1
|
Hu K, O’Neil TR, Baharlou H, Austin PJ, Karrasch JF, Sarkawt L, Li Y, Bertram KM, Cunningham AL, Patrick E, Harman AN. The spatial biology of HIV infection. PLoS Pathog 2025; 21:e1012888. [PMID: 39854613 PMCID: PMC11760614 DOI: 10.1371/journal.ppat.1012888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches. Over the last decade, emerging imaging techniques have continually redefined the limits of detection, both in terms of the scope and the scale of the targets. In doing so, this has opened up new questions that can be answered by in situ studies. This review discusses the high-dimensional imaging modalities that are now available and their application towards understanding the spatial biology of HIV infection.
Collapse
Affiliation(s)
- Kevin Hu
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas R. O’Neil
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul J. Austin
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jackson F. Karrasch
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Lara Sarkawt
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuchen Li
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M. Bertram
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellis Patrick
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew N. Harman
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Mukerjee N, Al-Hamash SMJ, Al-Maiahy TJ, Batiha GES. 5-HT/CGRP pathway and Sumatriptan role in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3148-3173. [PMID: 36042570 DOI: 10.1080/02648725.2022.2108996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). In Covid-19, there is uncontrolled activation of immune cells with a massive release of pro-inflammatory cytokines and the development of cytokine storm. These inflammatory changes induce impairment of different organ functions, including the central nervous system (CNS), leading to acute brain injury and substantial changes in the neurotransmitters, including serotonin (5-HT) and calcitonin gene-related peptide (CGRP), which have immunomodulatory properties through modulation of central and peripheral immune responses. In Covid-19, 5-HT neurotransmitters and CGRP could contribute to abnormal and atypical vascular reactivity. Sumatriptan is a pre-synaptic 5-HT (5-HT1D and 5-HT1B) agonist and inhibits the release of CGRP. Both 5-HT and CGRP seem to be augmented in Covid-19 due to underlying activation of inflammatory signaling pathways and hyperinflammation. In virtue of its anti-inflammatory and antioxidant properties with inhibition release of 5-HT and CGRP, Sumatriptan may reduce Covid-19 hyperinflammation. Therefore, Sumatriptan might be a novel potential therapeutic strategy in managing Covid-19. In conclusion, Sumatriptan could be an effective therapeutic strategy in managing Covid-19 through modulation of 5-HT neurotransmitters and inhibiting CGRP.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
3
|
Barbosa Bomfim CC, Génin H, Cottoignies-Callamarte A, Gallois-Montbrun S, Murigneux E, Sams A, Rosenberg AR, Belouzard S, Dubuisson J, Kosminder O, Pène F, Terrier B, Bomsel M, Ganor Y. CGRP inhibits SARS-CoV-2 infection of bronchial epithelial cells, and its pulmonary levels correlate with viral clearance in critical COVID-19 patients. J Virol 2024; 98:e0012824. [PMID: 39162434 PMCID: PMC11406896 DOI: 10.1128/jvi.00128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024] Open
Abstract
Upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), patients with critical coronavirus disease 2019 (COVID-19) present with life-threatening respiratory distress, pulmonary damage, and cytokine storm. One unexplored component in COVID-19 is the neuropeptide calcitonin gene-related peptide (CGRP), which is highly abundant in the airways and could converge in multiple aspects of COVID-19-related pulmonary pathophysiology. Whether CGRP affects SARS-CoV-2 infection directly remains elusive. We show that in critical COVID-19 patients, CGRP is increased in both plasma and lungs. Importantly, CGRP pulmonary levels are elevated in early SARS-CoV-2-positive patients and restored to baseline upon subsequent viral clearance in SARS-CoV-2-negative patients. We further show that CGRP and its stable analog SAX directly inhibit infection of bronchial Calu-3 epithelial cells with SARS-CoV-2 Omicron and Alpha variants in a dose-dependent manner. Both pre- and post-infection treatments with CGRP and/or SAX are enough to block SARS-CoV-2 productive infection of Calu-3 cells. CGRP-mediated inhibition occurs via activation of the CGRP receptor and involves down-regulation of both SARS-CoV-2 entry receptors at the surface of Calu-3 cells. Together, we propose that increased pulmonary CGRP mediates beneficial viral clearance in critical COVID-19 patients by directly inhibiting SARS-CoV-2 propagation. Hence, CGRP-based interventions could be harnessed for management of COVID-19.IMPORTANCEThe neuropeptide CGRP is highly abundant in the airways. Due to its immunomodulatory, vasodilatory, and anti-viral functions, CGRP could affect multiple aspects of COVID-19-related pulmonary pathophysiology. Yet, the interplay between CGRP and SARS-CoV-2 during COVID-19 remains elusive. Herein, we show that pulmonary levels of CGRP are increased in critical COVID-19 patients, at an early stage of their disease when patients are SARS-CoV-2-positive. Upon subsequent viral clearance, CGRP levels are restored to baseline in SARS-CoV-2-negative patients. We further show that pre- and post-infection treatments with CGRP directly inhibit infection of Calu-3 bronchial epithelial cells with SARS -CoV-2, via activation of the CGRP receptor leading to decreased expression of both SARS-CoV-2 entry receptors. Together, we propose that increased pulmonary CGRP is beneficial in COVID-19, as CGRP-mediated inhibition of SARS-CoV-2 infection could contribute to viral clearance in critical COVID-19 patients. Accordingly, CGRP-based formulations could be useful for COVID-19 management.
Collapse
Affiliation(s)
- Caio César Barbosa Bomfim
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Hugo Génin
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Andréa Cottoignies-Callamarte
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Sarah Gallois-Montbrun
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Host-Virus Interactions, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
| | - Emilie Murigneux
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Host-Virus Interactions, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
| | - Anette Sams
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Epoqe Pharma, Copenhagen, Denmark
| | - Arielle R. Rosenberg
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Service of Virology, AP-HP Hôpital Cochin, Paris, France
| | - Sandrine Belouzard
- Molecular and Cellular Virology of Coronavirus, Infection and Immunity Center of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHRU, Lille, France
| | - Jean Dubuisson
- Molecular and Cellular Virology of Coronavirus, Infection and Immunity Center of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHRU, Lille, France
| | - Olivier Kosminder
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Service of Biological Hematology, AP-HP Hôpitaux Universitaires Paris Centre, Paris, France
| | - Frédéric Pène
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Service of Intensive Medicine and Reanimation, AP-HP Hôpital Cochin, Paris, France
| | - Benjamin Terrier
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP Hôpital Cochin, Paris, France
| | - Morgane Bomsel
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Yonatan Ganor
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| |
Collapse
|
4
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
5
|
Mariotton J, Cohen E, Zhu A, Auffray C, Barbosa Bomfim CC, Barry Delongchamps N, Zerbib M, Bomsel M, Ganor Y. TRPV1 activation in human Langerhans cells and T cells inhibits mucosal HIV-1 infection via CGRP-dependent and independent mechanisms. Proc Natl Acad Sci U S A 2023; 120:e2302509120. [PMID: 37216549 PMCID: PMC10235960 DOI: 10.1073/pnas.2302509120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Upon its mucosal transmission, HIV type 1 (HIV-1) rapidly targets genital antigen-presenting Langerhans cells (LCs), which subsequently transfer infectious virus to CD4+ T cells. We previously described an inhibitory neuroimmune cross talk, whereby calcitonin gene-related peptide (CGRP), a neuropeptide secreted by peripheral pain-sensing nociceptor neurons innervating all mucosal epithelia and associating with LCs, strongly inhibits HIV-1 transfer. As nociceptors secret CGRP following the activation of their Ca2+ ion channel transient receptor potential vanilloid 1 (TRPV1), and as we reported that LCs secret low levels of CGRP, we investigated whether LCs express functional TRPV1. We found that human LCs expressed mRNA and protein of TRPV1, which was functional and induced Ca2+ influx following activation with TRPV1 agonists, including capsaicin (CP). The treatment of LCs with TRPV1 agonists also increased CGRP secretion, reaching its anti-HIV-1 inhibitory concentrations. Accordingly, CP pretreatment significantly inhibited LCs-mediated HIV-1 transfer to CD4+ T cells, which was abrogated by both TRPV1 and CGRP receptor antagonists. Like CGRP, CP-induced inhibition of HIV-1 transfer was mediated via increased CCL3 secretion and HIV-1 degradation. CP also inhibited direct CD4+ T cells HIV-1 infection, but in CGRP-independent manners. Finally, pretreatment of inner foreskin tissue explants with CP markedly increased CGRP and CCL3 secretion, and upon subsequent polarized exposure to HIV-1, inhibited an increase in LC-T cell conjugate formation and consequently T cell infection. Our results reveal that TRPV1 activation in human LCs and CD4+ T cells inhibits mucosal HIV-1 infection, via CGRP-dependent/independent mechanisms. Formulations containing TRPV1 agonists, already approved for pain relief, could hence be useful against HIV-1.
Collapse
Affiliation(s)
- Jammy Mariotton
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Emmanuel Cohen
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Aiwei Zhu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Cédric Auffray
- Laboratory of Regulation of T Cell Effector Functions, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Caio César Barbosa Bomfim
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | | | - Marc Zerbib
- Urology Service, Groupe Hospitalier (GH) Cochin-St Vincent de Paul, F-75014Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| |
Collapse
|
6
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
CGRP inhibits human Langerhans cells infection with HSV by differentially modulating specific HSV-1 and HSV-2 entry mechanisms. Mucosal Immunol 2022; 15:762-771. [PMID: 35562558 DOI: 10.1038/s41385-022-00521-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Herpes simplex virus (HSV) is widespread globally, with both HSV-1 and HSV-2 responsible for genital herpes. During sexual transmission, HSV targets epithelial cells, sensory peripheral pain neurons secreting the mucosal neuropeptide calcitonin gene-related peptide (CGRP), and mucosal immune cells including Langerhans cells (LCs). We previously described a neuro-immune crosstalk, whereby CGRP inhibits LCs-mediated human immunodeficiency virus type 1 (HIV-1) transmission. Herein, to further explore CGRP-mediated anti-viral function, we investigated whether CGRP affects LCs infection with HSV. We found that both HSV-1 and HSV-2 primary isolates productively infect monocyte-derived LCs (MDLCs) and inner foreskin LCs. Moreover, CGRP significantly inhibits infection with both HSV subtypes of MDLCs and langerinhigh, but not langerinlow, inner foreskin LCs. For HSV-1, infection is mediated via the HSV-1-specific entry receptor 3-O sulfated heparan sulfate (3-OS HS) in a pH-depended manner, and CGRP down-regulates 3-OS HS surface expression, as well as abrogates pH dependency. For HSV-2, infection involves langerin-mediated endocytosis in a pH-independent manner, and CGRP up-regulates surface expression of atypical langerin double-trimer oligomers. Our results show that CGRP inhibits mucosal HSV infection by differentially modulating subtype-specific entry receptors and mechanisms in human LCs. CGRP could turn out useful for prevention of LCs-mediated HSV infection and HSV/HIV-1 co-infection.
Collapse
|
8
|
Mariotton J, Sams A, Cohen E, Sennepin A, Siracusano G, Sanvito F, Edvinsson L, Delongchamps NB, Zerbib M, Lopalco L, Bomsel M, Ganor Y. Native CGRP Neuropeptide and Its Stable Analogue SAX, But Not CGRP Peptide Fragments, Inhibit Mucosal HIV-1 Transmission. Front Immunol 2021; 12:785072. [PMID: 34956215 PMCID: PMC8692891 DOI: 10.3389/fimmu.2021.785072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background The vasodilator neuropeptide calcitonin gene-related peptide (CGRP) plays both detrimental and protective roles in different pathologies. CGRP is also an essential component of the neuro-immune dialogue between nociceptors and mucosal immune cells. We previously discovered that CGRP is endowed with anti-viral activity and strongly inhibits human immunodeficiency virus type 1 (HIV-1) infection, by suppressing Langerhans cells (LCs)-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission ex-vivo. This inhibition is mediated via activation of the CGRP receptor non-canonical NFκB/STAT4 signaling pathway that induces a variety of cooperative mechanisms. These include CGRP-mediated increase in the expression of the LC-specific pathogen recognition C-type lectin langerin and decrease in LC-T-cell conjugates formation. The clinical utility of CGRP and modalities of CGRP receptor activation, for inhibition of mucosal HIV-1 transmission, remain elusive. Methods We tested the capacity of CGRP to inhibit HIV-1 infection in-vivo in humanized mice. We further compared the anti-HIV-1 activities of full-length native CGRP, its metabolically stable analogue SAX, and several CGRP peptide fragments containing its binding C-terminal and activating N-terminal regions. These agonists were evaluated for their capacity to inhibit LCs-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission in human mucosal tissues ex-vivo. Results A single CGRP intravaginal topical treatment of humanized mice, followed by HIV-1 vaginal challenge, transiently restricts the increase in HIV-1 plasma viral loads but maintains long-lasting higher CD4+ T-cell counts. Similarly to CGRP, SAX inhibits LCs-mediated HIV-1 trans-infection in-vitro, but with lower potency. This inhibition is mediated via CGRP receptor activation, leading to increased expression of both langerin and STAT4 in LCs. In contrast, several N-terminal and N+C-terminal bivalent CGRP peptide fragments fail to increase langerin and STAT4, and accordingly lack anti-HIV-1 activities. Finally, like CGRP, treatment of human inner foreskin tissue explants with SAX, followed by polarized inoculation with cell-associated HIV-1, completely blocks formation of LC-T-cell conjugates and HIV-1 infection of T-cells. Conclusion Our results show that CGRP receptor activation by full-length CGRP or SAX is required for efficient inhibition of LCs-mediated mucosal HIV-1 transmission. These findings suggest that formulations containing CGRP, SAX and/or their optimized agonists/analogues could be harnessed for HIV-1 prevention.
Collapse
Affiliation(s)
- Jammy Mariotton
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emmanuel Cohen
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Alexis Sennepin
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Gabriel Siracusano
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Marc Zerbib
- Urology Service, GH Cochin-St Vincent de Paul, Paris, France
| | - Lucia Lopalco
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| |
Collapse
|
9
|
Abstract
The new wave of anti-migraine agents is nothing less than a milestone in our battle to manage this devastating disease. However, concerns have recently increased regarding the safety of these drugs. CGRP, while known as a potent vasodilator, is also a key neural and immune modulator. The roles of CGRP in immune determination, have been studied in depth, with particular focus on its functional significance with respect to common immune challenges i.e., bacterial, viral, fungal and parasitic infections. This review discusses many potential areas of concern in regard to blocking CGRP function and its potential influence on immune milieus during infection, and the risk of adverse effects. Finally, this review recommends specific measures to be taken into consideration when administering anti-CGRP/CGRPR agents.
Collapse
|
10
|
Ochoa-Callejero L, García-Sanmartín J, Villoslada-Blanco P, Íñiguez M, Pérez-Matute P, Pujadas E, Fowkes ME, Brody R, Oteo JA, Martínez A. Circulating Levels of Calcitonin Gene-Related Peptide Are Lower in COVID-19 Patients. J Endocr Soc 2021; 5:bvaa199. [PMID: 33506161 PMCID: PMC7798995 DOI: 10.1210/jendso/bvaa199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Background To better understand the biology of COVID-19, we have explored the behavior of calcitonin gene-related peptide (CGRP), an angiogenic, vasodilating, and immune modulating peptide, in severe acute respiratory syndrome coronavirus 2 positive patients. Methods Levels of CGRP in the serum of 57 COVID-19 patients (24 asymptomatic, 23 hospitalized in the general ward, and 10 admitted to the intensive care unit) and healthy donors (n = 24) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, to better understand the physiological consequences of the observed variations, we investigated by immunofluorescence the distribution of receptor activity modifying protein 1 (RAMP1), one of the components of the CGRP receptor, in autopsy lung specimens. Results CGRP levels were greatly decreased in COVID-19 patients (P < 0.001) when compared to controls, and there were no significant differences due to disease severity, sex, age, or comorbidities. We found that COVID-19 patients treated with proton pump inhibitors had lower levels of CGRP than other patients not taking this treatment (P = 0.001). RAMP1 immunoreactivity was found in smooth muscle cells of large blood vessels and the bronchial tree and in the airways´ epithelium. In COVID-19 samples, RAMP1 was also found in proliferating type II pneumocytes, a common finding in these patients. Conclusions The lower levels of CGRP should negatively impact the respiratory physiology of COVID-19 patients due to vasoconstriction, improper angiogenesis, less epithelial repair, and faulty immune response. Therefore, restoring CGRP levels in these patients may represent a novel therapeutic approach for COVID-19.
Collapse
Affiliation(s)
| | | | | | - María Íñiguez
- Infectious Diseases, Microbiota, and Metabolism Unit (CIBIR), Logroño, Spain
| | | | - Elisabet Pujadas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary E Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José A Oteo
- Infectious Diseases, Microbiota, and Metabolism Unit (CIBIR), Logroño, Spain.,Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
11
|
Liang YL, Belousoff MJ, Fletcher MM, Zhang X, Khoshouei M, Deganutti G, Koole C, Furness SGB, Miller LJ, Hay DL, Christopoulos A, Reynolds CA, Danev R, Wootten D, Sexton PM. Structure and Dynamics of Adrenomedullin Receptors AM 1 and AM 2 Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacol Transl Sci 2020; 3:263-284. [PMID: 32296767 PMCID: PMC7155201 DOI: 10.1021/acsptsci.9b00080] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) receptors are critically important for metabolism, vascular tone, and inflammatory response. AM receptors are also required for normal lymphatic and blood vascular development and angiogenesis. They play a pivotal role in embryo implantation and fertility and can provide protection against hypoxic and oxidative stress. CGRP and AM receptors are heterodimers of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) (CGRPR), as well as RAMP2 or RAMP3 (AM1R and AM2R, respectively). However, the mechanistic basis for RAMP modulation of CLR phenotype is unclear. In this study, we report the cryo-EM structure of the AM1R in complex with AM and Gs at a global resolution of 3.0 Å, and structures of the AM2R in complex with either AM or intermedin/adrenomedullin 2 (AM2) and Gs at 2.4 and 2.3 Å, respectively. The structures reveal distinctions in the primary orientation of the extracellular domains (ECDs) relative to the receptor core and distinct positioning of extracellular loop 3 (ECL3) that are receptor-dependent. Analysis of dynamic data present in the cryo-EM micrographs revealed additional distinctions in the extent of mobility of the ECDs. Chimeric exchange of the linker region of the RAMPs connecting the TM helix and the ECD supports a role for this segment in controlling receptor phenotype. Moreover, a subset of the motions of the ECD appeared coordinated with motions of the G protein relative to the receptor core, suggesting that receptor ECD dynamics could influence G protein interactions. This work provides fundamental advances in our understanding of GPCR function and how this can be allosterically modulated by accessory proteins.
Collapse
Affiliation(s)
- Yi-Lynn Liang
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Madeleine M. Fletcher
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Xin Zhang
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Maryam Khoshouei
- Department
of Molecular Structural Biology, Max Planck
Institute of Biochemistry, 82152 Martinsried, Germany
| | - Giuseppe Deganutti
- School
of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Cassandra Koole
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Sebastian G. B. Furness
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Laurence J. Miller
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Debbie L. Hay
- School
of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | | | - Radostin Danev
- Graduate
School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Denise Wootten
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | - Patrick M. Sexton
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
12
|
Bomsel M, Lopalco L, Uberti-Foppa C, Siracusano G, Ganor Y. Short Communication: Decreased Plasma Calcitonin Gene-Related Peptide as a Novel Biomarker for HIV-1 Disease Progression. AIDS Res Hum Retroviruses 2019; 35:52-55. [PMID: 30489145 DOI: 10.1089/aid.2018.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 mucosal transmission in genital epithelia occurs through infection of Langerhans cells and subsequent transinfection of CD4+ T cells. We previously reported that the vasodilator neuropeptide calcitonin gene-related peptide (CGRP), secreted upon activation of sensory peripheral neurons that innervate all mucosal epithelia, significantly inhibits transinfection. To investigate the association between CGRP and HIV-1 during infection, we evaluated circulating CGRP levels in HIV-1-infected patients. Plasma was obtained from combination antiretroviral therapy (cART)-naive or cART-treated patients with primary/acute (PHI) or chronic (CHI) HIV-1 infection, as well as from individuals who naturally control HIV-1 infection, namely exposed seronegatives (ESNs), elite controllers (ECs), and long-term nonprogressors (LTNPs). CGRP plasma levels were measured using an enzyme immunoassay. Compared with healthy HIV-1-negative controls, CGRP plasma levels significantly decreased in PHI patients and even further in CHI patients, but remained unchanged in ESNs, ECs, and LTNPs. Moreover, CGRP plasma levels were restored to baseline upon cART in both PHI and CHI. Finally, CGRP plasma levels directly correlated with CD4+ T cell counts and inversely with viral loads. Altogether, CGRP could serve as a novel diagnostic plasma biomarker for progression of HIV-1 infection. Moreover, administration of CGRP to cART-naive HIV-1-infected patients, to compensate for CGRP decline, could help controlling on-going HIV-1 infection.
Collapse
Affiliation(s)
- Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR8104, Paris, France
- INSERM U1016, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR8104, Paris, France
- INSERM U1016, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Calcitonin Gene-Related Peptide Induces HIV-1 Proteasomal Degradation in Mucosal Langerhans Cells. J Virol 2017; 91:JVI.01205-17. [PMID: 28904199 DOI: 10.1128/jvi.01205-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
The neuroimmune dialogue between peripheral neurons and Langerhans cells (LCs) within mucosal epithelia protects against incoming pathogens. LCs rapidly internalize human immunodeficiency virus type 1 (HIV-1) upon its sexual transmission and then trans-infect CD4+ T cells. We recently found that the neuropeptide calcitonin gene-related peptide (CGRP), secreted mucosally from peripheral neurons, inhibits LC-mediated HIV-1 trans-infection. In this study, we investigated the mechanism of CGRP-induced inhibition, focusing on HIV-1 degradation in LCs and its interplay with trans-infection. We first show that HIV-1 degradation occurs in endolysosomes in untreated LCs, and functionally blocking such degradation with lysosomotropic agents results in increased trans-infection. We demonstrate that CGRP acts via its cognate receptor and at a viral postentry step to induce faster HIV-1 degradation, but without affecting the kinetics of endolysosomal degradation. We reveal that unexpectedly, CGRP shifts HIV-1 degradation from endolysosomes toward the proteasome, providing the first evidence for functional HIV-1 proteasomal degradation in LCs. Such efficient proteasomal degradation significantly inhibits the first phase of trans-infection, and proteasomal, but not endolysosomal, inhibitors abrogate CGRP-induced inhibition. Together, our results establish that CGRP controls the HIV-1 degradation mode in LCs. The presence of endogenous CGRP within innervated mucosal tissues, especially during the sexual response, to which CGRP contributes, suggests that HIV-1 proteasomal degradation predominates in vivo Hence, proteasomal, rather than endolysosomal, HIV-1 degradation in LCs should be enhanced clinically to effectively restrict HIV-1 trans-infection.IMPORTANCE During sexual transmission, HIV-1 is internalized and degraded in LCs, the resident antigen-presenting cells in mucosal epithelia. Yet during trans-infection, infectious virions escaping degradation are transferred to CD4+ T cells, the principal HIV-1 targets. We previously found that the neuroimmune dialogue between LCs and peripheral neurons, innervating mucosal epithelia, significantly inhibits trans-infection via the action of the secreted neuropeptide CGRP on LCs. In this study, we investigated whether CGRP-induced inhibition of trans-infection is linked to CGRP-controlled HIV-1 degradation in LCs. We show that in untreated LCs, HIV-1 is functionally degraded in endolysosomes. In sharp contrast, we reveal that in CGRP-treated LCs, HIV-1 is diverted toward and degraded via another cytosolic protein degradative pathway, namely, the proteasome. These results establish that CGRP regulates HIV-1 degradation in LCs. As CGRP contributes to the sexual response and present within mucosal epithelia, HIV-1 proteasomal degradation in LCs might predominate in vivo and should be enhanced clinically.
Collapse
|
14
|
Persson PB, Bondke Persson A. Borders and beyond. Acta Physiol (Oxf) 2017; 221:84-86. [PMID: 28795790 DOI: 10.1111/apha.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. B. Persson
- Charité - Universitätsmedizin Berlin; corporate member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
- Institute of Vegetative Physiology; Berlin Germany
| | - A. Bondke Persson
- Charité - Universitätsmedizin Berlin; corporate member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| |
Collapse
|
15
|
Persson PB. Time is of the essence. Acta Physiol (Oxf) 2016; 217:97-8. [PMID: 27084270 DOI: 10.1111/apha.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P B Persson
- Institut für vegetative Physiologie, Charité-Universitaetsmedizin, Berlin, Germany.
| |
Collapse
|
16
|
Ribeiro CMS, Sarrami-Forooshani R, Geijtenbeek TBH. HIV-1 border patrols: Langerhans cells control antiviral responses and viral transmission. Future Virol 2015. [DOI: 10.2217/fvl.15.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Langerhans cells (LCs) reside in the mucosal epithelia and are refractory to HIV-1 infection; HIV-1 capture by C-type lectin receptor langerin and subsequent targeting to Birbeck granules prevents infection. Furthermore, LCs restrict transmission of CXCR4-using HIV-1 variants, which underscores the role of immature LCs as gatekeepers in the selection of HIV-1 variants. Interaction of langerin on LCs with hyaluronic acid on dendritic cells facilitates cross-presentation of HIV-1 to CD8+ T cells. Activation of LCs upon inflammation bypasses the langerin-dependent barrier, which favors cross-presentation and increases susceptibility of LCs to HIV-1 infection. These recent developments not only highlight the plasticity of LCs but also define an important role for LC-dendritic cell crosstalk at the periphery in directing adaptive immune responses to viruses.
Collapse
Affiliation(s)
- Carla MS Ribeiro
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ramin Sarrami-Forooshani
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ng TB, Cheung RCF, Wong JH, Chan WY. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes. Appl Microbiol Biotechnol 2015; 99:10399-414. [PMID: 26411457 DOI: 10.1007/s00253-015-6997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| |
Collapse
|
18
|
Granstein RD, Wagner JA, Stohl LL, Ding W. Calcitonin gene-related peptide: key regulator of cutaneous immunity. Acta Physiol (Oxf) 2015; 213:586-94. [PMID: 25534428 DOI: 10.1111/apha.12442] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/10/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023]
Abstract
Calcitonin gene-related peptide (CGRP) has been viewed as a neuropeptide and vasodilator. However, CGRP is more appropriately thought of as a pleiotropic signalling molecule. Indeed, CGRP has key regulatory functions on immune and inflammatory processes within the skin. CGRP-containing nerves are intimately associated with epidermal Langerhans cells (LCs), and CGRP has profound regulatory effects on Langerhans cell antigen-presenting capability. When LCs are exposed to CGRP in vitro, their ability to present antigen for in vivo priming of naïve mice or elicitation of delayed-type hypersensitivity is inhibited in at least some situations. Administration of CGRP intradermally inhibits acquisition of immunity to Th1-dominant haptens applied to the injected site while augmenting immunity to Th2-dominant haptens, although the cellular targets of activity in these experiments remain unclear. Although CGRP can be a pro-inflammatory agent, several studies have demonstrated that administration of CGRP can inhibit the elicitation of inflammation by inflammatory stimuli in vivo. In this regard, CGRP inhibits the release of certain chemokines by stimulated endothelial cells. This is likely to be physiologically relevant as cutaneous blood vessels are innervated by sensory nerves. Exciting new studies suggest a significant role for CGRP in the pathogenesis of psoriasis and, most strikingly, that CGRP inhibits the ability of LCs to transmit the human immunodeficiency virus 1 to T lymphocytes. A more complete understanding of the role of CGRP in the skin immune system may lead to new and novel approaches for the therapy of immune-mediated skin disorders.
Collapse
Affiliation(s)
- R. D. Granstein
- Department of Dermatology; Weill Cornell Medical College; New York NY USA
| | - J. A. Wagner
- Brain and Mind Research Institute; Weill Cornell Medical College; New York NY USA
| | - L. L. Stohl
- Department of Dermatology; Weill Cornell Medical College; New York NY USA
| | - W. Ding
- Department of Dermatology; Weill Cornell Medical College; New York NY USA
| |
Collapse
|