balance, and increase the susceptibility of that individual to obesity and the components of the metabolic syndrome. Studies that elucidate the mechanisms behind these associations will have a positive impact on the health of the future adult population and may help to contain the obesity epidemic.
Collapse
|
17
|
Shabana, Ullah Shahid S, Wah Li K, Acharya J, Cooper JA, Hasnain S, Humphries SE. Effect of six type II diabetes susceptibility loci and an FTO variant on obesity in Pakistani subjects. Eur J Hum Genet 2015; 24:903-10. [PMID: 26395551 DOI: 10.1038/ejhg.2015.212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 01/17/2023] Open
Abstract
The aim of the current study was to analyze the effect of six type II diabetes GWAS loci rs3923113 (GRB14), rs16861329 (ST6GAL1), rs1802295 (VPS26A), rs7178572 (HMG20A), rs2028299 (AP3S2) and rs4812829 (HNF4A), and an FTO polymorphism (rs9939609) on obesity. The probable mechanism of action of these SNPs was analyzed by studying their association with various biochemical and anthropometric parameters. A total of 475 subjects (obese=250, controls=225) were genotyped by TaqMan assay and their lipid profile was determined. Allele/genotype frequencies and an unweighted/weighted gene score were calculated. The effect of the gene score on anthropometric and biochemical parameters was analyzed. The minor allele frequencies of all variants were comparable to that reported in the original studies and were associated with obesity in these Pakistani subjects. Subjects with 9 risk alleles differ from those with <3 and overall there is no significant effect (P-value for trend 0.26). None of the SNPs were associated with any of the serum lipid traits. We are the first to report the association of these T2D SNPs with obesity. In the Pakistani population the reported effect of six SNPs for obesity is similar to that reported for T2D and having a combination of risk alleles on obesity can be considerable. The mechanism of this effect is unclear, but appears not to be mediated by changing serum lipid chemistry.
Collapse
Affiliation(s)
- Shabana
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Saleem Ullah Shahid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Ka Wah Li
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Jayshree Acharya
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Jackie A Cooper
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,The Women University, Multan, Pakistan
| | - Stephen E Humphries
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
18
|
Reynolds CM, Gray C, Li M, Segovia SA, Vickers MH. Early Life Nutrition and Energy Balance Disorders in Offspring in Later Life. Nutrients 2015; 7:8090-111. [PMID: 26402696 PMCID: PMC4586579 DOI: 10.3390/nu7095384] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023] Open
Abstract
The global pandemic of obesity and type 2 diabetes is often causally linked to changes in diet and lifestyle; namely increased intake of calorically dense foods and concomitant reductions in physical activity. Epidemiological studies in humans and controlled animal intervention studies have now shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. The mechanisms by which early environmental insults can have long-term effects on offspring remain poorly defined. However there is evidence from intervention studies which indicate altered wiring of the hypothalamic circuits that regulate energy balance and epigenetic effects including altered DNA methylation of key adipokines including leptin. Studies that elucidate the mechanisms behind these associations will have a positive impact on the health of future populations and adopting a life course perspective will allow identification of phenotype and markers of risk earlier, with the possibility of nutritional and other lifestyle interventions that have obvious implications for prevention of non-communicable diseases.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Clint Gray
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Minglan Li
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Stephanie A Segovia
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| | - Mark H Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
19
|
Affiliation(s)
- M. Ludwig
- Institut fuer Vegetative Physiologie; Charité Universitaetsmedizin Berlin; Berlin Germany
| | - A. Högner
- Institut fuer Vegetative Physiologie; Charité Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
20
|
Grandone A, Marzuillo P, Cirillo G, Squitieri R, Tolone S, Miraglia del Giudice E, Perrone L, Tolone C. FTO Polymorphism rs9939609 Contributes to Weight Changes in Children With Celiac Disease on Gluten-Free Diet. J Pediatr Gastroenterol Nutr 2015; 61:220-223. [PMID: 26222659 DOI: 10.1097/mpg.0000000000000724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Studies of adults and children with celiac disease have reported an increased risk of overweight during gluten-free diet (GFD). The fat mass and obesity-associated gene (FTO) variant rs9939609 has been associated with increased risk of developing obesity in children and adults. METHODS In our study, we analyzed the effect of this variant on weight gain in a cohort of 280 children with celiac disease on GFD. RESULTS We found that after a mean follow-up time of 3.0 years on GFD, FTO polymorphism influenced significantly the mean change in body mass index z score (P = 0.01). CONCLUSIONS We conclude that the FTO gene contributes to determine weight changes in children with celiac disease on GFD.
Collapse
Affiliation(s)
- Anna Grandone
- *Department of the Woman, Child and of General and Specialized Surgery †Department of General Surgery, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- S. Reuter
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - R. Mrowka
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
22
|
Fat mass- and obesity-associated gene Fto affects the dietary response in mouse white adipose tissue. Sci Rep 2015; 5:9233. [PMID: 25782772 PMCID: PMC4363842 DOI: 10.1038/srep09233] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/25/2015] [Indexed: 12/18/2022] Open
Abstract
Common variants of human fat mass- and obesity-associated gene Fto have been linked with higher body mass index, but the biological explanation for the link has remained obscure. Recent findings suggest that these variants affect the homeobox protein IRX3. Here we report that FTO has a role in white adipose tissue which modifies its response to high-fat feeding. Wild type and Fto-deficient mice were exposed to standard or high-fat diet for 16 weeks after which metabolism, behavior and white adipose tissue morphology were analyzed together with adipokine levels and relative expression of genes regulating white adipose tissue adipogenesis and Irx3. Our results indicate that Fto deficiency increases the expression of genes related to adipogenesis preventing adipocytes from becoming hypertrophic after high-fat diet. In addition, we report a novel finding of increased Irx3 expression in Fto-deficient mice after high-fat feeding indicating a complex link between FTO, IRX3 and fat metabolism.
Collapse
|