1
|
Wang P, Zheng L, Yang Y, Yue X, Liu J, Fan K, Zhou H, Dong H. AQP1 Affects Necroptosis by Targeting RIPK1 in Endothelial Cells of Atherosclerosis. Vasc Health Risk Manag 2025; 21:139-152. [PMID: 40129682 PMCID: PMC11932119 DOI: 10.2147/vhrm.s487327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/01/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose Aquaporin 1 (AQP1), a transmembrane water channel protein, has been implicated in the regulation of necroptosis. However, its specific role in atherosclerotic plaque stability through the modulation of necroptosis remains unclear. Therefore, in this study, we aim to investigate whether AQP1 influences necroptosis in atherosclerosis by binding to receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and decreasing the expression of receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). Patients and Methods The gene expression of AQP1 and necroptosis-associated genes significantly differ between atherosclerosis and normal groups. Genes linked to necroptosis were screened to influence the AS identified by weighted gene coexpression network analysis (WGCNA). Then we collected femoral atherosclerosis and normal aortic samples, further conducted single-cell sequencing and spatial transcriptomic methods to confirm the potential function and pathway of AQP1 in endothelial cells. Meanwhile, we overexpressed AQP1 in ox-LDL-treated endothelial cells in vitro. Results Firstly, via single-sample Gene Set Enrichment Analysis (ssGSEA) scores, we found that necroptosis plays the most important role among all ways of programmed cell death in two kinds of atherosclerosis. AQP1, RIPK1, RIPK3 and MLKL express differently in normal and atherosclerosis tissue by differentially expressed gene (DEG) analysis and Western Blot (WB). WGCNA analysis indicates that AQP1, MLKL and RIPK3 were significantly related to the AS. The area under the curve of the above hub genes was greater than 0.8 (AQP1 0.946, RIPK1 0.908, RIPK3 0.988, MLKL 0.863). We found AQP1 highly enriched in endothelial cells (ECs) by single-cell analysis. We sequenced the samples by spatial transcriptome and found that AQP1 was also mainly enriched in ECs both in expression and spatial location. With AQP1 overexpression in ECs, it significantly inhibited the expression of MLKL and RIPK3 and stimulated EC proliferation. Conclusion Our study identified that AQP1 suppresses atherosclerotic necroptosis by inhibiting the expression of RIPK3 and MLKL in ECs which might indicates that AQP1 plays a role in atherosclerosis. This new mechanism contributes to improving the diagnostic, prognostic, and therapeutic outcomes of atherosclerosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Lin Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yusi Yang
- Department of Cardiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
| | - Xinyang Yue
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jie Liu
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Keyi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Haonan Zhou
- Department of Vascular Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
2
|
Sheng C, Zeng Q, Huang W, Liao M, Yang P. Identification of abdominal aortic aneurysm subtypes based on mechanosensitive genes. PLoS One 2024; 19:e0296729. [PMID: 38335213 PMCID: PMC10857568 DOI: 10.1371/journal.pone.0296729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Rupture of abdominal aortic aneurysm (rAAA) is a fatal event in the elderly. Elevated blood pressure and weakening of vessel wall strength are major risk factors for this devastating event. This present study examined whether the expression profile of mechanosensitive genes correlates with the phenotype and outcome, thus, serving as a biomarker for AAA development. METHODS In this study, we identified mechanosensitive genes involved in AAA development using general bioinformatics methods and machine learning with six human datasets publicly available from the GEO database. Differentially expressed mechanosensitive genes (DEMGs) in AAAs were identified by differential expression analysis. Molecular biological functions of genes were explored using functional clustering, Protein-protein interaction (PPI), and weighted gene co-expression network analysis (WGCNA). According to the datasets (GSE98278, GSE205071 and GSE165470), the changes of diameter and aortic wall strength of AAA induced by DEMGs were verified by consensus clustering analysis, machine learning models, and statistical analysis. In addition, a model for identifying AAA subtypes was built using machine learning methods. RESULTS 38 DEMGs clustered in pathways regulating 'Smooth muscle cell biology' and 'Cell or Tissue connectivity'. By analyzing the GSE205071 and GSE165470 datasets, DEMGs were found to respond to differences in aneurysm diameter and vessel wall strength. Thus, in the merged datasets, we formally created subgroups of AAAs and found differences in immune characteristics between the subgroups. Finally, a model that accurately predicts the AAA subtype that is more likely to rupture was successfully developed. CONCLUSION We identified 38 DEMGs that may be involved in AAA. This gene cluster is involved in regulating the maximum vessel diameter, degree of immunoinflammatory infiltration, and strength of the local vessel wall in AAA. The prognostic model we developed can accurately identify the AAA subtypes that tend to rupture.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zeng
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mingmei Liao
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Xiao J, Wei Z, Yang C, Dai S, Wang X, Shang Y. The gut microbiota in experimental abdominal aortic aneurysm. Front Cardiovasc Med 2023; 10:1051648. [PMID: 36910527 PMCID: PMC9992639 DOI: 10.3389/fcvm.2023.1051648] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a life-threatening disease and there are no effective treatments to inhibit aneurysm progression and rupture. The gut microbiota has been increasingly recognized, as a new therapeutic target, because of its role in host homeostasis. However, the role of the gut microbiota in AAA has not been clarified. Therefore, we performed 16S rRNA analysis to determine and compare the composition of the gut microbiota between AAA and control groups. Methods We used the classical angiotensin-II induced AAA mouse model to investigate the role of gut microbiota and abdominal aortic aneurysm. The mice were randomly assigned to 2 groups: the control (n = 7) group received saline (vehicle), while the AAA (n = 13) group received solutions of Ang II. Aortic tissue and fecal samples were harvested 28 days after infusion. Fecal samples were analyzed by 16S rRNA sequencing. Results The levels of Oscillospira, Coprococcus, Faecalibacterium prausnitzii, Alistipes massiliensis, and Ruminococcus gnavus were increased in the AAA group, while those of Akkermansia muciniphila, Allobaculum, and Barnesiella intestinihominis were increased in the control group. Furthermore, network analysis and ZiPi score assessment highlighted species in the phylum Bacteroidetes as the keystone species. PICRUSt2 analysis revealed that PWY-6629 (a super pathway of L-tryptophan biosynthesis), PWY-7446 (sulfoglycolysis), and PWY-6165 [chorismate biosynthesis II (archaea)] may-be involved in the metabolic pathways that contribute to AAA formation, and E. coli/Shigella may be the key bacteria that influence those three pathways. Conclusion Alterations in the gut microbiota may be associated with the formation of AAA. Akkermansia and Lactobacillus were significantly decreased in the AAA group, but the keystone species in the phylum Bacteroidetes and the metabolic products of these bacteria should be given more attention in AAA formation research.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanjie Wei
- Department of General Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanlei Yang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Shilin Dai
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Xiancan Wang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqiang Shang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Sun M, Li L. Identification of Biomarkers Associated with Heart Failure Caused by Idiopathic Dilated Cardiomyopathy Using WGCNA and Machine Learning Algorithms. Int J Genomics 2023; 2023:2250772. [PMID: 37143707 PMCID: PMC10154102 DOI: 10.1155/2023/2250772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Background The genetic factors and pathogenesis of idiopathic dilated cardiomyopathy-induced heart failure (IDCM-HF) have not been understood thoroughly; there is a lack of specific diagnostic markers and treatment methods for the disease. Hence, we aimed to identify the mechanisms of action at the molecular level and potential molecular markers for this disease. Methods Gene expression profiles of IDCM-HF and non-heart failure (NF) specimens were acquired from the database of Gene Expression Omnibus (GEO). We then identified the differentially expressed genes (DEGs) and analyzed their functions and related pathways by using "Metascape". Weighted gene co-expression network analysis (WGCNA) was utilized to search for key module genes. Candidate genes were identified by intersecting the key module genes identified via WGCNA with DEGs and further screened via the support vector machine-recursive feature elimination (SVM-RFE) method and the least absolute shrinkage and selection operator (LASSO) algorithm. At last, the biomarkers were validated and evaluated the diagnostic efficacy by the area under curve (AUC) value and further confirmed the differential expression in the IDCM-HF and NF groups using an external database. Results We detected 490 genes exhibiting differential expression between IDCM-HF and NF specimens from the GSE57338 dataset, with most of them being concentrated in the extracellular matrix (ECM) of cells related to biological processes and pathways. After screening, 13 candidate genes were identified. Aquaporin 3 (AQP3) and cytochrome P450 2J2 (CYP2J2) showed high diagnostic efficacy in the GSE57338 and GSE6406 datasets, respectively. In comparison to the NF group, AQP3 was significantly down-regulated in the IDCM-HF group, while CYP2J2 was significantly up-regulated. Conclusion As far as we know, this is the first study that combines WGCNA and machine learning algorithms to screen for potential biomarkers of IDCM-HF. Our findings suggest that AQP3 and CYP2J2 could be used as novel diagnostic markers and treatment targets of IDCM-HF.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Clinical Laboratory, Jining First People′s Hospital, Jining, Shandong, China
| | - Linping Li
- Institute of Cardiovascular Diseases of Jining Medical Research Academy, Jining First People′s Hospital, Jining, Shandong, China
| |
Collapse
|
5
|
Griepke S, Grupe E, Lindholt JS, Fuglsang EH, Steffensen LB, Beck HC, Larsen MD, Bang-Møller SK, Overgaard M, Rasmussen LM, Lambertsen KL, Stubbe J. Selective inhibition of soluble tumor necrosis factor signaling reduces abdominal aortic aneurysm progression. Front Cardiovasc Med 2022; 9:942342. [PMID: 36186984 PMCID: PMC9523116 DOI: 10.3389/fcvm.2022.942342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tumor necrosis factor (TNF) is pathologically elevated in human abdominal aortic aneurysms (AAA). Non-selective TNF inhibition-based therapeutics are approved for human use but have been linked to several side effects. Compounds that target the proinflammatory soluble form of TNF (solTNF) but preserve the immunomodulatory capabilities of the transmembrane form of TNF (tmTNF) may prevent these side effects. We hypothesize that inhibition of solTNF signaling prevents AAA expansion. Methods The effect of the selective solTNF inhibitor, XPro1595, and the non-selective TNF inhibitor, Etanercept (ETN) was examined in porcine pancreatic elastase (PPE) induced AAA mice, and findings with XPro1595 was confirmed in angiotensin II (ANGII) induced AAA in hyperlipidemic apolipoprotein E (Apoe) -/- mice. Results XPro1595 treatment significantly reduced AAA expansion in both models, and a similar trend (p = 0.06) was observed in PPE-induced AAA in ETN-treated mice. In the PPE aneurysm wall, XPro1595 improved elastin integrity scores. In aneurysms, mean TNFR1 levels reduced non-significantly (p = 0.07) by 50% after TNF inhibition, but the histological location in murine AAAs was unaffected and similar to that in human AAAs. Semi-quantification of infiltrating leucocytes, macrophages, T-cells, and neutrophils in the aneurysm wall were unaffected by TNF inhibition. XPro1595 increased systemic TNF levels, while ETN increased systemic IL-10 levels. In ANGII-induced AAA mice, XPro1595 increased systemic TNF and IL-5 levels. In early AAA development, proteomic analyses revealed that XPro1595 significantly upregulated ontology terms including "platelet aggregation" and "coagulation" related to the fibrinogen complex, from which several proteins were among the top regulated proteins. Downregulated ontology terms were associated with metabolic processes. Conclusion In conclusion, selective inhibition of solTNF signaling reduced aneurysm expansion in mice, supporting its potential as an attractive treatment option for AAA patients.
Collapse
Affiliation(s)
- Silke Griepke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Emilie Grupe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jes Sanddal Lindholt
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Elizabeth Hvitfeldt Fuglsang
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lasse Bach Steffensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mia Dupont Larsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sissel Karoline Bang-Møller
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Overgaard
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Shangzu Z, Dingxiong X, ChengJun M, Yan C, Yangyang L, Zhiwei L, Ting Z, Zhiming M, Yiming Z, Liying Z, Yongqi L. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol Res 2022; 183:106363. [PMID: 35905892 DOI: 10.1016/j.phrs.2022.106363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Xie Dingxiong
- Gansu Institute of Cardiovascular Diseases, LanZhou,China
| | - Ma ChengJun
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Liu Zhiwei
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhou Ting
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Yiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of traditional Chinese Medicine, LanZhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou,China.
| | - Liu Yongqi
- Gansu University of traditional Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
7
|
Melin LG, Dall JH, Lindholt JS, Steffensen LB, Beck HC, Elkrog SL, Clausen PD, Rasmussen LM, Stubbe J. Cycloastragenol Inhibits Experimental Abdominal Aortic Aneurysm Progression. Biomedicines 2022; 10:biomedicines10020359. [PMID: 35203568 PMCID: PMC8962318 DOI: 10.3390/biomedicines10020359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm involves vascular inflammation and elastin degradation. Astragalusradix contains cycloastragenol, which is known to be anti-inflammatory and to protect against elastin degradation. We hypothesized that cycloastragenol supplementation inhibits abdominal aortic aneurysm progression. Abdominal aortic aneurysm was induced in male rats by intraluminal elastase infusion in the infrarenal aorta and treated daily with cycloastragenol (125 mg/kg/day). Aortic expansion was followed weekly by ultrasound for 28 days. Changes in aneurysmal wall composition were analyzed by mRNA levels, histology, zymography and explorative proteomic analyses. At day 28, mean aneurysm diameter was 37% lower in the cycloastragenol group (p < 0.0001). In aneurysm cross sections, elastin content was insignificantly higher in the cycloastragenol group (10.5% ± 5.9% vs. 19.9% ± 16.8%, p = 0.20), with more preserved elastin lamellae structures (p = 0.0003) and without microcalcifications. Aneurysmal matrix metalloprotease-2 activity was reduced by the treatment (p = 0.022). Messenger RNA levels of inflammatory- and anti-oxidative markers did not differ between groups. Explorative proteomic analysis showed no difference in protein levels when adjusting for multiple testing. Among proteins displaying nominal regulation were fibulin-5 (p = 0.02), aquaporin-1 (p = 0.02) and prostacyclin synthase (p = 0.007). Cycloastragenol inhibits experimental abdominal aortic aneurysm progression. The suggested underlying mechanisms involve decreased matrix metalloprotease-2 activity and preservation of elastin and reduced calcification, thus, cycloastragenol could be considered for trial in abdominal aortic aneurysm patients.
Collapse
Affiliation(s)
- Leander Gaarde Melin
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Julie Husted Dall
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Jes S. Lindholt
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Lasse B. Steffensen
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Hans Christian Beck
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark
| | - Sophie L. Elkrog
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Pernille D. Clausen
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Lars Melholt Rasmussen
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark
| | - Jane Stubbe
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
- Correspondence: ; Tel.: +45-6550-3709
| |
Collapse
|
8
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
9
|
Kim J, Mansouri K. Impaired/dysfunctional aqueous collector channels may primarily contribute to the pathogenesis of primary open-angle glaucoma. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Roy-Chowdhury E, Brauns N, Helmke A, Nordlohne J, Bräsen JH, Schmitz J, Volkmann J, Fleig SV, Kusche-Vihrog K, Haller H, von Vietinghoff S. Human CD16+ monocytes promote a pro-atherosclerotic endothelial cell phenotype via CX3CR1-CX3CL1 interaction. Cardiovasc Res 2021; 117:1510-1522. [PMID: 32717023 DOI: 10.1093/cvr/cvaa234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
AIMS Monocytes are central for atherosclerotic vascular inflammation. The human non-classical, patrolling subtype, which expresses high levels of CD16 and fractalkine receptor CX3CR1, strongly associates with cardiovascular events. This is most marked in renal failure, a condition with excess atherosclerosis morbidity. The underlying mechanism is not understood. This study investigated how human CD16+ monocytes modulate endothelial cell function. METHODS AND RESULTS In patients with kidney failure, CD16+ monocyte counts were elevated and dynamically decreased within a year after transplantation, chiefly due to a drop in CD14+CD16+ cells. The CX3CR1 ligand CX3CL1 was similarly elevated in the circulation of humans and mice with renal impairment. CX3CL1 up-regulation was also observed close to macrophage rich human coronary artery plaques. To investigate a mechanistic basis of this association, CD16+CX3CR1HIGH monocytes were co-incubated with primary human endothelium in vitro. Compared to classical CD14+ monocytes or transwell cocultures, CD16+ monocytes enhanced endothelial STAT1 and NF-κB p65 phosphorylation, up-regulated expression of CX3CL1 and interleukin-1β, numerous CCL and CXCL chemokines and molecules promoting leucocyte patrolling and adhesion such as ICAM1 and VCAM1. Genes required for vasodilatation including endothelial nitric oxide synthase decreased while endothelial collagen production increased. Uraemic patients' monocytes enhanced endothelial CX3CL1 even more markedly. Their receptor CX3CR1 was required for enhanced aortic endothelial stiffness in murine atherosclerosis with renal impairment. CX3CR1 dose-dependently modulated monocyte-contact-dependent gene expression in human endothelium. CONCLUSION By demonstrating endothelial proatherosclerotic gene regulation in direct contact with CD16+ monocytes, in part via cellular CX3CR1-CX3CL1 interaction, our data delineate a mechanism how this celltype can increase cardiovascular risk.
Collapse
Affiliation(s)
- Eva Roy-Chowdhury
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Nicolas Brauns
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Alexandra Helmke
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Johannes Nordlohne
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | - Jessica Schmitz
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Julia Volkmann
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Susanne V Fleig
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | - Hermann Haller
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Sibylle von Vietinghoff
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| |
Collapse
|
11
|
da Silva IV, Whalen CA, Mattie FJ, Florindo C, Huang NK, Heil SG, Neuberger T, Ross AC, Soveral G, Castro R. An Atherogenic Diet Disturbs Aquaporin 5 Expression in Liver and Adipocyte Tissues of Apolipoprotein E-Deficient Mice: New Insights into an Old Model of Experimental Atherosclerosis. Biomedicines 2021; 9:150. [PMID: 33557105 PMCID: PMC7913888 DOI: 10.3390/biomedicines9020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes recently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE-/-) mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE-/- mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented an exacerbated systemic inflammation and atherosclerotic phenotype, with no major differences in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an overexpression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis that warrants further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sandra G. Heil
- Department of Clinical Chemistry, Medical Center Rotterdam, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Rita Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|
12
|
Nuche J, Palomino-Doza J, Ynsaurriaga FA, Delgado JF, Ibáñez B, Oliver E, Subías PE. Potential Molecular Pathways Related to Pulmonary Artery Aneurysm Development: Lessons to Learn from the Aorta. Int J Mol Sci 2020; 21:ijms21072509. [PMID: 32260370 PMCID: PMC7177585 DOI: 10.3390/ijms21072509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease caused by pulmonary vascular remodeling. Current vasodilator treatments have substantially improved patients’ survival. This improved survival has led to the appearance of complications related to conditions previously underdiagnosed or even ignored, such as pulmonary artery aneurysm (PAA). The presence of a dilated pulmonary artery has been shown to be related to an increased risk of sudden cardiac death among PAH patients. This increased risk could be associated to the development of left main coronary artery compression or pulmonary artery dissection. Nevertheless, very little is currently known about the molecular mechanisms related to PAA. Thoracic aortic aneurysm (TAA) is a well-known condition with an increased risk of sudden death caused by acute aortic dissection. TAA may be secondary to chronic exposure to classic cardiovascular risk factors. In addition, a number of genetic variants have been shown to be related to a marked risk of TAA and dissection as part of multisystemic syndromes or isolated familial TAA. The molecular pathways implied in the development of TAA have been widely studied and described. Many of these molecular pathways are involved in the pathogenesis of PAH and could be involved in PAA. This review aims to describe all these common pathways to open new research lines that could help lead to a better understanding of the pathophysiology of PAH and PAA and their clinical implications.
Collapse
Affiliation(s)
- Jorge Nuche
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julián Palomino-Doza
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Fernando Arribas Ynsaurriaga
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan F. Delgado
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Borja Ibáñez
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: (E.O.); (P.E.S.)
| | - Pilar Escribano Subías
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (E.O.); (P.E.S.)
| |
Collapse
|
13
|
Hua Y, Ying X, Qian Y, Liu H, Lan Y, Xie A, Zhu X. Physiological and pathological impact of AQP1 knockout in mice. Biosci Rep 2019; 39:BSR20182303. [PMID: 31023968 PMCID: PMC6522737 DOI: 10.1042/bsr20182303] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
Aquaporin 1 (AQP1) is a glycoprotein responsible for water passive transport quickly across biological membrane. Here, we reviewed the structural and functional impacts of AQP1 knockout (AQP1-KO) in animal or cell culture models. AQP1 gene deletion can cause a large number of abnormalities including the disturbance in epithelial fluid secretion, polyhydramnios, deficiency of urinary concentrating function, and impairment of pain perception. AQP1-KO mice also displayed aberrations of cardiovascular, gastrointestinal and hepatobiliary, and kidney functions as well as placenta and embryo development. Moreover, AQP1-KO perturbed tumor angiogenesis and led to reduced brain injury upon trauma. On the cellular level, AQP1-KO caused neuroinflammation, aberrant cell proliferation and migration, and macrophages infiltration. Mechanistic studies confirmed that AQP1 gene products regulate the secretory function and participated in balancing the osmotic water flux across the peritoneal membrane. The available data indicated that AQP1 might serve as a potential target for developing novel therapeutic approaches against diverse human diseases.
Collapse
Affiliation(s)
- Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinxin Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yiyu Qian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haibin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yehui Lan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ailan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
14
|
Affiliation(s)
- Pontus B. Persson
- Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin; and Berlin Institute of Health; Institute of Vegetative Physiology; Berlin Germany
- Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin; and Berlin Institute of Health; Berlin Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin; and Berlin Institute of Health; Institute of Vegetative Physiology; Berlin Germany
- Charité - Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin; and Berlin Institute of Health; Berlin Germany
| |
Collapse
|
15
|
Persson PB, Persson AB. Light and darkness in circadian rhythms. Acta Physiol (Oxf) 2018; 222. [PMID: 29337434 DOI: 10.1111/apha.13036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- P. B. Persson
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Physiology; Berlin Germany
| | - A. Bondke Persson
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| |
Collapse
|
16
|
Zietzer A, Werner N, Jansen F. Regulatory mechanisms of microRNA sorting into extracellular vesicles. Acta Physiol (Oxf) 2018; 222. [PMID: 29253314 DOI: 10.1111/apha.13018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- A. Zietzer
- Department of Internal Medicine II; University Hospital Bonn; Bonn Germany
| | - N. Werner
- Department of Internal Medicine II; University Hospital Bonn; Bonn Germany
| | - F. Jansen
- Department of Internal Medicine II; University Hospital Bonn; Bonn Germany
| |
Collapse
|
17
|
Endothelial Aquaporins and Hypomethylation: Potential Implications for Atherosclerosis and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19010130. [PMID: 29301341 PMCID: PMC5796079 DOI: 10.3390/ijms19010130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol permeation through cell membranes. Recently, the water channel AQP1 was suggested to contribute to endothelial homeostasis and cardiovascular health. Less is known about endothelial aquaglyceroporins expression and its implication in cardiovascular disease (CVD). We have previously used cultured human endothelial cells under a hypomethylating environment to study endothelial dysfunction and activation, a phenotype implicated in the establishment of atherosclerosis and CVD. Here, we used the same cell model to investigate aquaporin’s expression and function in healthy or pro-atherogenic phenotype. We first confirmed key features of endothelium dysfunction and activation in our cell model, including an augmented endothelial transmigration under hypomethylation. Subsequently, we found AQP1 and AQP3 to be the most predominant AQPs accounting for water and glycerol fluxes, respectively, in the healthy endothelium. Moreover, endothelial hypomethylation led to decreased levels of AQP1 and impaired water permeability without affecting AQP3 and glycerol permeability. Furthermore, TNF-α treatment-induced AQP1 downregulation suggesting that the inflammatory NF-κB signaling pathway mediates AQP1 transcriptional repression in a pro-atherogenic endothelium, a possibility that warrants further investigation. In conclusion, our results add further support to AQP1 as a candidate player in the setting of endothelial dysfunction and CVD.
Collapse
|
18
|
Direct visualization of the arterial wall water permeability barrier using CARS microscopy. Proc Natl Acad Sci U S A 2017; 114:4805-4810. [PMID: 28373558 DOI: 10.1073/pnas.1620008114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies.
Collapse
|