1
|
Homilius C, Seefeldt JM, Hansen J, Nielsen R, de Paoli FV, Boedtkjer E. Lactate orchestrates metabolic hemodynamic adaptations through a unique combination of venocontraction, artery relaxation, and positive inotropy. Acta Physiol (Oxf) 2025; 241:e70037. [PMID: 40167405 PMCID: PMC11960580 DOI: 10.1111/apha.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
AIM H+ facilitates metabolic blood flow regulation while negatively impacting cardiac contractility. Cardiovascular consequences of conjugate bases accumulating alongside H+ remain unclear. Here, we evaluate the cardiovascular effects of nine prominent carboxylates-particularly lactate, 3-hydroxybutyrate, and butyrate-linked to metabolic and microbial activity. METHODS Comparing the actions of pH-adjusted Na-carboxylates to equiosmolar NaCl, we study arteries and veins isolated from healthy rats and humans with ischaemic heart disease, isolated perfused rat hearts, and rat cardiovascular function in vivo. RESULTS The tested carboxylates generally relax arteries and veins. L-lactate relaxes human and rat arteries up to 70% (EC50 = 10.1 mM) and rat brachial and mesenteric veins up to 30% of pre-contractions, yet stands out by augmenting contractions of rat femoral, saphenous, and lateral marginal veins and human internal thoracic and great saphenous veins up to 50%. D-lactate shows only minor actions. In isolated perfused hearts, 10 mM L-lactate increases coronary flow (17.1 ± 7.7%) and left ventricular developed pressure (10.1 ± 3.0%) without affecting heart rate. L-lactate infusion in rats-reaching 3.7 ± 0.3 mM in the circulation-increases left ventricular end-diastolic volume (11.3 ± 2.8%), stroke volume (22.6 ± 3.0%), cardiac output (23.4 ± 3.5%), and ejection fraction (10.6 ± 2.0%), and lowers systemic vascular resistance (34.1 ± 3.7%) without influencing blood pressure or heart rate. The ketone body 3-hydroxybutyrate causes lactate accumulation and elevates left ventricular end-diastolic volume in vivo. CONCLUSION Carboxylate metabolites generally relax arteries and veins. L-lactate relaxes arteries, lowering systemic vascular resistance, causes preferential venocontraction with increased ventricular diastolic filling, and elevates cardiac contractility and cardiac output. We propose that L-lactate optimizes cardiovascular function during metabolic disturbances.
Collapse
Affiliation(s)
| | - Jacob M. Seefeldt
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Jakob Hansen
- Department of Forensic MedicineAarhus UniversityAarhusDenmark
| | - Roni Nielsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Frank V. de Paoli
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Cardiothoracic and Vascular SurgeryAarhus University HospitalAarhusDenmark
| | | |
Collapse
|
2
|
Aaen P, Kristensen KB, Antony A, Hansen SH, Cornett C, Pedersen SF, Boedtkjer E. Na +/H +-exchange inhibition by cariporide is compensated via Na +,HCO 3--cotransport and has no net growth consequences for ErbB2-driven breast carcinomas. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167450. [PMID: 39111631 DOI: 10.1016/j.bbadis.2024.167450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Defense against intracellular acidification of breast cancer tissue depends on net acid extrusion via Na+,HCO3--cotransporter NBCn1/Slc4a7 and Na+/H+-exchanger NHE1/Slc9a1. NBCn1 is increasingly recognized as breast cancer susceptibility protein and promising therapeutic target, whereas evidence for targeting NHE1 is discordant. Currently, selective small molecule inhibitors exist against NHE1 but not NBCn1. Cellular assays-with some discrepancies-link NHE1 activity to proliferation, migration, and invasion; and disrupted NHE1 expression can reduce triple-negative breast cancer growth. Studies on human breast cancer tissue associate high NHE1 expression with reduced metastasis and-in some molecular subtypes-improved patient survival. Here, we evaluate Na+/H+-exchange and therapeutic potential of the NHE1 inhibitor cariporide/HOE-642 in murine ErbB2-driven breast cancer. Ex vivo, cariporide inhibits net acid extrusion in breast cancer tissue (IC50 = 0.18 μM) and causes small decreases in steady-state intracellular pH (pHi). In vivo, we deliver cariporide orally, by osmotic minipumps, and by intra- and peritumoral injections to address the low oral bioavailability and fast metabolism. Prolonged cariporide administration in vivo upregulates NBCn1 expression, shifts pHi regulation towards CO2/HCO3--dependent mechanisms, and shows no net effect on the growth rate of ErbB2-driven primary breast carcinomas. Cariporide also does not influence proliferation markers in breast cancer tissue. Oral, but not parenteral, cariporide elevates serum glucose by ∼1.5 mM. In conclusion, acute administration of cariporide ex vivo powerfully inhibits net acid extrusion from breast cancer tissue but lowers steady-state pHi minimally. Prolonged cariporide administration in vivo is compensated via NBCn1 and we observe no discernible effect on growth of ErbB2-driven breast carcinomas.
Collapse
Affiliation(s)
- Pernille Aaen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Arththy Antony
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steen H Hansen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Axelsen TV, Olesen C, Khan D, Mohammadi A, Bouzinova EV, Nielsen CJF, Mele M, Hauerslev KR, Pedersen HL, Balling E, Vahl P, Tramm T, Christiansen PM, Boedtkjer E. Antibodies toward Na +,HCO 3--cotransporter NBCn1/SLC4A7 block net acid extrusion and cause pH-dependent growth inhibition and apoptosis in breast cancer. Br J Cancer 2024; 130:1206-1220. [PMID: 38310186 PMCID: PMC10991555 DOI: 10.1038/s41416-024-02591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Na+,HCO3--cotransporter NBCn1/Slc4a7 accelerates murine breast carcinogenesis. Lack of specific pharmacological tools previously restricted therapeutic targeting of NBCn1 and identification of NBCn1-dependent functions in human breast cancer. METHODS We develop extracellularly-targeted anti-NBCn1 antibodies, screen for functional activity on cells, and evaluate (a) mechanisms of intracellular pH regulation in human primary breast carcinomas, (b) proliferation, cell death, and tumor growth consequences of NBCn1 in triple-negative breast cancer, and (c) association of NBCn1-mediated Na+,HCO3--cotransport with human breast cancer metastasis. RESULTS We identify high-affinity (KD ≈ 0.14 nM) anti-NBCn1 antibodies that block human NBCn1-mediated Na+,HCO3--cotransport in cells, without cross-reactivity towards human NBCe1 or murine NBCn1. These anti-NBCn1 antibodies abolish Na+,HCO3--cotransport activity in freshly isolated primary organoids from human breast carcinomas and lower net acid extrusion effectively in primary breast cancer tissue from patients with macrometastases in axillary lymph nodes. Inhibitory anti-NBCn1 antibodies decelerate tumor growth in vivo by ~50% in a patient-derived xenograft model of triple-negative breast cancer and pH-dependently reduce colony formation, cause G2/M-phase cell cycle accumulation, and increase apoptosis of metastatic triple-negative breast cancer cells in vitro. CONCLUSIONS Inhibitory anti-NBCn1 antibodies block net acid extrusion in human breast cancer tissue, particularly from patients with disseminated disease, and pH-dependently limit triple-negative breast cancer growth.
Collapse
Affiliation(s)
- Trine V Axelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Claus Olesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Danish Khan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ali Mohammadi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Marco Mele
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Katrine R Hauerslev
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Helene L Pedersen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Eva Balling
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peer M Christiansen
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Boedtkjer E, Ara T. Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024; 476:623-637. [PMID: 38383822 DOI: 10.1007/s00424-024-02926-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Acids and their conjugate bases accumulate in or dissipate from the interstitial space when tissue perfusion does not match the metabolic demand. Extracellular acidosis dilates most arterial beds, but associated acid-base disturbances-e.g., intracellular acidification and decreases in HCO3- concentration-can also elicit pro-contractile influences that diminish vasodilation and even dominate in some vascular beds to cause vasoconstriction. The ensemble activities of the acid-base-sensitive reactions in vascular smooth muscle and endothelial cells optimize vascular resistance for blood pressure control and direct the perfusion towards active tissue. In this review, we describe the mechanisms of intracellular pH regulation in the vascular wall and discuss how vascular smooth muscle and endothelial cells sense acid-base disturbances. We further deliberate on the functional effects of local acid-base disturbances and their integrated cardiovascular consequences under physiological and pathophysiological conditions. Finally, we address how mutations and polymorphisms in the molecular machinery that regulates pH locally and senses acid-base disturbances in the vascular wall can result in cardiovascular disease. Based on the emerging molecular insight, we propose that targeting local pH-dependent effectors-rather than systemic acid-base disturbances-has therapeutic potential to interfere with the progression and reduce the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark.
| | - Tarannum Ara
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark
| |
Collapse
|
5
|
Pedersen SHF. Acid-base transporters in the context of tumor heterogeneity. Pflugers Arch 2024; 476:689-701. [PMID: 38332178 DOI: 10.1007/s00424-024-02918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
The copious metabolic acid production and -extrusion by cancer cells render poorly vascularized regions of solid tumors highly acidic. A growing list of proton - and bicarbonate transporters has been suggested to contribute to net acid extrusion from cancer cells, and/or been shown to be dysregulated and favor malignant development in various cancers. The great majority of these roles have been studied at the level of the cancer cells. However, recent advances in understanding of the cellular and physicochemical heterogeneity of solid tumors both enable and necessitate a reexamination of the regulation and roles of acid-base transporters in such malignancies. This review will briefly summarize the state-of-the-art, with a focus on the SLC9A and SLC4A families, for which most evidence is available. This is followed by a discussion of key concepts and open questions arising from recent insights and of the challenges that need to be tackled to address them. Finally, opportunities and challenges in therapeutic targeting of the acid-base transportome in cancers will be addressed.
Collapse
Affiliation(s)
- Stine Helene Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
7
|
Lee S, Toft NJ, Axelsen TV, Espejo MS, Pedersen TM, Mele M, Pedersen HL, Balling E, Johansen T, Burton M, Thomassen M, Vahl P, Christiansen P, Boedtkjer E. Carbonic anhydrases reduce the acidity of the tumor microenvironment, promote immune infiltration, decelerate tumor growth, and improve survival in ErbB2/HER2-enriched breast cancer. Breast Cancer Res 2023; 25:46. [PMID: 37098526 PMCID: PMC10127511 DOI: 10.1186/s13058-023-01644-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Carbonic anhydrases catalyze CO2/HCO3- buffer reactions with implications for effective H+ mobility, pH dynamics, and cellular acid-base sensing. Yet, the integrated consequences of carbonic anhydrases for cancer and stromal cell functions, their interactions, and patient prognosis are not yet clear. METHODS We combine (a) bioinformatic analyses of human proteomic data and bulk and single-cell transcriptomic data coupled to clinicopathologic and prognostic information; (b) ex vivo experimental studies of gene expression in breast tissue based on quantitative reverse transcription and polymerase chain reactions, intracellular and extracellular pH recordings based on fluorescence confocal microscopy, and immunohistochemical protein identification in human and murine breast cancer biopsies; and (c) in vivo tumor size measurements, pH-sensitive microelectrode recordings, and microdialysis-based metabolite analyses in mice with experimentally induced breast carcinomas. RESULTS Carbonic anhydrases-particularly the extracellular isoforms CA4, CA6, CA9, CA12, and CA14-undergo potent expression changes during human and murine breast carcinogenesis. In patients with basal-like/triple-negative breast cancer, elevated expression of the extracellular carbonic anhydrases negatively predicts survival, whereas, surprisingly, the extracellular carbonic anhydrases positively predict patient survival in HER2/ErbB2-enriched breast cancer. Carbonic anhydrase inhibition attenuates cellular net acid extrusion and extracellular H+ elimination from diffusion-restricted to peripheral and well-perfused regions of human and murine breast cancer tissue. Supplied in vivo, the carbonic anhydrase inhibitor acetazolamide acidifies the microenvironment of ErbB2-induced murine breast carcinomas, limits tumor immune infiltration (CD3+ T cells, CD19+ B cells, F4/80+ macrophages), lowers inflammatory cytokine (Il1a, Il1b, Il6) and transcription factor (Nfkb1) expression, and accelerates tumor growth. Supporting the immunomodulatory influences of carbonic anhydrases, patient survival benefits associated with high extracellular carbonic anhydrase expression in HER2-enriched breast carcinomas depend on the tumor inflammatory profile. Acetazolamide lowers lactate levels in breast tissue and blood without influencing breast tumor perfusion, suggesting that carbonic anhydrase inhibition lowers fermentative glycolysis. CONCLUSIONS We conclude that carbonic anhydrases (a) elevate pH in breast carcinomas by accelerating net H+ elimination from cancer cells and across the interstitial space and (b) raise immune infiltration and inflammation in ErbB2/HER2-driven breast carcinomas, restricting tumor growth and improving patient survival.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Nicolai J Toft
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Maria Sofia Espejo
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Tina M Pedersen
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Marco Mele
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Helene L Pedersen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Eva Balling
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Tonje Johansen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
- Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
- Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Peer Christiansen
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Toft NJ, Axelsen TV, Pedersen HL, Mele M, Burton M, Balling E, Johansen T, Thomassen M, Christiansen PM, Boedtkjer E. Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival. eLife 2021; 10:68447. [PMID: 34219652 PMCID: PMC8282339 DOI: 10.7554/elife.68447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer heterogeneity in histology and molecular subtype influences metabolic and proliferative activity and hence the acid load on cancer cells. We hypothesized that acid-base transporters and intracellular pH (pHi) dynamics contribute inter-individual variability in breast cancer aggressiveness and prognosis. We show that Na+,HCO3- cotransport and Na+/H+ exchange dominate cellular net acid extrusion in human breast carcinomas. Na+/H+ exchange elevates pHi preferentially in estrogen receptor-negative breast carcinomas, whereas Na+,HCO3- cotransport raises pHi more in invasive lobular than ductal breast carcinomas and in higher malignancy grade breast cancer. HER2-positive breast carcinomas have elevated protein expression of Na+/H+ exchanger NHE1/SLC9A1 and Na+,HCO3- cotransporter NBCn1/SLC4A7. Increased dependency on Na+,HCO3- cotransport associates with severe breast cancer: enlarged CO2/HCO3--dependent rises in pHi predict accelerated cell proliferation, whereas enhanced CO2/HCO3--dependent net acid extrusion, elevated NBCn1 protein expression, and reduced NHE1 protein expression predict lymph node metastasis. Accordingly, we observe reduced survival for patients suffering from luminal A or basal-like/triple-negative breast cancer with high SLC4A7 and/or low SLC9A1 mRNA expression. We conclude that the molecular mechanisms of acid-base regulation depend on clinicopathological characteristics of breast cancer patients. NBCn1 expression and dependency on Na+,HCO3- cotransport for pHi regulation, measured in biopsies of human primary breast carcinomas, independently predict proliferative activity, lymph node metastasis, and patient survival.
Collapse
Affiliation(s)
- Nicolai J Toft
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Helene L Pedersen
- Department of Pathology, Regionshospitalet Randers, Randers, Denmark
| | - Marco Mele
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Eva Balling
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark
| | - Tonje Johansen
- Department of Pathology, Regionshospitalet Randers, Randers, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Peer M Christiansen
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark.,Department of Plastic and Breast Surgery, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Olsen JSM, Svendsen S, Berg P, Dam VS, Sorensen MV, Matchkov VV, Leipziger J, Boedtkjer E. NBCn1 Increases NH 4 + Reabsorption Across Thick Ascending Limbs, the Capacity for Urinary NH 4 + Excretion, and Early Recovery from Metabolic Acidosis. J Am Soc Nephrol 2021; 32:852-865. [PMID: 33414245 PMCID: PMC8017549 DOI: 10.1681/asn.2019060613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The electroneutral Na+/HCO3 - cotransporter NBCn1 (Slc4a7) is expressed in basolateral membranes of renal medullary thick ascending limbs (mTALs). However, direct evidence that NBCn1 contributes to acid-base handling in mTALs, urinary net acid excretion, and systemic acid-base homeostasis has been lacking. METHODS Metabolic acidosis was induced in wild-type and NBCn1 knockout mice. Fluorescence-based intracellular pH recordings were performed and NH4 + transport measured in isolated perfused mTALs. Quantitative RT-PCR and immunoblotting were used to evaluate NBCn1 expression. Tissue [NH4 +] was measured in renal biopsies, NH4 + excretion and titratable acid quantified in spot urine, and arterial blood gasses evaluated in normoventilated mice. RESULTS Basolateral Na+/HCO3 - cotransport activity was similar in isolated perfused mTALs from wild-type and NBCn1 knockout mice under control conditions. During metabolic acidosis, basolateral Na+/HCO3 - cotransport activity increased four-fold in mTALs from wild-type mice, but remained unchanged in mTALs from NBCn1 knockout mice. Correspondingly, NBCn1 protein expression in wild-type mice increased ten-fold in the inner stripe of renal outer medulla during metabolic acidosis. During systemic acid loading, knockout of NBCn1 inhibited the net NH4 + reabsorption across mTALs by approximately 60%, abolished the renal corticomedullary NH4 + gradient, reduced the capacity for urinary NH4 + excretion by approximately 50%, and delayed recovery of arterial blood pH and standard [HCO3 -] from their initial decline. CONCLUSIONS During metabolic acidosis, NBCn1 is required for the upregulated basolateral HCO3 - uptake and transepithelial NH4 + reabsorption in mTALs, renal medullary NH4 + accumulation, urinary NH4 + excretion, and early recovery of arterial blood pH and standard [HCO3 -]. These findings support that NBCn1 facilitates urinary net acid excretion by neutralizing intracellular H+ released during NH4 + reabsorption across mTALs.
Collapse
Affiliation(s)
| | - Samuel Svendsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peder Berg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S. Dam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Targeting the Acidic Tumor Microenvironment: Unexpected Pro-Neoplastic Effects of Oral NaHCO 3 Therapy in Murine Breast Tissue. Cancers (Basel) 2020; 12:cancers12040891. [PMID: 32268614 PMCID: PMC7226235 DOI: 10.3390/cancers12040891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
The acidic tumor microenvironment modifies malignant cell behavior. Here, we study consequences of the microenvironment in breast carcinomas. Beginning at carcinogen-based breast cancer induction, we supply either regular or NaHCO3-containing drinking water to female C57BL/6j mice. We evaluate urine and blood acid-base status, tumor metabolism (microdialysis sampling), and tumor pH (pH-sensitive microelectrodes) in vivo. Based on freshly isolated epithelial organoids from breast carcinomas and normal breast tissue, we assess protein expression (immunoblotting, mass spectrometry), intracellular pH (fluorescence microscopy), and cell proliferation (bromodeoxyuridine incorporation). Oral NaHCO3 therapy increases breast tumor pH in vivo from 6.68 ± 0.04 to 7.04 ± 0.09 and intracellular pH in breast epithelial organoids by ~0.15. Breast tumors develop with median latency of 85.5 ± 8.2 days in NaHCO3-treated mice vs. 82 ± 7.5 days in control mice. Oral NaHCO3 therapy does not affect tumor growth, histopathology or glycolytic metabolism. The capacity for cellular net acid extrusion is increased in NaHCO3-treated mice and correlates negatively with breast tumor latency. Oral NaHCO3 therapy elevates proliferative activity in organoids from breast carcinomas. Changes in protein expression patterns-observed by high-throughput proteomics analyses-between cancer and normal breast tissue and in response to oral NaHCO3 therapy reveal complex influences on metabolism, cytoskeleton, cell-cell and cell-matrix interaction, and cell signaling pathways. We conclude that oral NaHCO3 therapy neutralizes the microenvironment of breast carcinomas, elevates the cellular net acid extrusion capacity, and accelerates proliferation without net effect on breast cancer development or tumor growth. We demonstrate unexpected pro-neoplastic consequences of oral NaHCO3 therapy that in breast tissue cancel out previously reported anti-neoplastic effects.
Collapse
|
12
|
Salameh A, Zöbisch H, Schröder B, Vigelahn J, Jahn M, Abraham G, Seeger J, Dähnert I, Dhein S. Effects of Hypoxia and Acidosis on Cardiac Electrophysiology and Hemodynamics. Is NHE-Inhibition by Cariporide Still Advantageous? Front Physiol 2020; 11:224. [PMID: 32265732 PMCID: PMC7103633 DOI: 10.3389/fphys.2020.00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxia often leads to severe cardiac malfunctions. It is assumed that intracellular calcium overload is -inter alia- responsible for left ventricular (LV) deterioration. Inhibition of the sodium-proton exchanger (NHE), which finally inhibits/slows calcium overload, may ameliorate cardiac function. Our aim was to evaluate cariporide, an inhibitor of NHE1 in a Langendorff-perfused heart model. To discriminate a potentially different impact of extracellular acidosis and hypoxia we examined 48 Chinchilla Bastard rabbits divided into 8 experimental groups: control group (pH = 7.4, O2 = 100%) without or with cariporide (1 μM), acidosis group (pH = 7.0, O2 = 100%) without or with cariporide (1 μM), hypoxia group (pH = 7.4, O2 = 40%) without or with cariporide (1 μM) and hypoxia+acidosis group (pH = 7.0, O2 = 40%) without or with cariporide (1 μM). Hearts were subjected to acidotic/hypoxic conditions for 90 min followed by 60 min of reperfusion. Hypoxia and hypoxia+acidosis led to a severe deterioration of LV function with a decrease in LV pressure by about 70% and an increase of end-diastolic pressure from 6.7 ± 0.6 to 36.8 ± 5.4 (hypoxia) or from 7.0 ± 0.2 to 18.6 ± 4.1 (hypoxia+acidosis). Moreover, maximum contraction velocity decreased from about 1,800 mmHg/s to 600 mmHg/s during hypoxia ± acidosis and maximum relaxation velocity deteriorated from −1,500 mmHg/s to about −600 mmHg/s. During reperfusion hearts subjected to hypoxia+acidosis recovered faster than hearts subjected to hypoxia alone, reaching control levels after 5 min of reperfusion. Electrophysiologic analysis revealed an 1.2 fold increase in both dispersion of activation-recovery interval and in total activation time in the hypoxia ± acidosis group. Cariporide application significantly improved LV hemodynamics and electrophysiology in the hypoxia group but not in the group subjected to hypoxia+acidosis. Immunohistologic analysis of cardiac specimen revealed a significant increase of factors involved in hypoxia/reperfusion injury like nitrotyrosine and poly-ADP-ribose as well as apoptosis-inducing factors like AIF or cleaved-caspase 3 in LV after hypoxia ± acidosis. ATP was reduced by hypoxia but not by acidosis. Again, cariporide mitigated these processes only in the hypoxia alone group, but not in the group with additional acidosis. Acidosis without hypoxia only marginally disturbed LV function and electrophysiology, and was not affected by cariporide. Thus, our study demonstrated that several detrimental effects of hypoxia were mitigated or abrogated by acidosis and that NHE-inhibition improved only hypoxia-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Aida Salameh
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Helena Zöbisch
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Bianca Schröder
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Jonas Vigelahn
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Mandy Jahn
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Getu Abraham
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Ingo Dähnert
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Stefan Dhein
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
14
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Persson PB. Upcoming Acta Physiologica Award of US$ 100,000.00. Acta Physiol (Oxf) 2019; 227:e13369. [PMID: 31446678 DOI: 10.1111/apha.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Pontus B Persson
- Charité- Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Physiology, Berlin, Germany
| |
Collapse
|
16
|
|
17
|
Voss NCS, Kold-Petersen H, Boedtkjer E. Enhanced nitric oxide signaling amplifies vasorelaxation of human colon cancer feed arteries. Am J Physiol Heart Circ Physiol 2019; 316:H245-H254. [DOI: 10.1152/ajpheart.00368.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inadequate perfusion of solid cancer tissue results in low local nutrient and oxygen levels and accumulation of acidic waste products. Previous investigations have focused primarily on tumor blood vessel architecture, and we lack information concerning functional differences between arteries that deliver blood to solid cancer tissue versus normal tissue. Here, we use isometric myography to study resistance-sized arteries from human primary colon adenocarcinomas and matched normal colon tissue. Vasocontraction of colon cancer feed arteries in response to endothelin-1 and thromboxane stimulation is attenuated compared with normal colon arteries despite similar wall dimensions and comparable contractions to arginine vasopressin and K+-induced depolarization. Acetylcholine-induced vasorelaxation and endothelial NO synthase expression are increased in colon cancer feed arteries compared with normal colon arteries, whereas vasorelaxation to exogenous NO donors is unaffected. In congruence, the differences in vasorelaxant and vasocontractile function between colon cancer feed arteries and normal colon arteries decrease after NO synthase inhibition. Rhythmic oscillations in vascular tone, known as vasomotion, are of lower amplitude but similar frequency in colon cancer feed arteries compared with normal colon arteries. In conclusion, higher NO synthase expression and elevated NO signaling amplify vasorelaxation and attenuate vasocontraction of human colon cancer feed arteries. We propose that enhanced endothelial function augments tumor perfusion and represents a potential therapeutic target. NEW & NOTEWORTHY Local vascular resistance influences tumor perfusion. Arteries supplying human colonic adenocarcinomas show enhanced vasorelaxation and reduced vasocontraction mainly due to elevated nitric oxide-mediated signaling. Rhythmic oscillations in tone, known as vasomotion, are attenuated in colon cancer feed arteries.
Collapse
Affiliation(s)
- Ninna C. S. Voss
- Research Unit, Regional Hospital Randers, Randers, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Boedtkjer E. Acid-base regulation and sensing: Accelerators and brakes in metabolic regulation of cerebrovascular tone. J Cereb Blood Flow Metab 2018; 38:588-602. [PMID: 28984162 PMCID: PMC5888856 DOI: 10.1177/0271678x17733868] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
Abstract
Metabolic regulation of cerebrovascular tone directs blood flow to areas of increased neuronal activity and during disease states partially compensates for insufficient perfusion by enhancing blood flow in collateral blood vessels. Acid-base disturbances frequently occur as result of enhanced metabolism or insufficient blood supply, but despite definitive evidence that acid-base disturbances alter arterial tone, effects of individual acid-base equivalents and the underlying signaling mechanisms are still being debated. H+ is an important intra- and extracellular messenger that modifies cerebrovascular tone. In addition, low extracellular [HCO3-] promotes cerebrovascular contraction through an endothelium-dependent mechanism. CO2 alters arterial tone development via changes in intra- and extracellular pH but it is still controversial whether CO2 also has direct vasomotor effects. Vasocontractile responses to low extracellular [HCO3-] and acute CO2-induced decreases in intracellular pH can counteract H+-mediated vasorelaxation during metabolic and respiratory acidosis, respectively, and may thereby reduce the risk of capillary damage and cerebral edema that could be consequences of unopposed vasodilation. In this review, the signaling mechanisms for acid-base equivalents in cerebral arteries and the mechanisms of intracellular pH control in the arterial wall are discussed in the context of metabolic regulation of cerebrovascular tone and local perfusion.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Nilsson H. In defence of pH. Acta Physiol (Oxf) 2017; 221:90-92. [PMID: 28429884 DOI: 10.1111/apha.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- H Nilsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|