1
|
Chen YC, Wu CC, Lin YT, Chen Y, Hwang IS. Adaptive Modification in Agonist Common Drive After Combined Blood Flow Restriction and Neuromuscular Electrical Stimulation. IEEE Trans Neural Syst Rehabil Eng 2025; PP:372-379. [PMID: 40030945 DOI: 10.1109/tnsre.2025.3525517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuromuscular electrical stimulation (NMES) combined with blood flow restriction (BFR) has garnered attention in rehabilitation for its ability to enhance muscle strength, despite the potential to accelerate training-related fatigue. This study examined changes in force scaling capacity immediately following combined NMES and BFR, focusing on motor unit synergy between agonist pairs. Fifteen participants (23.3 ± 1.8 years) trained with combined BFR and NMES on the extensor carpi radialis longus (ECRL) muscle, with maximal voluntary contraction (MVC) of wrist extension, along with force and EMG in the ECRL and extensor carpi radialis brevis (ECRB), measured during a designate force-tracking before and after training. Factor analysis identified latent modes influencing motor unit coordination between the ECRB and ECRL. The results showed a significant decrease in MVC after training (p < 0.001). Post-test force fluctuations increased (p = 0.031), along with a decrease in the mean inter-spike interval (M_ISI) in the ECRL (p = 0.022). Factor analysis revealed an increase in the proportion of motor units (MUs) jointly regulated by the neural mode for both ECRB and ECRL, coupled with a decline in independently regulated MUs. Specifically, the proportion of MUs governed by the ECRL mode decreased, while those regulated by the ECRB mode increased. In conclusion, force generation capacity and force scaling are impaired after receiving combined NMES and BFR treatment. It involves redistribution of the common drive to MUs within two agonists, affecting the flexible coordination of muscle synergy and necessitating compensatory recruitment of MUs from the less fatigable agonist.
Collapse
|
2
|
Houston M, Seo G, Fang F, Park JH, Park HS, Roh J, Zhang Y. Modulating Inter-Muscular Coordination Patterns in the Upper Extremity Induces Changes to Inter-Muscular, Cortico-Muscular, and Cortico-Cortical Connectivity. IEEE J Biomed Health Inform 2024; 28:7164-7174. [PMID: 38913515 DOI: 10.1109/jbhi.2024.3413080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
OBJECTIVE The changes in neural drive to muscles associated with modulation of inter-muscular coordination in the upper extremity have not yet been investigated. Such information could help elucidate the neural mechanisms behind motor skill learning. METHODS Six young, neurologically healthy participants underwent a six-week training protocol to decouple two synergist elbow flexor muscles as a newly learned motor skill in the isometric force generation in upward and medial directions. Concurrent electroencephalography and surface electromyography from twelve upper extremity muscles were recorded in two conditions (As-Trained & Habitual) across two assessments (Week 0 vs. Week 6). Changes to inter-muscular connectivity (IMC), functional muscle networks, cortico-muscular connectivity (CMC), cortico-cortical connectivity (CCC) as well as functional brain network controllability (FBNC) associated with the modulation of inter-muscular coordination patterns were assessed to provide a perspective on the neural mechanisms for the newly learned motor skills. RESULTS Significant decreases in elbow flexor IMC, CMC, and increases in CCC were observed. No significant changes were observed for FBNC. CONCLUSION The results of this study suggest that modulating the inter-muscular coordination of the elbow flexor muscle synergy during isometric force generation is associated with multiple yet distinct changes in functional connectivity across the central and peripheral perspectives. SIGNIFICANCE Understanding the neural mechanisms of modulating inter-muscular coordination patterns can help inform motor rehabilitation regimens.
Collapse
|
3
|
Bubeck F, Tomalka A, Siebert T, Röhrle O, Gizzi L. Altered muscle fibre activation in an antagonistic muscle pair due to perturbed afferent feedback caused by blood flow restriction. J Electromyogr Kinesiol 2024; 79:102922. [PMID: 39244815 DOI: 10.1016/j.jelekin.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
PURPOSE This study aimed to better understand the coping strategy of the neuromuscular system under perturbed afferent feedback. To this end, the neuromechanical effects of transient blood flow restriction (BFR) compared to atmospheric pressure were investigated in an antagonistic muscle pair. METHODS Perceived discomfort and neuromechanical parameters (torque and high-density electromyography) were recorded during submaximal isometric ankle dorsiflexion before, during and after BFR. The tibialis anterior and gastrocnemius lateralis muscles were studied in 14 healthy young adults. RESULTS Discomfort increased during BFR and decreased to baseline level afterwards. The exerted torque and the co-activation index remained constant, whereas the EMG signal energy increased significantly during BFR. Coherence analysis of the delta band remained constant, whereas the alpha band shows an increase during BFR. Median frequency and muscle fibre conduction velocity showed a positive trend during the first minutes of BFR before significantly decreasing. Both parameters exceeded baseline values after cuff deflation. CONCLUSION Perturbed afferent feedback leads to altered neuromechanical parameters. We assume that increased central drive is required to maintain force output, resulting in changed muscle fibre activity. Glycolytic fast-switch fibres are only active for a short time due to oxygen deprivation and hyperacidity, but fatigue effects predominate in the long term.
Collapse
Affiliation(s)
- Franziska Bubeck
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany.
| | - André Tomalka
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany; Department of Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, Germany
| |
Collapse
|
4
|
Xiao B, Liu L, Chen L, Wang X, Zhang X, Liu X, Hou W, Wu X. Neuro-Muscular Responses Adaptation to Dynamic Changes in Grip Strength. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3189-3198. [PMID: 39167521 DOI: 10.1109/tnsre.2024.3447062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Precise control of strength is of significant importance in upper limb functional rehabilitation. Understanding the neuro-muscular response in strength regulation can help optimize the rehabilitation prescriptions and facilitate the relative training process for recovery control. This study aimed to investigate the inherent characteristics of neural-muscular activity during dynamic hand strength adjustment. Four dynamic grip force tracking modes were set by manipulating different magnitude and speed of force variations, and thirteen healthy young individuals took participation in the experiment. Electroencephalography were recorded in the contralateral sensorimotor cortex area, as well as the electromyography from the first dorsal interosseous muscle were collected synchronously. The metrics of the Event-related desynchronization, the electromyography stability index, and the force variation, were used to represent the corresponding cortical neural responses, muscle contraction activities, and the level of strength regulation, respectively; and further neuro-muscular coupling between the sensorimotor cortex and the first dorsal interosseous muscle was investigated by transfer entropy analysis. The results indicated a strong relationship that the increase of force regulation demand would result in a force variation increase as well as a stability reduction in muscle motor unit output. Meanwhile, the intensity of neural response increased in both the α and β frequency bands. As the force regulation demand increased, the strength of bidirectional transfer entropy showed a clear shift from β to the γ frequency band, which facilitate rapid integration of dynamic strength compensation to adapt to motor task changes.
Collapse
|
5
|
Cabral HV, Cudicio A, Bonardi A, Del Vecchio A, Falciati L, Orizio C, Martinez-Valdes E, Negro F. Neural Filtering of Physiological Tremor Oscillations to Spinal Motor Neurons Mediates Short-Term Acquisition of a Skill Learning Task. eNeuro 2024; 11:ENEURO.0043-24.2024. [PMID: 38866498 PMCID: PMC11255391 DOI: 10.1523/eneuro.0043-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to understand the neural mechanisms underlying the short-term acquisition of a new force-matching task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous (FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/pre ratio of motor units' coherence within delta, alpha, and beta bands. Force-matching improvements were accompanied by increased mean discharge rate and decreased COVISI for both muscles. Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI), with no delta or beta bands changes. These reductions correlated significantly with increased coupling between force/neural drive and target oscillations. These results suggest that short-term force-matching skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervous system acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neural components unrelated to the specific task.
Collapse
Affiliation(s)
- Hélio V Cabral
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Alessandro Cudicio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Alberto Bonardi
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen 91052, Germany
| | - Luca Falciati
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Claudio Orizio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Eduardo Martinez-Valdes
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B152TT, United Kingdom
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| |
Collapse
|
6
|
Cabral HV, Inglis JG, Cudicio A, Cogliati M, Orizio C, Yavuz US, Negro F. Muscle contractile properties directly influence shared synaptic inputs to spinal motor neurons. J Physiol 2024; 602:2855-2872. [PMID: 38709959 DOI: 10.1113/jp286078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Alpha band oscillations in shared synaptic inputs to the alpha motor neuron pool can be considered an involuntary source of noise that hinders precise voluntary force production. This study investigated the impact of changing muscle length on the shared synaptic oscillations to spinal motor neurons, particularly in the physiological tremor band. Fourteen healthy individuals performed low-level dorsiflexion contractions at ankle joint angles of 90° and 130°, while high-density surface electromyography (HDsEMG) was recorded from the tibialis anterior (TA). We decomposed the HDsEMG into motor units spike trains and calculated the motor units' coherence within the delta (1-5 Hz), alpha (5-15 Hz), and beta (15-35 Hz) bands. Additionally, force steadiness and force spectral power within the tremor band were quantified. Results showed no significant differences in force steadiness between 90° and 130°. In contrast, alpha band oscillations in both synaptic inputs and force output decreased as the length of the TA was moved from shorter (90°) to longer (130°), with no changes in delta and beta bands. In a second set of experiments (10 participants), evoked twitches were recorded with the ankle joint at 90° and 130°, revealing longer twitch durations in the longer TA muscle length condition compared to the shorter. These experimental results, supported by a simple computational simulation, suggest that increasing muscle length enhances the muscle's low-pass filtering properties, influencing the oscillations generated by the Ia afferent feedback loop. Therefore, this study provides valuable insights into the interplay between muscle biomechanics and neural oscillations. KEY POINTS: We investigated whether changes in muscle length, achieved by changing joint position, could influence common synaptic oscillations to spinal motor neurons, particularly in the tremor band (5-15 Hz). Our results demonstrate that changing muscle length from shorter to longer induces reductions in the magnitude of alpha band oscillations in common synaptic inputs. Importantly, these reductions were reflected in the oscillations of muscle force output within the alpha band. Longer twitch durations were observed in the longer muscle length condition compared to the shorter, suggesting that increasing muscle length enhances the muscle's low-pass filtering properties. Changes in the peripheral contractile properties of motor units due to changes in muscle length significantly influence the transmission of shared synaptic inputs into muscle force output. These findings prove the interplay between muscle mechanics and neural adaptations.
Collapse
Affiliation(s)
- Hélio V Cabral
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - J Greig Inglis
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Alessandro Cudicio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Marta Cogliati
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Claudio Orizio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Utku S Yavuz
- Biomedical Signals and Systems, University of Twente, Enschede, Netherlands
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
7
|
Pereira HM, Keenan KG, Hunter SK. Influence of visual feedback and cognitive challenge on the age-related changes in force steadiness. Exp Brain Res 2024; 242:1411-1419. [PMID: 38613669 DOI: 10.1007/s00221-024-06831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Force steadiness can be influenced by visual feedback as well as presence of a cognitive tasks and potentially differs with age and sex. This study determined the impact of altered visual feedback on force steadiness in the presence of a difficult cognitive challenge in young and older men and women. Forty-nine young (19-30 yr; 25 women, 24 men) and 25 older (60-85 yr; 15 women; 10 men) performed low force (5% of maximum) static contractions with the elbow flexor muscles in the presence and absence of a cognitive challenge (counting backwards by 13) either with low or high visual feedback gain. The cognitive challenge reduced force steadiness (increased force fluctuation amplitude) particularly in women (cognitive challenge × sex: P < 0.05) and older individuals (cognitive challenge × age: P < 0.05). Force steadiness improved with high-gain visual feedback compared with low-gain visual feedback (P < 0.01) for all groups (all interactions: P > 0.05). Manipulation of visual feedback had no influence on the reduced force steadiness in presence of the cognitive challenge for all groups (all P > 0.05). These findings indicate that older individuals and women have greater risk of impaired motor performance of the upper extremity if steadiness is required during a low-force static contraction. Manipulation of visual feedback had minimal effects on the reduced force steadiness in presence of a difficult cognitive challenge.
Collapse
Affiliation(s)
- Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA.
| | - Kevin G Keenan
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, USA
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, USA
| |
Collapse
|
8
|
Carr JC, King AC. Sex differences in the fractal dynamics of force control during maximal handgrip. Neurosci Lett 2024; 820:137588. [PMID: 38086520 DOI: 10.1016/j.neulet.2023.137588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
This work examines the temporal structure of force fluctuations during maximal handgrip with detrended fluctuation analysis (DFA α). Here, we assess the influence of fatigue and sex on force complexity during unimanual handgrip for the fatigued and the contralateral, non-fatigued hand. Participants randomly completed experimental sessions requiring fatiguing handgrip contractions or control measurements only. Maximal unimanual forces of both hands were measured before and after the fatigue trial or a time-matched control visit. DFA revealed substantially lower alpha values for females (PRE = 1.15, POST = 1.25) compared to males (PRE = 1.30, POST = 1.33) regardless of fatigue (p < 0.01, d = 0.738) for the dominant hand with a similar pattern observed for the contralateral, non-fatigued hand (p = 0.045, d = 0.561). Females also showed greater alpha changes (Δ = 0.09) versus males (Δ = 0.01) following fatigue (p = 0.028, ηp2 = 0.151). The data provide evidence of reduced force complexity during successive maximal handgrip contractions for females, but not males. Our findings highlight task-specific factors involving force control and demonstrate the utility of complexity analyses to provide insights regarding the influence of sex on motor control strategies.
Collapse
Affiliation(s)
- Joshua C Carr
- Texas Christian University, Department of Kinesiology, Fort Worth, TX, United States; Anne Burnett Marion School of Medicine at Texas Christian University, Department of Medical Education, Fort Worth, TX, United States.
| | - Adam C King
- Texas Christian University, Department of Kinesiology, Fort Worth, TX, United States; Anne Burnett Marion School of Medicine at Texas Christian University, Department of Medical Education, Fort Worth, TX, United States.
| |
Collapse
|
9
|
Heintz Walters B, Huddleston WE, O'Connor K, Wang J, Hoeger Bement M, Keenan KG. Visual feedback and declines in attention are associated with altered visual strategy during a force-steadiness task in older adults. J Neurophysiol 2023; 130:1309-1320. [PMID: 37877175 PMCID: PMC10972634 DOI: 10.1152/jn.00486.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/07/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Greater heterogeneity exists in older adults relative to young adults when performing highly skilled manual tasks. The purpose of this study was to assess the influence of visual feedback and attentional demand on visual strategy during a submaximal force-steadiness task in young and older adults. Eye movements of 21 young (age 20-38 yr; 11 females, 10 males) and 21 older (age 65-90 yr; 11 females, 10 males) adults were recorded during a pinch force-steadiness task while viewing feedback with higher and lower gain and while performing a visuospatial task. For the visuospatial task, participants imagined a star moving around four boxes and reported the final location after a series of directions. Performance on standardized tests of attention was measured. All participants gazed near the target line and made left-to-right saccadic eye movements during the force-steadiness tasks without the visuospatial task. Older adults made fewer saccades than young adults (21.0 ± 2.9 and 23.6 ± 4.4 saccades, respectively) and with higher versus lower gain (20.9 ± 4.0 and 23.7 ± 3.5 saccades, respectively). Most participants used the same visual strategy when performing the visuospatial task though seven older adults used an altered strategy; gaze did not stay near the target line nor travel exclusively left to right. Performance on standardized measures of attention was impaired in this subset compared with older adults who did not use the altered visual strategy. Results indicate that visual feedback influences visual strategy and reveals unique eye movements in some older adults when allocating attention across tasks.NEW & NOTEWORTHY This study contributes novel findings of age-related changes in visual strategy and associations with attentional deficits during hand motor tasks. Older adults used fewer saccades than young adults and with higher versus lower gain visual feedback during a force-steadiness task. A subset of older adults used an altered visual strategy when allocating attention across multiple tasks. Given that this subset demonstrated attentional deficits, the altered visual strategy could serve to indicate motor and/or cognitive impairments.
Collapse
Affiliation(s)
| | - Wendy E Huddleston
- Department of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Kristian O'Connor
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Jinsung Wang
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Marie Hoeger Bement
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| |
Collapse
|
10
|
Levine J, Avrillon S, Farina D, Hug F, Pons JL. Two motor neuron synergies, invariant across ankle joint angles, activate the triceps surae during plantarflexion. J Physiol 2023; 601:4337-4354. [PMID: 37615253 PMCID: PMC10952824 DOI: 10.1113/jp284503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Recent studies have suggested that the nervous system generates movements by controlling groups of motor neurons (synergies) that do not always align with muscle anatomy. In this study, we determined whether these synergies are robust across tasks with different mechanical constraints. We identified motor neuron synergies using principal component analysis (PCA) and cross-correlations between smoothed discharge rates of motor neurons. In part 1, we used simulations to validate these methods. The results suggested that PCA can accurately identify the number of common inputs and their distribution across active motor neurons. Moreover, the results confirmed that cross-correlation can separate pairs of motor neurons that receive common inputs from those that do not receive common inputs. In part 2, 16 individuals performed plantarflexion at three ankle angles while we recorded EMG signals from the gastrocnemius lateralis (GL) and medialis (GM) and the soleus (SOL) with grids of surface electrodes. The PCA revealed two motor neuron synergies. These motor neuron synergies were relatively stable, with no significant differences in the distribution of motor neuron weights across ankle angles (P = 0.62). When the cross-correlation was calculated for pairs of motor units tracked across ankle angles, we observed that only 13.0% of pairs of motor units from GL and GM exhibited significant correlations of their smoothed discharge rates across angles, confirming the low level of common inputs between these muscles. Overall, these results highlight the modularity of movement control at the motor neuron level, suggesting a sensible reduction of computational resources for movement control. KEY POINTS: The CNS might generate movements by activating groups of motor neurons (synergies) with common inputs. We show here that two main sources of common inputs drive the motor neurons innervating the triceps surae muscles during isometric ankle plantarflexions. We report that the distribution of these common inputs is globally invariant despite changing the mechanical constraints of the tasks, i.e. the ankle angle. These results suggest the functional relevance of the modular organization of the CNS to control movements.
Collapse
Affiliation(s)
- Jackson Levine
- Legs + Walking LabShirley Ryan AbilityLabChicagoILUSA
- Department of Physical Medicine and RehabilitationFeinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Biomedical EngineeringMcCormick School of EngineeringNorthwestern UniversityChicagoILUSA
| | - Simon Avrillon
- Legs + Walking LabShirley Ryan AbilityLabChicagoILUSA
- Department of Physical Medicine and RehabilitationFeinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of BioengineeringFaculty of Engineering, Imperial College LondonLondonUK
| | - Dario Farina
- Department of BioengineeringFaculty of Engineering, Imperial College LondonLondonUK
| | - François Hug
- Université Côte d'Azur, LAMHESSNiceFrance
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - José L. Pons
- Legs + Walking LabShirley Ryan AbilityLabChicagoILUSA
- Department of Physical Medicine and RehabilitationFeinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Biomedical EngineeringMcCormick School of EngineeringNorthwestern UniversityChicagoILUSA
| |
Collapse
|
11
|
Ko NH, Laine CM, Valero-Cuevas FJ. Task-dependent alteration of beta-band intermuscular coherence is associated with ipsilateral corticospinal tract excitability. Front Sports Act Living 2023; 5:1177004. [PMID: 37576608 PMCID: PMC10416639 DOI: 10.3389/fspor.2023.1177004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Beta-band (15-30 Hz) synchronization between the EMG signals of active limb muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks engaging a single limb often primarily utilize one corticospinal pathway, although bilateral neural circuits can participate in goal-directed actions involving multi-muscle coordination and utilization of feedback. Suboptimal utilization of such circuits after CNS injury can result in unintended mirror movements and activation of pathological synergies. Accordingly, it is important to understand how the actions of one limb (e.g., a less-affected limb after strokes) influence the opposite corticospinal pathway for the rehabilitation target. Certain unimanual actions decrease the excitability of the "unengaged" corticospinal tract, presumably to prevent mirror movement, but there is no direct way to predict the extent to which this will occur. In this study, we tested the hypothesis that task-dependent changes in beta-band drives to muscles of one hand will inversely correlate with changes in the opposite corticospinal tract excitability. Ten participants completed spring pinching tasks known to induce differential 15-30 Hz drive to muscles. During compressions, transcranial magnetic stimulation single pulses to the ipsilateral M1 were delivered to generate motor-evoked potentials in the unengaged hand. The task-induced changes in ipsilateral corticospinal excitability were inversely correlated with associated changes in EMG-EMG coherence of the task hand. These results demonstrate a novel connection between intermuscular coherence and the excitability of the "unengaged" corticospinal tract and provide a springboard for further mechanistic studies of unimanual tasks of varying difficulty and their effects on neural pathways relevant to rehabilitation.
Collapse
Affiliation(s)
- Na-hyeon Ko
- Department of Physical Therapy, California State University, Fresno, CA, United States
| | - Christopher M. Laine
- Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Francisco J. Valero-Cuevas
- Brain Body Dynamics Lab, Division of Biokinesiology and Physical Therapy, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Lin YT, Chen YC, Chang GC, Hwang IS. Failure to improve task performance after visuomotor training with error reduction feedback for young adults. Front Physiol 2023; 14:1066325. [PMID: 36969593 PMCID: PMC10030953 DOI: 10.3389/fphys.2023.1066325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Visual feedback that reinforces accurate movements may motivate skill acquisition by promoting self-confidence. This study investigated neuromuscular adaptations to visuomotor training with visual feedback with virtual error reduction. Twenty-eight young adults (24.6 ± 1.6 years) were assigned to error reduction (ER) (n = 14) and control (n = 14) groups to train on a bi-rhythmic force task. The ER group received visual feedback and the displayed errors were 50% of the real errors in size. The control group was trained with visual feedback with no reduction in errors. Training-related differences in task accuracy, force behaviors, and motor unit discharge were contrasted between the two groups. The tracking error of the control group progressively declined, whereas the tracking error of the ER group was not evidently reduced in the practice sessions. In the post-test, only the control group exhibited significant task improvements with smaller error size (p = .015) and force enhancement at the target frequencies (p = .001). The motor unit discharge of the control group was training-modulated, as indicated by a reduction of the mean inter-spike interval (p = .018) and smaller low-frequency discharge fluctuations (p = .017) with enhanced firing at the target frequencies of the force task (p = .002). In contrast, the ER group showed no training-related modulation of motor unit behaviors. In conclusion, for young adults, ER feedback does not induce neuromuscular adaptations to the trained visuomotor task, which is conceptually attributable to intrinsic error dead-zones.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Department of Ball Sport, National Taiwan University of Sport, Taichung City, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Gwo-Ching Chang
- Department of Information Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- *Correspondence: Ing-Shiou Hwang,
| |
Collapse
|
13
|
Marin-Pardo O, Donnelly MR, Phanord CS, Wong K, Pan J, Liew SL. Functional and neuromuscular changes induced via a low-cost, muscle-computer interface for telerehabilitation: A feasibility study in chronic stroke. FRONTIERS IN NEUROERGONOMICS 2022; 3:1046695. [PMID: 38235476 PMCID: PMC10790881 DOI: 10.3389/fnrgo.2022.1046695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2024]
Abstract
Stroke is a leading cause of adult disability in the United States. High doses of repeated task-specific practice have shown promising results in restoring upper limb function in chronic stroke. However, it is currently challenging to provide such doses in clinical practice. At-home telerehabilitation supervised by a clinician is a potential solution to provide higher-dose interventions. However, telerehabilitation systems developed for repeated task-specific practice typically require a minimum level of active movement. Therefore, severely impaired people necessitate alternative therapeutic approaches. Measurement and feedback of electrical muscle activity via electromyography (EMG) have been previously implemented in the presence of minimal or no volitional movement to improve motor performance in people with stroke. Specifically, muscle neurofeedback training to reduce unintended co-contractions of the impaired hand may be a targeted intervention to improve motor control in severely impaired populations. Here, we present the preliminary results of a low-cost, portable EMG biofeedback system (Tele-REINVENT) for supervised and unsupervised upper limb telerehabilitation after stroke. We aimed to explore the feasibility of providing higher doses of repeated task-specific practice during at-home training. Therefore, we recruited 5 participants (age = 44-73 years) with chronic, severe impairment due to stroke (Fugl-Meyer = 19-40/66). They completed a 6-week home-based training program that reinforced activity of the wrist extensor muscles while avoiding coactivation of flexor muscles via computer games. We used EMG signals to quantify the contribution of two antagonistic muscles and provide biofeedback of individuated activity, defined as a ratio of extensor and flexor activity during movement attempt. Our data suggest that 30 1-h sessions over 6 weeks of at-home training with our Tele-REINVENT system is feasible and may improve individuated muscle activity as well as scores on standard clinical assessments (e.g., Fugl-Meyer Assessment, Action Research Arm Test, active wrist range of motion) for some individuals. Furthermore, tests of neuromuscular control suggest modest changes in the synchronization of electroencephalography (EEG) and EMG signals within the beta band (12-30 Hz). Finally, all participants showed high adherence to the training protocol and reported enjoying using the system. These preliminary results suggest that using low-cost technology for home-based telerehabilitation after severe chronic stroke is feasible and may be effective in improving motor control via feedback of individuated muscle activity.
Collapse
Affiliation(s)
- Octavio Marin-Pardo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Miranda Rennie Donnelly
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Coralie S. Phanord
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Kira Wong
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Jessica Pan
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sook-Lei Liew
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Stevens Neuroinformatics Institute, Department of Neurology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
People with chronic low back pain display spatial alterations in high-density surface EMG-torque oscillations. Sci Rep 2022; 12:15178. [PMID: 36071134 PMCID: PMC9452584 DOI: 10.1038/s41598-022-19516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
We quantified the relationship between spatial oscillations in surface electromyographic (sEMG) activity and trunk-extension torque in individuals with and without chronic low back pain (CLBP), during two submaximal isometric lumbar extension tasks at 20% and 50% of their maximal voluntary torque. High-density sEMG (HDsEMG) signals were recorded from the lumbar erector spinae (ES) with a 64-electrode grid, and torque signals were recorded with an isokinetic dynamometer. Coherence and cross-correlation analyses were applied between the filtered interference HDsEMG and torque signals for each submaximal contraction. Principal component analysis was used to reduce dimensionality of HDsEMG data and improve the HDsEMG-based torque estimation. sEMG-torque coherence was quantified in the δ(0–5 Hz) frequency bandwidth. Regional differences in sEMG-torque coherence were also evaluated by creating topographical coherence maps. sEMG-torque coherence in the δ band and sEMG-torque cross-correlation increased with the increase in torque in the controls but not in the CLBP group (p = 0.018, p = 0.030 respectively). As torque increased, the CLBP group increased sEMG-torque coherence in more cranial ES regions, while the opposite was observed for the controls (p = 0.043). Individuals with CLBP show reductions in sEMG-torque relationships possibly due to the use of compensatory strategies and regional adjustments of ES-sEMG oscillatory activity.
Collapse
|
15
|
Maillet J, Avrillon S, Nordez A, Rossi J, Hug F. Handedness is associated with less common input to spinal motor neurons innervating different hand muscles. J Neurophysiol 2022; 128:778-789. [PMID: 36001792 DOI: 10.1152/jn.00237.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whether the neural control of manual behaviours differs between the dominant and non-dominant hand is poorly understood. This study aimed to determine whether the level of common synaptic input to motor neurons innervating the same or different muscles differs between the dominant and the non-dominant hand. Seventeen participants performed two motor tasks with distinct mechanical requirements: an isometric pinch and an isometric rotation of a pinched dial. Each task was performed at 30% of maximum effort and was repeated with the dominant and non-dominant hand. Motor units were identified from two intrinsic (flexor digitorum interosseous and thenar) and one extrinsic muscle (flexor digitorum superficialis) from high-density surface electromyography recordings. Two complementary approaches were used to estimate common synaptic inputs. First, we calculated the coherence between groups of motor neurons from the same and from different muscles. Then, we estimated the common input for all pairs of motor neurons by correlating the low-frequency oscillations of their discharge rate. Both analyses led to the same conclusion, indicating less common synaptic input between motor neurons innervating different muscles in the dominant hand than in the non-dominant hand, which was only observed during the isometric rotation task. No between-side differences in common input were observed between motor neurons of the same muscle. This lower level of common input could confer higher flexibility in the recruitment of motor units, and therefore, in mechanical outputs. Whether this difference between the dominant and non-dominant arm is the cause or the consequence of handedness remains to be determined.
Collapse
Affiliation(s)
- Jean Maillet
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France
| | - Simon Avrillon
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, United Kingdom
| | - Antoine Nordez
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France.,Institut Universitaire de France (IUF), Paris, France
| | - Jeremy Rossi
- grid.6279.aJean Monnet University, Saint Etienne, France
| | - François Hug
- Institut Universitaire de France (IUF), Paris, France.,LAMHESS, Université Côte d'Azur, Nice, France.,The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Keihani A, Mohammadi AM, Marzbani H, Nafissi S, Haidari MR, Jafari AH. Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study. PLoS One 2022; 17:e0270757. [PMID: 35776772 PMCID: PMC9249190 DOI: 10.1371/journal.pone.0270757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Cortico-muscular interactions play important role in sensorimotor control during motor task and are commonly studied by cortico-muscular coherence (CMC) method using joint electroencephalogram-surface electromyogram (EEG-sEMG) signals. As noise and time delay between the two signals weaken the CMC value, coupling difference between non-task sEMG channels is often undetectable. We used sparse representation of EEG channels to compute CMC and detect coupling for task-related and non-task sEMG signals. High-density joint EEG-sEMG (53 EEG channels, 4 sEMG bipolar channels) signals were acquired from 15 subjects (30.26 ± 4.96 years) during four specific hand and foot contraction tasks (2 dynamic and 2 static contraction). Sparse representations method was applied to detect projection of EEG signals on each sEMG channel. Bayesian optimization was employed to select best-fitted method with tuned hyperparameters on the input feeding data while using 80% data as the train set and 20% as test set. K-fold (K = 5) cross-validation method was used for evaluation of trained model. Two models were trained separately, one for CMC data and the other from sparse representation of EEG channels on each sEMG channel. Sensitivity, specificity, and accuracy criteria were obtained for test dataset to evaluate the performance of task-related and non-task sEMG channels detection. Coupling values were significantly different between grand average of task-related compared to the non-task sEMG channels (Z = -6.33, p< 0.001, task-related median = 2.011, non-task median = 0.112). Strong coupling index was found even in single trial analysis. Sparse representation approach (best fitted model: SVM, Accuracy = 88.12%, Sensitivity = 83.85%, Specificity = 92.45%) outperformed CMC method (best fitted model: KNN, Accuracy = 50.83%, Sensitivity = 52.17%, Specificity = 49.47%). Sparse representation approach offers high performance to detect CMC for discerning the EMG channels involved in the contraction tasks and non-tasks.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Amin Mohammad Mohammadi
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
- Department of Electrical and Computer Engineering, University of Tehran, Tehran, I.R. Iran
| | - Hengameh Marzbani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mohsen Reza Haidari
- Section of Neuroscience, Department of Neurology, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
- * E-mail: (AHJ); (MRH)
| | - Amir Homayoun Jafari
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
- * E-mail: (AHJ); (MRH)
| |
Collapse
|
17
|
Corticomuscular coherence dependence on body side and visual feedback. Neuroscience 2022; 490:144-154. [DOI: 10.1016/j.neuroscience.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022]
|
18
|
Tun NN, Sanuki F, Iramina K. Electroencephalogram-Electromyogram Functional Coupling and Delay Time Change Based on Motor Task Performance. SENSORS 2021; 21:s21134380. [PMID: 34206753 PMCID: PMC8271984 DOI: 10.3390/s21134380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
Synchronous correlation brain and muscle oscillations during motor task execution is termed as functional coupling. Functional coupling between two signals appears with a delay time which can be used to infer the directionality of information flow. Functional coupling of brain and muscle depends on the type of muscle contraction and motor task performance. Although there have been many studies of functional coupling with types of muscle contraction and force level, there has been a lack of investigation with various motor task performances. Motor task types play an essential role that can reflect the amount of functional interaction. Thus, we examined functional coupling under four different motor tasks: real movement, intention, motor imagery and movement observation tasks. We explored interaction of two signals with linear and nonlinear information flow. The aim of this study is to investigate the synchronization between brain and muscle signals in terms of functional coupling and delay time. The results proved that brain–muscle functional coupling and delay time change according to motor tasks. Quick synchronization of localized cortical activity and motor unit firing causes good functional coupling and this can lead to short delay time to oscillate between signals. Signals can flow with bidirectionality between efferent and afferent pathways.
Collapse
Affiliation(s)
- Nyi Nyi Tun
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: (N.N.T.); (K.I.); Tel.: +81-80-9392-9429 (N.N.T.); Fax: +81-92-802-3581 (N.N.T.)
| | - Fumiya Sanuki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Keiji Iramina
- Faulty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: (N.N.T.); (K.I.); Tel.: +81-80-9392-9429 (N.N.T.); Fax: +81-92-802-3581 (N.N.T.)
| |
Collapse
|
19
|
Gizzi L, Yavuz UŞ, Hillerkuss D, Geri T, Gneiting E, Domeier F, Schmitt S, Röhrle O. Variations in Muscle Activity and Exerted Torque During Temporary Blood Flow Restriction in Healthy Individuals. Front Bioeng Biotechnol 2021; 9:557761. [PMID: 33816445 PMCID: PMC8017222 DOI: 10.3389/fbioe.2021.557761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies suggest that transitory blood flow restriction (BFR) may improve the outcomes of training from anatomical (hypertrophy) and neural control perspectives. Whilst the chronic consequences of BFR on local metabolism and tissue adaptation have been extensively investigated, its acute effects on motor control are not yet fully understood. In this study, we compared the neuromechanical effects of continuous BFR against non-restricted circulation (atmospheric pressure—AP), during isometric elbow flexions. BFR was achieved applying external pressure either between systolic and diastolic (lower pressure—LP) or 1.3 times the systolic pressure (higher pressure—HP). Three levels of torque (15, 30, and 50% of the maximal voluntary contraction—MVC) were combined with the three levels of pressure for a total of 9 (randomized) test cases. Each condition was repeated 3 times. The protocol was administered to 12 healthy young adults. Neuromechanical measurements (torque and high-density electromyography—HDEMG) and reported discomfort were used to investigate the response of the central nervous system to BFR. The investigated variables were: root mean square (RMS), and area under the curve in the frequency domain—for the torque, and average RMS, median frequency and average muscle fibres conduction velocity—for the EMG. The discomfort caused by BFR was exacerbated by the level of torque and accumulated over time. The torque RMS value did not change across conditions and repetitions. Its spectral content, however, revealed a decrease in power at the tremor band (alpha-band, 5–15 Hz) which was enhanced by the level of pressure and the repetition number. The EMG amplitude showed no differences whilst the median frequency and the conduction velocity decreased over time and across trials, but only for the highest levels of torque and pressure. Taken together, our results show strong yet transitory effects of BFR that are compatible with a motor neuron pool inhibition caused by increased activity of type III and IV afferences, and a decreased activity of spindle afferents. We speculate that a compensation of the central drive may be necessary to maintain the mechanical output unchanged, despite disturbances in the afferent volley to the motor neuron pool.
Collapse
Affiliation(s)
- Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Utku Ş Yavuz
- Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, University of Twente, Enschede, Netherlands
| | - Dominic Hillerkuss
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Tommaso Geri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Elena Gneiting
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Franziska Domeier
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Technology (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Technology (SC SimTech), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
20
|
Enoka RM, Farina D. Force Steadiness: From Motor Units to Voluntary Actions. Physiology (Bethesda) 2021; 36:114-130. [DOI: 10.1152/physiol.00027.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voluntary actions are controlled by the synaptic inputs that are shared by pools of spinal motor neurons. The slow common oscillations in the discharge times of motor units due to these synaptic inputs are strongly correlated with the fluctuations in force during submaximal isometric contractions (force steadiness) and moderately associated with performance scores on some tests of motor function. However, there are key gaps in knowledge that limit the interpretation of differences in force steadiness.
Collapse
Affiliation(s)
- Roger M. Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Avrillon S, Del Vecchio A, Farina D, Pons JL, Vogel C, Umehara J, Hug F. Individual differences in the neural strategies to control the lateral and medial head of the quadriceps during a mechanically constrained task. J Appl Physiol (1985) 2021; 130:269-281. [DOI: 10.1152/japplphysiol.00653.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We observed that the distribution of the strength of neural drive between the vastus lateralis and vastus medialis during a single-joint isometric task varied across participants. Also, we observed that the proportion of neural drive that was shared within and between these muscles also varied across participants. These results provide evidence that the neural strategies to control the vastus lateralis and vastus medialis muscles widely vary across individuals, even during a mechanically constrained task.
Collapse
Affiliation(s)
- Simon Avrillon
- Legs + Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
- Laboratory Movement, Interactions, Performance, Université de Nantes, Nantes, France
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen, Germany
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College, London, United Kingdom
| | - Dario Farina
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College, London, United Kingdom
| | - José L. Pons
- Legs + Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Clément Vogel
- Laboratory Movement, Interactions, Performance, Université de Nantes, Nantes, France
| | - Jun Umehara
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - François Hug
- Laboratory Movement, Interactions, Performance, Université de Nantes, Nantes, France
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Institut Universitaire de France, Paris, France
| |
Collapse
|
22
|
Watanabe T, Nojima I, Mima T, Sugiura H, Kirimoto H. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults. Neuroimage 2020; 220:117089. [DOI: 10.1016/j.neuroimage.2020.117089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022] Open
|
23
|
Martinez‐Valdes E, Negro F, Farina D, Falla D. Divergent response of low‐
versus
high‐threshold motor units to experimental muscle pain. J Physiol 2020; 598:2093-2108. [DOI: 10.1113/jp279225] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eduardo Martinez‐Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences University of Birmingham Birmingham UK
| | - Francesco Negro
- Department of Clinical and Experimental Sciences Università degli Studi di Brescia Brescia Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London Royal School of Mines London UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences University of Birmingham Birmingham UK
| |
Collapse
|
24
|
Hwang IS, Lin YT, Huang CC, Chen YC. Fatigue-related modulation of low-frequency common drive to motor units. Eur J Appl Physiol 2020; 120:1305-1317. [PMID: 32297005 DOI: 10.1007/s00421-020-04363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE This study investigated fatigue-related modulation of common neural inputs to motor units (MUs) under 5 Hz, which determines force precision control. METHODS Twenty-seven adults performed a sequence of fatiguing contractions. The participants were assessed with a static isometric index abduction at 20% maximal voluntary contraction in the pre-test and post-test. Discharge characteristics of MUs of the first dorsal interosseous muscle were analyzed with decomposed EMG signals. RESULTS Along with increases in the mean (58.40 ± 11.76 ms → 62.55 ± 10.83 ms, P = 0.029) and coefficient of variation (0.204 ± .014 → 0.215 ± 0.017, P = 0.002) in inter-spike intervals, the fatiguing contraction caused reductions in the mean frequency (16.84 ± 3.31 Hz → 15.59 ± 3.21 Hz, P = 0.027) and spectral dispersions (67.54 ± 4.49 → 62.64 ± 6.76 Hz, P = 0.007) of common neural drive, as estimated with smoothed cumulative motor unit spike trains (SCMUSTs). Stabilogram diffusion analysis of SCMUSTs revealed significant fatigue-related reductions in the long-term effective diffusion coefficient (1.91 ± 0.77 Hz2/s → 1.61 ± 0.61 Hz2/s, P = 0.020) and long-term scaling exponent (0.480 ± 0.013 Hz2/s → 0.471 ± 0.017 Hz2/s, P = 0.014). After fatiguing contraction, mutual information of force fluctuations and SCMUSTs was augmented roughly by 12.95% (P = 0.041). CONCLUSIONS Muscular fatigue could compress and shift the low-frequency common drive to MUs toward lower spectral bands, thereby enhancing transmission of twitch forces through the muscle-tendon complex with a low-pass filter property. The fatigue-induced changes involve increased closed-loop control of the common modulation of MU discharge rates.
Collapse
Affiliation(s)
- Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung, 41354, Taiwan
| | - Chien-Chun Huang
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, 40201, Taiwan. .,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|
25
|
Laine CM, Valero-Cuevas FJ. Parkinson's Disease Exhibits Amplified Intermuscular Coherence During Dynamic Voluntary Action. Front Neurol 2020; 11:204. [PMID: 32308641 PMCID: PMC7145888 DOI: 10.3389/fneur.2020.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is typically diagnosed and evaluated on the basis of overt motor dysfunction, however, subtle changes in the frequency spectrum of neural drive to muscles have been reported as well. During dynamic actions, coactive muscles of healthy adults often share a common source of 6-15 Hz (alpha-band) neural drive, creating synchronous alpha-band activity in their EMG signals. Individuals with PD commonly exhibit kinetic action tremor at similar frequencies, but the potential relationship between the intermuscular alpha-band neural drive seen in healthy adults and the action tremor associated with PD is not well-understood. A close relationship is most tenable during voluntary dynamic tasks where alpha-band neural drive is strongest in healthy adults, and where neural circuits affected by PD are most engaged. In this study, we characterized the frequency spectrum of EMG synchronization (intermuscular coherence) in 16 participants with PD and 15 age-matched controls during two dynamic motor tasks: (1) rotation of a dial between the thumb and index finger, and (2) dynamic scaling of isometric precision pinch force. These tasks produce different profiles of coherence between the first dorsal interosseous and abductor pollicis brevis muscles. We sought to determine if alpha-band intermuscular coherence would be amplified in participants with PD relative to controls, if such differences would be task-specific, and if they would correlate with symptom severity. We found that relative to controls, the PD group displayed amplified, but similarly task-dependent, coherence in the alpha-band. The magnitude of coherence during the rotation task correlated with overall symptom severity as per the UPDRS rating scale. Finally, we explored the potential for our coherence measures, with no additional information, to discriminate individuals with PD from controls. The area under the Receiver Operating Characteristic curve (AUC) indicated a clear separation between groups (AUC = 0.96), even though participants with PD were on their typical medication and displayed only mild-moderate symptoms. We conclude that a task-dependent, intermuscular neural drive within the alpha-band is amplified in PD. Its quantification via intermuscular coherence analysis may provide a useful tool for detecting the presence of PD, or assessing its progression.
Collapse
Affiliation(s)
- Christopher M Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Francisco J Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Chen YC, Shih CL, Lin YT, Hwang IS. The effect of visuospatial resolution on discharge variability among motor units and force-discharge relation. CHINESE J PHYSIOL 2019; 62:166-174. [PMID: 31535632 DOI: 10.4103/cjp.cjp_12_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although force steadiness varies with visuospatial information, accountable motor unit (MU) behaviors are not fully understood. This study investigated the modulation of MU discharges and force-discharge relation due to variations in the spatial resolution of visual feedback, with a particular focus on discharge variability among MUs. Fourteen young adults produced isometric force at 10% of maximal voluntary contraction (MVC) through index abduction, under the conditions of force trajectory displayed with low visual gain (LVG) and high visual gain (HVG). Together with smaller and more complex force fluctuations, HVG resulted in greater variabilities of the mean interspike interval and discharge irregularity among MUs than LVG did. Estimated via smoothening of a cumulative spike train of all MUs, global discharge rate was tuned to visual gain, with a more complex global discharge rate and a lower force-discharge relation in the HVG condition. These higher discharge variabilities were linked to larger variance of the common drive received by MUs for regulation of muscle force with higher visuospatial information. In summary, higher visuospatial information improves force steadiness with more complex force fluctuations, underlying joint effects of low-pass filter property of the musculotendon complex and central modulation of discharge variability among MUs.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, Chung Shan Medical University; Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Chia-Li Shih
- Department of Rehabilitation Medicine, Tainan Municipal An-Nan Hospital, Tainan, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung City, Taiwan
| | - Ing-Shiou Hwang
- Institute of Allied Health Sciences; Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
27
|
Röhrle O, Yavuz UŞ, Klotz T, Negro F, Heidlauf T. Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1457. [PMID: 31237041 DOI: 10.1002/wsbm.1457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
Mathematical models and computer simulations have the great potential to substantially increase our understanding of the biophysical behavior of the neuromuscular system. This, however, requires detailed multiscale, and multiphysics models. Once validated, such models allow systematic in silico investigations that are not necessarily feasible within experiments and, therefore, have the ability to provide valuable insights into the complex interrelations within the healthy system and for pathological conditions. Most of the existing models focus on individual parts of the neuromuscular system and do not consider the neuromuscular system as an integrated physiological system. Hence, the aim of this advanced review is to facilitate the prospective development of detailed biophysical models of the entire neuromuscular system. For this purpose, this review is subdivided into three parts. The first part introduces the key anatomical and physiological aspects of the healthy neuromuscular system necessary for modeling the neuromuscular system. The second part provides an overview on state-of-the-art modeling approaches representing all major components of the neuromuscular system on different time and length scales. Within the last part, a specific multiscale neuromuscular system model is introduced. The integrated system model combines existing models of the motor neuron pool, of the sensory system and of a multiscale model describing the mechanical behavior of skeletal muscles. Since many sub-models are based on strictly biophysical modeling approaches, it closely represents the underlying physiological system and thus could be employed as starting point for further improvements and future developments. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Utku Ş Yavuz
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Biomedical Signals and Systems, Universiteit Twente, Enschede, The Netherlands
| | - Thomas Klotz
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universià degli Studi di Brescia, Brescia, Italy
| | - Thomas Heidlauf
- EPS5 - Simulation and System Analysis, Hofer pdc GmbH, Stuttgart, Germany
| |
Collapse
|
28
|
Pereira HM, Schlinder-DeLap B, Keenan KG, Negro F, Farina D, Hyngstrom AS, Nielson KA, Hunter SK. Oscillations in neural drive and age-related reductions in force steadiness with a cognitive challenge. J Appl Physiol (1985) 2019; 126:1056-1065. [PMID: 30817244 DOI: 10.1152/japplphysiol.00821.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A cognitive challenge when imposed during a low-force isometric contraction will exacerbate sex- and age-related decreases in force steadiness, but the mechanism is not known. We determined the role of oscillations in the common synaptic input to motor units on force steadiness during a muscle contraction with a concurrent cognitive challenge. Forty-nine young adults (19-30 yr; 25 women, 24 men) and 36 old adults (60-85 yr; 19 women, 17 men) performed a cognitive challenge (counting backward by 13) during an isometric elbow flexion task at 5% of maximal voluntary contraction. Single-motor units were decomposed from high-density surface EMG recordings. For a subgroup of participants, motor units were matched during control and cognitive challenge trials, so the same motor unit was analyzed across conditions. Reduced force steadiness was associated with greater oscillations in the synaptic input to motor units during both control and cognitive challenge trials ( r = 0.45-0.47, P < 0.01). Old adults and young women showed greater oscillations in the common synaptic input to motor units and decreased force steadiness when the cognitive challenge was imposed, but young men showed no change across conditions (session × age × sex, P < 0.05). Oscillations in the common synaptic input to motor units is a potential mechanism for altered force steadiness when a cognitive challenge is imposed during low-force contractions in young women and old adults. NEW & NOTEWORTHY We found that oscillations in the common synaptic input to motor units were associated with a reduction in force steadiness when a cognitive challenge was imposed during low-force contractions of the elbow flexor muscles in young women and old men and women but not young men. Age- and sex-related muscle weakness was associated with these changes.
Collapse
Affiliation(s)
- Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma , Norman, Oklahoma
| | | | - Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia , Brescia , Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, Royal School of Mines , London , United Kingdom
| | | | - Kristy A Nielson
- Department of Psychology, Marquette University , Milwaukee, Wisconsin
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
29
|
Özyurt MG, Shabsog M, Dursun M, Türker KS. Optimal location for eliciting the tibial H-reflex and motor response. Muscle Nerve 2018; 58:828-833. [DOI: 10.1002/mus.26308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mohammed Shabsog
- School of Medicine; Koç University, Rumelifeneri Yolu, 34450; Istanbul Turkey
| | - Merve Dursun
- School of Medicine; Koç University, Rumelifeneri Yolu, 34450; Istanbul Turkey
| | - Kemal S. Türker
- School of Medicine; Koç University, Rumelifeneri Yolu, 34450; Istanbul Turkey
| |
Collapse
|
30
|
Nagamori A, Laine CM, Valero-Cuevas FJ. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles. PLoS Comput Biol 2018; 14:e1005884. [PMID: 29309405 PMCID: PMC5774830 DOI: 10.1371/journal.pcbi.1005884] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 01/19/2018] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.
Collapse
Affiliation(s)
- Akira Nagamori
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Christopher M. Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Francisco J. Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
31
|
Jalaleddini K, Nagamori A, Laine CM, Golkar MA, Kearney RE, Valero‐Cuevas FJ. Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control. J Physiol 2017; 595:7331-7346. [PMID: 29023731 PMCID: PMC5730841 DOI: 10.1113/jp274899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/25/2017] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS In tonic, isometric, plantarflexion contractions, physiological tremor increases as the ankle joint becomes plantarflexed. Modulation of physiological tremor as a function of muscle stretch differs from that of the stretch reflex amplitude. Amplitude of physiological tremor may be altered as a function of reflex pathway gains. Healthy humans likely increase their γ-static fusimotor drive when muscles shorten. Quantification of physiological tremor by manipulation of joint angle may be a useful experimental probe of afferent gains and/or the integrity of automatic fusimotor control. ABSTRACT The involuntary force fluctuations associated with physiological (as distinct from pathological) tremor are an unavoidable component of human motor control. While the origins of physiological tremor are known to depend on muscle afferentation, it is possible that the mechanical properties of muscle-tendon systems also affect its generation, amplification and maintenance. In this paper, we investigated the dependence of physiological tremor on muscle length in healthy individuals. We measured physiological tremor during tonic, isometric plantarflexion torque at 30% of maximum at three ankle angles. The amplitude of physiological tremor increased as calf muscles shortened in contrast to the stretch reflex whose amplitude decreases as muscle shortens. We used a published closed-loop simulation model of afferented muscle to explore the mechanisms responsible for this behaviour. We demonstrate that changing muscle lengths does not suffice to explain our experimental findings. Rather, the model consistently required the modulation of γ-static fusimotor drive to produce increases in physiological tremor with muscle shortening - while successfully replicating the concomitant reduction in stretch reflex amplitude. This need to control γ-static fusimotor drive explicitly as a function of muscle length has important implications. First, it permits the amplitudes of physiological tremor and stretch reflex to be decoupled. Second, it postulates neuromechanical interactions that require length-dependent γ drive modulation to be independent from α drive to the parent muscle. Lastly, it suggests that physiological tremor can be used as a simple, non-invasive measure of the afferent mechanisms underlying healthy motor function, and their disruption in neurological conditions.
Collapse
Affiliation(s)
- Kian Jalaleddini
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Akira Nagamori
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Christopher M. Laine
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Mahsa A. Golkar
- Department of Biomedical EngineeringMcGill UniversityMontréalQCCanada
| | - Robert E. Kearney
- Department of Biomedical EngineeringMcGill UniversityMontréalQCCanada
| | - Francisco J. Valero‐Cuevas
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
32
|
Chen YC, Lin LL, Lin YT, Hu CL, Hwang IS. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly. Front Hum Neurosci 2017; 11:538. [PMID: 29167637 PMCID: PMC5682334 DOI: 10.3389/fnhum.2017.00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
Abstract
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan.,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Linda L Lin
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung City, Taiwan
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
33
|
Keenan KG, Huddleston WE, Ernest BE. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults. J Neurophysiol 2017; 118:2537-2548. [PMID: 28701549 DOI: 10.1152/jn.00928.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/19/2017] [Accepted: 07/08/2017] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated (rs = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related (P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults.NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test.
Collapse
Affiliation(s)
- Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and .,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Wendy E Huddleston
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and.,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Bradley E Ernest
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and
| |
Collapse
|
34
|
Laine CM, Valero-Cuevas FJ. Intermuscular coherence reflects functional coordination. J Neurophysiol 2017; 118:1775-1783. [PMID: 28659460 DOI: 10.1152/jn.00204.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Coherence analysis has the ability to identify the presence of common descending drive shared by motor unit pools and reveals its spectral properties. However, the link between spectral properties of shared neural drive and functional interactions among muscles remains unclear. We assessed shared neural drive between muscles of the thumb and index finger while participants executed two mechanically distinct precision pinch tasks, each requiring distinct functional coordination among muscles. We found that shared neural drive was systematically reduced or enhanced at specific frequencies of interest (~10 and ~40 Hz). While amplitude correlations between surface EMG signals also exhibited changes across tasks, only their coherence has strong physiological underpinnings indicative of neural binding. Our results support the use of intermuscular coherence as a tool to detect when coactivated muscles are members of a functional group or synergy of neural origin. Furthermore, our results demonstrate the advantages of considering neural binding at 10, ~20, and >30 Hz, as indicators of task-dependent neural coordination strategies.NEW & NOTEWORTHY It is often unclear whether correlated activity among muscles reflects their neural binding or simply reflects the constraints defining the task. Using the fact that high-frequency coherence between EMG signals (>6 Hz) is thought to reflect shared neural drive, we demonstrate that coherence analysis can reveal the neural origin of distinct muscle coordination patterns required by different tasks.
Collapse
Affiliation(s)
- Christopher M Laine
- Brain-Body Dynamics Laboratory, Department of Biomedical Engineering, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Francisco J Valero-Cuevas
- Brain-Body Dynamics Laboratory, Department of Biomedical Engineering, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| |
Collapse
|
35
|
Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Exp Brain Res 2017; 235:2547-2559. [PMID: 28550423 PMCID: PMC5502062 DOI: 10.1007/s00221-017-4991-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/17/2017] [Indexed: 10/26/2022]
Abstract
Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.
Collapse
|
36
|
Reyes A, Laine CM, Kutch JJ, Valero-Cuevas FJ. Beta Band Corticomuscular Drive Reflects Muscle Coordination Strategies. Front Comput Neurosci 2017; 11:17. [PMID: 28420975 PMCID: PMC5378725 DOI: 10.3389/fncom.2017.00017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
During force production, hand muscle activity is known to be coherent with activity in primary motor cortex, specifically in the beta-band (15–30 Hz) frequency range. It is not clear, however, if this coherence reflects the control strategy selected by the nervous system for a given task, or if it instead reflects an intrinsic property of cortico-spinal communication. Here, we measured corticomuscular and intermuscular coherence between muscles of index finger and thumb while a two-finger pinch grip of identical net force was applied to objects which were either stable (allowing synergistic activation of finger muscles) or unstable (requiring individuated finger control). We found that beta-band corticomuscular coherence with the first dorsal interosseous (FDI) and abductor pollicis brevis (APB) muscles, as well as their beta-band coherence with each other, was significantly reduced when individuated control of the thumb and index finger was required. We interpret these findings to show that beta-band coherence is reflective of a synergistic control strategy in which the cortex binds task-related motor neurons into functional units.
Collapse
Affiliation(s)
- Alexander Reyes
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Christopher M Laine
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Jason J Kutch
- Applied Mathematical Physiology Lab, Division of Biokinesiology and Physical Therapy, University of Southern CaliforniaLos Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
37
|
Chen YC, Lin YT, Chang GC, Hwang IS. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception. Front Physiol 2017; 8:140. [PMID: 28348530 PMCID: PMC5346555 DOI: 10.3389/fphys.2017.00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs.
Collapse
Affiliation(s)
- Yi-Ching Chen
- School of Physical Therapy, Chung Shan Medical UniversityTaichung, Taiwan; Physical Therapy Room, Chung Shan Medical University HospitalTaichung, Taiwan
| | - Yen-Ting Lin
- Physical Education Room, Asian University Taichung, Taiwan
| | - Gwo-Ching Chang
- Department of Information Engineering, I-Shou University Kaohsiung, Taiwan
| | - Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Physical Therapy, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
38
|
Hwang IS, Lin YT, Huang WM, Yang ZR, Hu CL, Chen YC. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback. PLoS One 2017; 12:e0170824. [PMID: 28125658 PMCID: PMC5268650 DOI: 10.1371/journal.pone.0170824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Discharge patterns from a population of motor units (MUs) were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF) to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF). In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band.
Collapse
Affiliation(s)
- Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung City, Taiwan
| | - Wei-Min Huang
- Department of Management Information System, National Chung Cheng University, Chia-Yi, Taiwan
| | - Zong-Ru Yang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Ching Chen
- School of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
39
|
Jalaleddini K, Minos Niu C, Chakravarthi Raja S, Joon Sohn W, Loeb GE, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive. J Neural Eng 2017; 14:025002. [PMID: 28094764 DOI: 10.1088/1741-2552/aa59bd] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. APPROACH As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. MAIN RESULTS We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. SIGNIFICANCE We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function-and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.
Collapse
Affiliation(s)
- Kian Jalaleddini
- Division of Biokinesiology and Physical Therapy, University of Southern California, CA, United States of America
| | | | | | | | | | | | | |
Collapse
|
40
|
de Vries IEJ, Daffertshofer A, Stegeman DF, Boonstra TW. Functional connectivity in the neuromuscular system underlying bimanual coordination. J Neurophysiol 2016; 116:2576-2585. [PMID: 27628205 DOI: 10.1152/jn.00460.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022] Open
Abstract
Neural synchrony has been suggested as a mechanism for integrating distributed sensorimotor systems involved in coordinated movement. To test the role of corticomuscular and intermuscular coherence in bimanual coordination, we experimentally manipulated the degree of coordination between hand muscles by varying the sensitivity of the visual feedback to differences in bilateral force. In 16 healthy participants, cortical activity was measured using EEG and muscle activity of the flexor pollicis brevis of both hands using high-density electromyography (HDsEMG). Using the uncontrolled manifold framework, coordination between bilateral forces was quantified by the synergy index RV in the time and frequency domain. Functional connectivity was assessed using corticomuscular coherence between muscle activity and cortical source activity and intermuscular coherence between bilateral EMG activity. The synergy index increased in the high coordination condition. RV was higher in the high coordination condition in frequencies between 0 and 0.5 Hz; for the 0.5- to 2-Hz frequency band, this pattern was inverted. Corticomuscular coherence in the beta band (16-30 Hz) was maximal in the contralateral motor cortex and was reduced in the high coordination condition. In contrast, intermuscular coherence was observed at 5-12 Hz and increased with bimanual coordination. Within-subject comparisons revealed a negative correlation between RV and corticomuscular coherence and a positive correlation between RV and intermuscular coherence. Our findings suggest two distinct neural pathways: 1) corticomuscular coherence reflects direct corticospinal projections involved in controlling individual muscles; and 2) intermuscular coherence reflects diverging pathways involved in the coordination of multiple muscles.
Collapse
Affiliation(s)
- Ingmar E J de Vries
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Dick F Stegeman
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Tjeerd W Boonstra
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands; .,Black Dog Institute, University of New South Wales, Sydney, Australia; and.,Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
41
|
Abstract
UNLABELLED Neural control of synergist muscles is not well understood. Presumably, each muscle in a synergistic group receives some unique neural drive and some drive that is also shared in common with other muscles in the group. In this investigation, we sought to characterize the strength, frequency spectrum, and force dependence of the neural drive to the human vastus lateralis and vastus medialis muscles during the production of isometric knee extension forces at 10 and 30% of maximum voluntary effort. High-density surface electromyography recordings were decomposed into motor unit action potentials to examine the neural drive to each muscle. Motor unit coherence analysis was used to characterize the total neural drive to each muscle and the drive shared between muscles. Using a novel approach based on partial coherence analysis, we were also able to study specifically the neural drive unique to each muscle (not shared). The results showed that the majority of neural drive to the vasti muscles was a cross-muscle drive characterized by a force-dependent strength and bandwidth. Muscle-specific neural drive was at low frequencies (<5 Hz) and relatively weak. Frequencies of neural drive associated with afferent feedback (6-12 Hz) and with descending cortical input (∼20 Hz) were almost entirely shared by the two muscles, whereas low-frequency (<5 Hz) drive comprised shared (primary) and muscle-specific (secondary) components. This study is the first to directly investigate the extent of shared versus independent control of synergist muscles at the motor neuron level. SIGNIFICANCE STATEMENT Precisely how the nervous system coordinates the activity of synergist muscles is not well understood. One possibility is that muscles of a synergy share a common neural drive. In this study, we directly compared the relative strength of shared versus independent neural drive to synergistically activated thigh muscles in humans. The results of this analysis support the notion that synergistically activated muscles share most of their neural drive. Scientifically, this study addressed an important gap in our current understanding of how neural drive is delivered to synergist muscles. We have also demonstrated the feasibility of a novel approach to the study of muscle synergies based on partial coherence analysis of motor unit activity.
Collapse
|
42
|
Visually guided targeting enhances bilateral force variability in healthy older adults. Neurobiol Aging 2015; 37:127-137. [PMID: 26521134 DOI: 10.1016/j.neurobiolaging.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/19/2015] [Accepted: 10/04/2015] [Indexed: 11/23/2022]
Abstract
This study observed the effect of visual feedback on between-limb force variability relationships in young and older adults. Abduction force was examined in healthy young (n = 15, 25 ± 4 years) and older adults (n = 18, 71 ± 6 years) during simultaneous isometric contractions of both index fingers. Target forces ranged from 5% to 30% maximum voluntary contraction (MVC), where force variability and first dorsal interosseus activity were measured while (1) subjects viewed visual targets for both index fingers, (2) a visual target was provided for the dominant index finger only, and (3) visual targets were removed for both index fingers during bilateral isometric contractions. When subjects were provided with bilateral visual feedback during simultaneous contractions at low forces (5% and 10% MVC), older adults produced greater force variability than younger subjects (p = 0.002). However, when bilateral visual feedback was removed, age-related differences in variability were no longer present. Between-limb force variability differences existed at higher force outputs (20% and 30% MVC) when visual feedback was removed for the nondominant limb during bilateral isometric index finger abduction (p = 0.002). The control of bilateral force variability is compromised in older adults when visuomotor processes are engaged. However, age-related differences in force variability are abolished when no task-related visual feedback is available, and isometric contractions are based on internally guided feedback.
Collapse
|
43
|
Yavuz UŞ, Negro F, Sebik O, Holobar A, Frömmel C, Türker KS, Farina D. Estimating reflex responses in large populations of motor units by decomposition of the high-density surface electromyogram. J Physiol 2015; 593:4305-18. [PMID: 26115007 DOI: 10.1113/jp270635] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/22/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Reflex responses of single motor units have been used for the study of spinal circuitries but the methods employed are invasive and limited to the assessment of a relatively small number of motor units. We propose a new approach to investigate reflexes on individual motor units based on high-density surface electromyography (HDsEMG) decomposition. The decomposition of HDsEMG has been previously validated in voluntary isometric contractions but never during reflex activities. The use of HDsEMG decomposition for reflex studies at the individual motor unit level, during constant force contractions, with excitatory and inhibitory stimuli, was validated here by the comparison of results with concurrently recorded intramuscular EMG signals. The validation results showed that HDsEMG decomposition allows an accurate quantification of reflex responses for a large number of individual motor units non-invasively, for both excitatory and inhibitory stimuli. ABSTRACT We propose and validate a non-invasive method that enables accurate detection of the discharge times of a relatively large number of motor units during excitatory and inhibitory reflex stimulations. High-density surface electromyography (HDsEMG) and intramuscular EMG (iEMG) were recorded from the tibialis anterior muscle during ankle dorsiflexions performed at 5%, 10% and 20% of the maximum voluntary contraction (MVC) force, in nine healthy subjects. The tibial nerve (inhibitory reflex) and the peroneal nerve (excitatory reflex) were stimulated with constant current stimuli. In total, 416 motor units were identified from the automatic decomposition of the HDsEMG. The iEMG was decomposed using a state-of-the-art decomposition tool and provided 84 motor units (average of two recording sites). The reflex responses of the detected motor units were analysed using the peri-stimulus time histogram (PSTH) and the peri-stimulus frequencygram (PSF). The reflex responses of the common motor units identified concurrently from the HDsEMG and the iEMG signals showed an average disagreement (the difference between number of observed spikes in each bin relative to the mean) of 8.2 ± 2.2% (5% MVC), 6.8 ± 1.0% (10% MVC) and 7.5 ± 2.2% (20% MVC), for reflex inhibition, and 6.5 ± 4.1%, 12.0 ± 1.8% and 13.9 ± 2.4%, for reflex excitation. There was no significant difference between the characteristics of the reflex responses, such as latency, amplitude and duration, for the motor units identified by both techniques. Finally, reflex responses could be identified at higher force (4 of the 9 subjects performed contraction up to 50% MVC) using HDsEMG but not iEMG, because of the difficulty in decomposing the iEMG at high forces. In conclusion, single motor unit reflex responses can be estimated accurately and non-invasively in relatively large populations of motor units using HDsEMG. This non-invasive approach may enable a more thorough investigation of the synaptic input distribution on active motor units at various force levels.
Collapse
Affiliation(s)
- Utku Ş Yavuz
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Centre for Computational Neuroscience, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany.,Department of Orthobionic, Georg-August University, Göttingen, Germany
| | - Francesco Negro
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Centre for Computational Neuroscience, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
| | - Oğuz Sebik
- Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Aleŝ Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Cornelius Frömmel
- Department of Orthobionic, Georg-August University, Göttingen, Germany
| | - Kemal S Türker
- Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Centre for Computational Neuroscience, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
44
|
Yavuz UŞ, Negro F, Falla D, Farina D. Experimental muscle pain increases variability of neural drive to muscle and decreases motor unit coherence in tremor frequency band. J Neurophysiol 2015; 114:1041-7. [PMID: 26019314 DOI: 10.1152/jn.00391.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/22/2015] [Indexed: 02/01/2023] Open
Abstract
It has been observed that muscle pain influences force variability and low-frequency (<3 Hz) oscillations in the neural drive to muscle. In this study, we aimed to investigate the effect of experimental muscle pain on the neural control of muscle force at higher frequency bands, associated with afferent feedback (alpha band, 5-13 Hz) and with descending cortical input (beta band, 15-30 Hz). Single-motor unit activity was recorded, in two separate experimental sessions, from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles with intramuscular wire electrodes, during isometric abductions of the fifth finger at 10% of maximal force [maximum voluntary contraction (MVC)] and ankle dorsiflexions at 25% MVC. The contractions were repeated under three conditions: no pain (baseline) and after intramuscular injection of isotonic (0.9%, control) and hypertonic (5.8%, painful) saline. The results showed an increase of the relative power of both the force signal and the neural drive at the tremor frequency band (alpha, 5-13 Hz) between the baseline and hypertonic (painful) conditions for both muscles (P < 0.05) but no effect on the beta band. Additionally, the strength of motor unit coherence was lower (P < 0.05) in the hypertonic condition in the alpha band for both muscles and in the beta band for the ADM. These results indicate that experimental muscle pain increases the amplitude of the tremor oscillations because of an increased variability of the neural control (common synaptic input) in the tremor band. Moreover, the concomitant decrease in coherence suggests an increase in independent input in the tremor band due to pain.
Collapse
Affiliation(s)
- Utku Ş Yavuz
- Department of Orthobionics, Georg August University, Göttingen, Germany; and Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Francesco Negro
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Deborah Falla
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
45
|
Locks F, Santos HHD, Carvalho LC, Stolt LROG, Ferreira JJDA. Neural adaptations in isometric contractions with EMG and force biofeedback. MOTRIZ: REVISTA DE EDUCACAO FISICA 2015. [DOI: 10.1590/s1980-65742015000100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the quadriceps femoris neural adaptations during isometric contractions using force and electromyogram (EMG) signals as visual biofeedback. Forty-two participants were randomly assigned to three groups: EMG group, tested with EMG biofeedback; Force group, tested with force biofeedback; and Control group, tested without biofeedback. Evaluations were performed pre (baseline) and post-tests to determine the maximum force and EMG amplitude during maximal voluntary isometric contraction (MVIC). The tests consisted of series of MVICs in which the participants were encouraged to surpass the force or EMG thresholds determined at baseline. The vastus lateralis EMG amplitude and knee extensor force increased significantly in all groups when compared the baseline and post-test evaluations values (p < .05). EMG percentage gain was significantly different between Force and Control groups (p < .01), while force percentage gain was not different between groups. Force biofeedback was more effective in producing neural adaptations.
Collapse
|
46
|
Jaw tremor as a physiological biomarker of bruxism. Clin Neurophysiol 2014; 126:1746-53. [PMID: 25533275 DOI: 10.1016/j.clinph.2014.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To determine if sleep bruxism is associated with abnormal physiological tremor of the jaw during a visually-guided bite force control task. METHODS Healthy participants and patients with sleep bruxism were given visual feedback of their bite force and asked to trace triangular target trajectories (duration=20s, peak force <35% maximum voluntary force). Bite force control was quantified in terms of the power spectra of force fluctuations, masseter EMG activity, and force-to-EMG coherence. RESULTS Patients had greater jaw force tremor at ∼8 Hz relative to controls, along with increased masseter EMG activity and force-to-EMG coherence in the same frequency range. Patients also showed lower force-to-EMG coherence at low frequencies (<3 Hz), but greater coherence at high frequencies (20-40 Hz). Finally, patients had greater 6-10 Hz force tremor during periods of descending vs. ascending force, while controls showed no difference in tremor with respect to force dynamics. CONCLUSION Patients with bruxism have abnormal jaw tremor when engaged in a visually-guided bite force task. SIGNIFICANCE Measurement of jaw tremor may aid in the detection/evaluation of bruxism. In light of previous literature, our results also suggest that bruxism is marked by abnormal or mishandled peripheral feedback from the teeth.
Collapse
|
47
|
Removing visual feedback for a single limb alters between-limb force tremor relationships during isometric bilateral contractions. Exp Brain Res 2014; 233:115-24. [DOI: 10.1007/s00221-014-4098-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|