1
|
Menescal-de-Oliveira L, Brentegani MR, Teixeira FP, Giusti H, Saia RS. Immune-mediated impairment of tonic immobility defensive behavior in an experimental model of colonic inflammation. Pflugers Arch 2024; 476:1743-1760. [PMID: 39218820 DOI: 10.1007/s00424-024-03011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Ulcerative colitis has been associated with psychological distress and an aberrant immune response. The immunomodulatory role of systemic cytokines produced during experimental intestinal inflammation in tonic immobility (TI) defensive behavior remains unknown. The present study characterized the TI defensive behavior of guinea pigs subjected to colitis induction at the acute stage and after recovery from intestinal mucosa injury. Moreover, we investigated whether inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-10, and prostaglandins) act on the mesencephalic nucleus, periaqueductal gray matter (PAG). Colitis was induced in guinea pigs by intrarectal administration of acetic acid. The TI defensive behavior, histology, cytokine production, and expression of c-FOS, IBA-1, and cyclooxygenase (COX)-2 in PAG were evaluated. Colitis reduced the duration of TI episodes from the first day, persisting throughout the 7-day experimental period. Neuronal c-FOS immunoreactivity was augmented in both columns of the PAG (ventrolateral (vlPAG) and dorsal), but there were no changes in IBA-1 expression. Dexamethasone, infliximab, and parecoxib treatments increased the duration of TI episodes, suggesting a modulatory role of peripheral inflammatory mediators in this behavior. Immunoneutralization of TNF-α, IL-1β, and IL-8 in the vlPAG reversed all effects produced by colitis. In contrast, IL-10 neutralization further reduced the duration of TI episodes. Our results reveal that peripherally produced inflammatory mediators during colitis may modulate neuronal functioning in mesencephalic structures such as vlPAG.
Collapse
Affiliation(s)
- Leda Menescal-de-Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariulza Rocha Brentegani
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernanda Pincelli Teixeira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Humberto Giusti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Simone Saia
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
2
|
Ostadal B, Kolar F. Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences. Physiol Res 2024; 73:S35-S48. [PMID: 38634652 PMCID: PMC11412335 DOI: 10.33549/physiolres.935337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
Collapse
Affiliation(s)
- B Ostadal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
3
|
Voronkov NS, Popov SV, Naryzhnaya NV, Prasad NR, Petrov IM, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Maslov LN. Effect of Cold Adaptation on the State of Cardiovascular System and Cardiac Tolerance to Ischemia/Reperfusion Injury. IRANIAN BIOMEDICAL JOURNAL 2024; 28:59-70. [PMID: 38770843 PMCID: PMC11186613 DOI: 10.61186/ibj.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/08/2023] [Indexed: 05/22/2024]
Abstract
Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the β2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.
Collapse
Affiliation(s)
- Nikita S. Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
- Department of Physiology, Tomsk State University, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | | | | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
4
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
5
|
Hsu CC, Cheng KC, Li Y, Hsu PH, Cheng JT, Niu HS. TGR5 Expression Is Associated with Changes in the Heart and Urinary Bladder of Rats with Metabolic Syndrome. Life (Basel) 2021; 11:695. [PMID: 34357066 PMCID: PMC8306239 DOI: 10.3390/life11070695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Adipose-derived cytokines may contribute to the inflammation that occurs in metabolic syndrome (MetS). The Takeda G protein-coupled receptor (TGR5) regulates energy expenditure and affects the production of pro-inflammatory biomarkers in metabolic diseases. Etanercept, which acts as a tumor necrosis factor (TNF)-α antagonist, can also block the inflammatory response. Therefore, the interaction between TNF-α and TGR5 expression was investigated in rats with high-fat diet (HFD)-induced obesity. Heart tissues isolated from the HFD-induced MetS rats were analyzed. Changes in TGR5 expression were investigated with lithocholic acid (LCA) as the agonist. Betulinic acid (BA) was used to activate TGR5 in urinary bladders. LCA was more effective in the heart tissues of HFD-fed rats, although etanercept alleviated the function of LCA. STAT3 activation and higher TGR5 expression were observed in the heart tissues collected from HFD-fed rats. Thus, cardiac TGR5 expression is promoted by HFD through STAT3 activation in rats. Moreover, the urinary bladders of female rats fed a HFD showed a low response, which was reversed by etanercept. Relaxation by BA in the bladders was more marked in HFD-fed rats. The high TGR5 expression in HFD-fed rats was characterized using a mRNA assay, and the increased cAMP levels were found to be stimulated by BA in the isolated bladders. Therefore, TGR5 expression increases with a HFD in both the hearts and urinary bladders. Collectively, cytokine-medicated TGR5 activation was observed in the hearts and urinary bladders of rats.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan;
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei City 10341, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy, Tajen University, Pingtung 90741, Taiwan;
- Pharmacological Department of Herbal Medicine, Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, 970302, Taiwan;
| | - Ping-Hao Hsu
- School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, 970302, Taiwan;
| |
Collapse
|
6
|
Vosahlikova M, Roubalova L, Cechova K, Kaufman J, Musil S, Miksik I, Alda M, Svoboda P. Na +/K +-ATPase and lipid peroxidation in forebrain cortex and hippocampus of sleep-deprived rats treated with therapeutic lithium concentration for different periods of time. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109953. [PMID: 32360816 DOI: 10.1016/j.pnpbp.2020.109953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Lithium (Li) is a typical mood stabilizer and the first choice for treatment of bipolar disorder (BD). Despite an extensive clinical use of Li, its mechanisms of action remain widely different and debated. In this work, we studied the time-course of the therapeutic Li effects on ouabain-sensitive Na+/K+-ATPase in forebrain cortex and hippocampus of rats exposed to 3-day sleep deprivation (SD). We also monitored lipid peroxidation as malondialdehyde (MDA) production. In samples of plasma collected from all experimental groups of animals, Li concentrations were followed by ICP-MS. The acute (1 day), short-term (7 days) and chronic (28 days) treatment of rats with Li resulted in large decrease of Na+/K+-ATPase activity in both brain parts. At the same time, SD of control, Li-untreated rats increased Na+/K+-ATPase along with increased production of MDA. The SD-induced increase of Na+/K+-ATPase and MDA was attenuated in Li-treated rats. While SD results in a positive change of Na+/K+-ATPase, the inhibitory effect of Li treatment may be interpreted as a pharmacological mechanism causing a normalization of the stress-induced shift and return the Na+/K+-ATPase back to control level. We conclude that SD alone up-regulates Na+/K+-ATPase together with increased peroxidative damage of lipids. Chronic treatment of rats with Li before SD, protects the brain tissue against this type of damage and decreases Na+/K+-ATPase level back to control level.
Collapse
Affiliation(s)
- Miroslava Vosahlikova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Roubalova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Kristina Cechova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jonas Kaufman
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Musil
- Department of Trace Element Analysis, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Ivan Miksik
- Laboratory of Translation Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Petr Svoboda
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Habib R, Wahdan SA, Gad AM, Azab SS. Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflammation and apoptosis mediators. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109398. [PMID: 31276887 DOI: 10.1016/j.ecoenv.2019.109398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
Cadmium(Cd) is a serious environmental and occupational contaminant that represents a serious health hazard to humans and other animals. Reproductive health problems have been reported in men exposed to Cd. Testicular damage is one of the deleterious effects due to Cd exposure. Cd-induced testicular toxicity is mediated through oxidative stress, inflammation, testosterone inhibition and apoptosis. Thus, the present study was performed to assess the possible protective role of infliximab (IFX), anti-TNFα agent, against Cd-induced testicular damage and spermiotoxicity in rats. The rats were randomly allotted into six experimental groups: control, Cd sulphate treated, Cd sulphate treated with infliximab (5 mg/kg), Cd sulphate with infliximab (7 mg/kg), infliximab alone (5 mg/kg), and infliximab alone (7 mg/kg). The control group received saline. To induce testicular damage, Cd sulphate (1.5 mg/100 gm body weight/day) was dissolved in normal saline and orally administrated for 3 consecutive weeks. The rats in infliximab-treated groups were given a weekly dose of 5 mg/kg/week or 7 mg/kg/week of infliximab intraperitoneally. In the current study Cd exposure reduced sperm count, markers of testicular function, sperm motility as well as gene expression of testicular 3β-HSD and 17β-HSD and serum testosterone level. Additionally, it increased testicular oxidative stress, inflammatory and apoptotic markers. The histopathologic studies supported the biochemical findings. Treatment with infliximab significantly attenuated Cd-induced injury verified by the restoration of testicular architecture, enhancement of steroidogenesis, preservation of spermatogenesis, modulation of the inflammatory reaction along with suppression of oxidative stress and apoptosis. It was concluded that infliximab, through its antioxidant, anti-inflammatory and anti-apoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of Cd.
Collapse
Affiliation(s)
- Raghda Habib
- National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Naryzhnaya N, Khaliulin I, Lishmanov Y, Suleiman M, Tsibulnikov S, Kolar F, Maslov L. Participation of opioid receptors in the cytoprotective effect of chronic normobaric hypoxia. Physiol Res 2019; 68:245-253. [DOI: 10.33549/physiolres.933938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the role of the delta, micro, and kappa opioid receptor (OR) subtypes in the cardioprotective effect of chronic continuous normobaric hypoxia (CNH) in the model of acuteanoxia-reoxygenation of isolated cardiomyocytes. Adaptation of rats to CNH was performed by their exposure to atmosphere containing 12% of O(2) for 21 days. Anoxia-reoxygenation of cardiomyocytes isolated from normoxiccontrol rats caused the death of 51 % of cells and lactate dehydrogenase (LDH) release. Adaptation of rats to CNH resulted in the anoxia/reoxygenation-induced cardiomyocyte death of only 38 %, and reduced the LDH release by 25 %. Pre-incubation of the cells with either the non-selective OR (opioid receptor) blocker naloxone (300 nM/l), the delta OR antagonist TIPP(psi) (30 nM/l), the selective delta(2) OR antagonist naltriben (1 nM/l) or the micro OR antagonist CTAP (100 nM/l) for 25 minutes before anoxia abolished the reduction of cell death and LDH release afforded by CNH. The antagonist of delta(1) OR BNTX (1 nM/l) or the kappa OR antagonist nor-binaltorphimine (3 nM/l) did not influence the cytoprotective effects of CNH. Taken together, the cytoprotective effect of CNH is associated with the activation of the delta(2) and micro OR localized on cardiomyocytes.
Collapse
Affiliation(s)
- N.V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Vosahlikova M, Roubalova L, Ujcikova H, Hlouskova M, Musil S, Alda M, Svoboda P. Na+/K+-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28 days); studies of Jurkat and HEK293 cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:785-799. [DOI: 10.1007/s00210-019-01631-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
|
10
|
Tranexamic Acid Does Not Influence Cardioprotection by Ischemic Preconditioning and Remote Ischemic Preconditioning. Anesth Analg 2018; 126:439-442. [PMID: 28678070 DOI: 10.1213/ane.0000000000002230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prior studies have suggested that the antifibrinolytic drug aprotinin increases the infarct size after ischemia and reperfusion (I/R) and attenuates the effect of ischemic preconditioning (IPC). Aprotinin was replaced by tranexamic acid (TXA) in clinical practice. Here, we investigated whether TXA influences I/R injury and/or cardioprotection initiated by IPC and/or remote ischemic preconditioning (RIPC). Anesthetized male Wistar rats were randomized to 6 groups. Control animals were not further treated. Administration of TXA was combined with and without IPC and RIPC. Estimated treatment effect was 20%. Compared to control group (56% ± 11%), IPC reduced infarct size by 46% (30% ± 6%; mean difference, 26%; 95% confidence interval, 19-33; P < .0001), and RIPC reduced infarct size by 29% (40% ± 8%; mean difference, 16%; 95% confidence interval, 9-24; P < .011). Additional application of TXA had no effect on I/R injury and cardioprotection by IPC or RIPC. TXA does not abolish infarct size reduction by IPC or RIPC.
Collapse
|
11
|
Vosahlikova M, Ujcikova H, Hlouskova M, Musil S, Roubalova L, Alda M, Svoboda P. Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function. Biochem Pharmacol 2018; 154:452-463. [DOI: 10.1016/j.bcp.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|
12
|
Hahnova K, Brabcova I, Neckar J, Weissova R, Svatonova A, Novakova O, Zurmanova J, Kalous M, Silhavy J, Pravenec M, Kolar F, Novotny J. β-Adrenergic signaling, monoamine oxidase A and antioxidant defence in the myocardium of SHR and SHR-mtBN conplastic rat strains: the effect of chronic hypoxia. J Physiol Sci 2018; 68:441-454. [PMID: 28567570 PMCID: PMC10717553 DOI: 10.1007/s12576-017-0546-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2017] [Indexed: 01/24/2023]
Abstract
The β-adrenergic signaling pathways and antioxidant defence mechanisms play important roles in maintaining proper heart function. Here, we examined the effect of chronic normobaric hypoxia (CNH, 10% O2, 3 weeks) on myocardial β-adrenergic signaling and selected components of the antioxidant system in spontaneously hypertensive rats (SHR) and in a conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischemia-resistant Brown Norway strain. Our investigations revealed some intriguing differences between the two strains at the level of β-adrenergic receptors (β-ARs), activity of adenylyl cyclase (AC) and monoamine oxidase A (MAO-A), as well as distinct changes after CNH exposure. The β2-AR/β1-AR ratio was significantly higher in SHR-mtBN than in SHR, apparently due to increased expression of β2-ARs. Adaptation to hypoxia elevated β2-ARs in SHR and decreased the total number of β-ARs in SHR-mtBN. In parallel, the ability of isoprenaline to stimulate AC activity was found to be higher in SHR-mtBN than that in SHR. Interestingly, the activity of MAO-A was notably lower in SHR-mtBN than in SHR, and it was markedly elevated in both strains after exposure to hypoxia. In addition to that, CNH markedly enhanced the expression of catalase and aldehyde dehydrogenase-2 in both strains, and decreased the expression of Cu/Zn superoxide dismutase in SHR. Adaptation to CNH intensified oxidative stress to a similar extent in both strains and elevated the IL-10/TNF-α ratio in SHR-mtBN only. These data indicate that alterations in the mitochondrial genome can result in peculiar changes in myocardial β-adrenergic signaling, MAO-A activity and antioxidant defence and may, thus, affect the adaptive responses to hypoxia.
Collapse
Affiliation(s)
- Klara Hahnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iveta Brabcova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Weissova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Svatonova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kalous
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Silhavy
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
13
|
Bimodal Function of Anti-TNF Treatment: Shall We Be Concerned about Anti-TNF Treatment in Patients with Rheumatoid Arthritis and Heart Failure? Int J Mol Sci 2018; 19:ijms19061739. [PMID: 29895751 PMCID: PMC6032136 DOI: 10.3390/ijms19061739] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022] Open
Abstract
Treatment with anti-TNF-α (tumor necrosis factor), one of the pivotal cytokines, was introduced to clinical practice at the end of last century and revolutionized the treatment of rheumatoid arthritis (RA) as well as many other inflammatory conditions. Such a treatment may however bring many safety issues regarding infections, tuberculosis, as well as cardiovascular diseases, including heart failure. Given the central role of proinflammatory cytokines in RA, atherosclerosis, and congestive heart failure (CHF), such a treatment might result in better control of the RA process on the one side and improvement of heart function on the other. Unfortunately, at the beginning of this century two randomized controlled trials failed to show any benefit of anti-TNF treatment in patients with heart failure (HF), suggesting direct negative impact of the treatment on morbidity and mortality in HF patients. As a result the anti-TNF treatment is contraindicated in all patients with heart failure and a substantial portion of patients with RA and impaired heart function are not able to benefit from the treatment. The role of TNF in CHF and RA differs substantially with regard to the source and pathophysiological function of the cytokine in both conditions, therefore negative data from CHF studies should be interpreted with caution. At least some of RA patients with heart failure may benefit from anti-TNF treatment, as it results not only in the reduction of inflammation but also contributes significantly to the improvement of cardiac function. The paper addresses the epidemiological data of safety of anti-TNF treatment in RA patients with the special emphasis to basic pathophysiological mechanisms via which TNF may act differently in both diseases.
Collapse
|
14
|
Míčová P, Klevstig M, Holzerová K, Vecka M, Žurmanová J, Neckář J, Kolář F, Nováková O, Novotný J, Hlaváčková M. Antioxidant tempol suppresses heart cytosolic phospholipase A2α stimulated by chronic intermittent hypoxia. Can J Physiol Pharmacol 2017; 95:920-927. [DOI: 10.1139/cjpp-2017-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adaptation to chronic intermittent hypoxia (CIH) is associated with reactive oxygen species (ROS) generation implicated in the improved cardiac tolerance against acute ischemia–reperfusion injury. Phospholipases A2(PLA2s) play an important role in cardiomyocyte phospholipid metabolism influencing membrane homeostasis. Here we aimed to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2(cPLA2α), its phosphorylated form (p-cPLA2α), calcium-independent (iPLA2), and secretory (sPLA2IIA) at protein and mRNA levels, as well as fatty acids (FA) profile in left ventricular myocardium of adult male Wistar rats. Chronic administration of antioxidant tempol was used to verify the ROS involvement in CIH effect on PLA2s expression and phospholipid FA remodeling. While CIH did not affect PLA2s mRNA levels, it increased the total cPLA2α protein in cytosol and membranes (by 191% and 38%, respectively) and p-cPLA2α (by 23%) in membranes. On the contrary, both iPLA2and sPLA2IIA were downregulated by CIH. CIH further decreased phospholipid n-6 polyunsaturated FA (PUFA) and increased n-3 PUFA proportion. Tempol treatment prevented only CIH-induced cPLA2α up-regulation and its phosphorylation on Ser505. Our results show that CIH diversely affect myocardial PLA2s and suggest that ROS are responsible for the activation of cPLA2α under these conditions.
Collapse
Affiliation(s)
- Petra Míčová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Klevstig
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristýna Holzerová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General Teaching Hospital in Prague, Czech Republic
| | - Jitka Žurmanová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Nováková
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Markéta Hlaváčková
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Affiliation(s)
- S. Reuter
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - R. Mrowka
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
16
|
Persson PB, Bondke Persson A. Altitude sickness and altitude adaptation. Acta Physiol (Oxf) 2017; 220:303-306. [PMID: 28498559 DOI: 10.1111/apha.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | | |
Collapse
|
17
|
Alánová P, Chytilová A, Neckář J, Hrdlička J, Míčová P, Holzerová K, Hlaváčková M, Macháčková K, Papoušek F, Vašinová J, Benák D, Nováková O, Kolář F. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol (1985) 2017; 122:1452-1461. [DOI: 10.1152/japplphysiol.00671.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic hypoxia and exercise are natural stimuli that confer sustainable cardioprotection against ischemia-reperfusion (I/R) injury, but it is unknown whether they can act in synergy to enhance ischemic resistance. Inflammatory response mediated by tumor necrosis factor-α (TNF-α) plays a role in the infarct size limitation by continuous normobaric hypoxia (CNH), whereas exercise is associated with anti-inflammatory effects. This study was conducted to determine if exercise training performed under conditions of CNH (12% O2) affects myocardial ischemic resistance with respect to inflammatory and redox status. Adult male Wistar rats were assigned to one of the following groups: normoxic sedentary, normoxic trained, hypoxic sedentary, and hypoxic trained. ELISA and Western blot analysis, respectively, were used to quantify myocardial cytokines and the expression of TNF-α receptors, nuclear factor-κB (NF-κB), and selected components of related signaling pathways. Infarct size and arrhythmias were assessed in open-chest rats subjected to I/R. CNH increased TNF-α and interleukin-6 levels and the expression of TNF-α type 2 receptor, NF-κB, inducible nitric oxide synthase (iNOS), cytosolic phospholipase A2α, cyclooxygenase-2, manganese superoxide dismutase (MnSOD), and catalase. None of these effects occurred in the normoxic trained group, whereas exercise in hypoxia abolished or significantly attenuated CNH-induced responses, except for NF-κB, iNOS, and MnSOD. Both CNH and exercise reduced infarct size, but their combination provided the same degree of protection as CNH alone. In conclusion, exercise training does not amplify the cardioprotection conferred by CNH. High ischemic tolerance of the CNH hearts persists after exercise, possibly by maintaining the increased antioxidant capacity despite attenuating TNF-α-dependent protective signaling. NEW & NOTEWORTHY Chronic hypoxia and regular exercise are natural stimuli that confer sustainable myocardial protection against acute ischemia-reperfusion injury. Signaling mediated by TNF-α via its type 2 receptor plays a role in the cardioprotective mechanism of chronic hypoxia. In the present study, we found that exercise training of rats during adaptation to hypoxia does not amplify the infarct size-limiting effect. Ischemia-resistant phenotype is maintained in the combined hypoxia-exercise setting despite exercise-induced attenuation of TNF-α-dependent protective signaling.
Collapse
Affiliation(s)
- Petra Alánová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Anna Chytilová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Petra Míčová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Kristýna Holzerová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Markéta Hlaváčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Kristýna Macháčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jana Vašinová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Daniel Benák
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Olga Nováková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - František Kolář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| |
Collapse
|
18
|
Adameova A, Hrdlicka J, Szobi A, Farkasova V, Kopaskova K, Murarikova M, Neckar J, Kolar F, Ravingerova T, Dhalla NS. Evidence of necroptosis in hearts subjected to various forms of ischemic insults. Can J Physiol Pharmacol 2017; 95:1163-1169. [PMID: 28472590 DOI: 10.1139/cjpp-2016-0609] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-lasting ischemia can result in cell loss; however, repeated episodes of brief ischemia increase the resistance of the heart against deleterious effects of subsequent prolonged ischemic insult and promote cell survival. Traditionally, it is believed that the supply of blood to the ischemic heart is associated with release of cytokines, activation of inflammatory response, and induction of necrotic cell death. In the past few years, this paradigm of passive necrosis as an uncontrolled cell death has been re-examined and the existence of a strictly regulated form of necrotic cell death, necroptosis, has been documented. This controlled cell death modality, resembling all morphological features of necrosis, has been investigated in different types of ischemia-associated heart injuries. The process of necroptosis has been found to be dependent on the activation of RIP1-RIP3-MLKL axis, which induces changes leading to the rupture of cell membrane. This pathway is activated by TNF-α, which has also been implicated in the cardioprotective signaling pathway of ischemic preconditioning. Thus, this review is intended to describe the TNF-α-mediated signaling leading to either cell survival or necroptotic cell death. In addition, some experimental data suggesting a link between heart dysfunction and the cellular loss due to necroptosis are discussed in various conditions of myocardial ischemia.
Collapse
Affiliation(s)
- Adriana Adameova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
| | - Jaroslav Hrdlicka
- b Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Adrian Szobi
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
| | - Veronika Farkasova
- c Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence, SAS NOREG, Bratislava, Slovak Republic
| | - Katarina Kopaskova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
| | - Martina Murarikova
- c Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence, SAS NOREG, Bratislava, Slovak Republic
| | - Jan Neckar
- b Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- b Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tatiana Ravingerova
- c Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence, SAS NOREG, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- d Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
19
|
Persson PB, Persson AB. Vitamin supplementation. Acta Physiol (Oxf) 2017; 219:537-539. [PMID: 28103422 DOI: 10.1111/apha.12850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P B Persson
- Institute of Vegetative Physiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - A B Persson
- Charité-Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Micova P, Hahnova K, Hlavackova M, Elsnicova B, Chytilova A, Holzerova K, Zurmanova J, Neckar J, Kolar F, Novakova O, Novotny J. Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Mol Cell Biochem 2016; 423:151-163. [DOI: 10.1007/s11010-016-2833-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 11/30/2022]
|
21
|
Hrdlička J, Neckář J, Papoušek F, Vašinová J, Alánová P, Kolář F. Beneficial effect of continuous normobaric hypoxia on ventricular dilatation in rats with post-infarction heart failure. Physiol Res 2016; 65:867-870. [PMID: 27429114 DOI: 10.33549/physiolres.933308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adaptation to continuous normobaric hypoxia (CNH) protects the heart against ischemia/reperfusion injury but much less is known about its potential therapeutic effects. The aim of this study was to find out whether post-infarction exposure to CNH can attenuate the progression of heart failure. Ten-week-old male rats underwent myocardial infarction (MI) or sham operation. MI was induced by 60-min coronary artery occlusion. Seven days post-MI, the rats were randomly assigned to two groups: i) sedentary controls kept at room air and ii) rats exposed to CNH (12 % O(2), 3 weeks). Echocardiographic examination of the left ventricle (LV) was performed 3 days before surgery and 7, 14 and 28 days post-MI. MI resulted in a gradual increase in LV end-diastolic diameter (LVD(d)) compared to sham-operated animals. Fractional shortening (FS) decreased from 42.8 % before MI to 15.1 % on day 28 post-MI. CNH significantly attenuated ventricular dilatation without affecting scar area and FS. Our data suggest that prolonged exposure to CNH has certain potential to attenuate the progression of unfavorable changes in ventricular geometry induced by MI in rats.
Collapse
Affiliation(s)
- J Hrdlička
- Department of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - A. Zakrisson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|