1
|
Viguier C, Bullich S, Botella M, Fasseu L, Alfonso A, Rekik K, Gauzin S, Guiard BP, Davezac N. Impact of physical activity on brain oxidative metabolism and intrinsic capacities in young swiss mice fed a high fat diet. Neuropharmacology 2023; 241:109730. [PMID: 37758019 DOI: 10.1016/j.neuropharm.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Type 2 diabetes and obesity characterized by hallmarks of insulin resistance along with an imbalance in brain oxidative metabolism would impair intrinsic capacities (ICs), a new concept for assessing mental and physical functioning. Here, we explored the impact of physical activity on antioxidant responses and oxidative metabolism in discrete brain areas of HFD or standard diet (STD) fed mice but also its consequences on specific domains of ICs. 6-week-old Swiss male mice were exposed to a STD or a HFD for 16 weeks and half of the mice in each group had access to an activity wheel and the other half did not. As expected HFD mice displayed peripheral insulin resistance but also a persistent inhibition of aconitase activity in cortices revealing an increase in mitochondrial reactive oxygen species (ROS) production. Animals with access to the running wheel displayed an improvement of insulin sensitivity regardless of the diet factor whereas ROS production remained impaired. Moreover, although the access of the running wheel did not influence mitochondrial biomass, in the oxidative metabolism area, it produced a slight decrease in brain SOD1 and catalase expression notably in HFD fed mice. At the behavioural level, physical exercise produced anxiolytic/antidepressant-like responses and improved motor coordination in both STD and HFD fed mice. However, this non-pharmacological intervention failed to enhance cognitive performance. These findings paint a contrasting landscape about physical exercise as a non-pharmacological intervention for positively orienting the aging trajectory.
Collapse
Affiliation(s)
- Clémence Viguier
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Sébastien Bullich
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Marlene Botella
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Laure Fasseu
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Amélie Alfonso
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Khaoula Rekik
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Sébastien Gauzin
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Bruno P Guiard
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France.
| | - Noélie Davezac
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France.
| |
Collapse
|
2
|
Kirschner KM. Open research data - Expectations and limitations. Acta Physiol (Oxf) 2022; 236:e13900. [PMID: 36269606 DOI: 10.1111/apha.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Karin M Kirschner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| |
Collapse
|
3
|
Proteomics Reveals Long-Term Alterations in Signaling and Metabolic Pathways Following Both Myocardial Infarction and Chemically Induced Denervation. Neurochem Res 2022; 47:2416-2430. [PMID: 35716295 DOI: 10.1007/s11064-022-03636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Myocardial infraction (MI) is the principal risk factor for the onset of heart failure (HF). Investigations regarding the physiopathology of MI progression to HF have revealed the concerted engagement of other tissues, such as the autonomic nervous system and the medulla oblongata (MO), giving rise to systemic effects, important in the regulation of heart function. Cardiac sympathetic afferent denervation following application of resiniferatoxin (RTX) attenuates cardiac remodelling and restores cardiac function following MI. While the physiological responses are well documented in numerous species, the underlying molecular responses during the initiation and progression from MI to HF remains unclear. We obtained multi-tissue time course proteomics with a murine model of HF induced by MI in conjunction with RTX application. We isolated tissue sections from the left ventricle (LV), MO, cervical spinal cord and cervical vagal nerves at four time points over a 12-week study. Bioinformatic analyses consistently revealed a high statistical enrichment for metabolic pathways in all tissues and treatments, implicating a central role of mitochondria in the tissue-cellular response to both MI and RTX. In fact, the additional functional pathways found to be enriched in these tissues, involving the cytoskeleton, vesicles and signal transduction, could be downstream of responses initiated by mitochondria due to changes in neuronal pulse frequency after a shock such as MI or the modification of such frequency communication from the heart to the brain after RTX application. Development of future experiments, based on our proteomic results, should enable the dissection of more precise mechanisms whereby metabolic changes in neuronal and cardiac tissues can effectively ameliorate the negative physiological effects of MI via RTX application.
Collapse
|
4
|
Persson PB, Persson AB. Illuminating physiology. Acta Physiol (Oxf) 2022; 235:e13814. [PMID: 35322561 DOI: 10.1111/apha.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Pontus B. Persson
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin Institute of Vegetative Physiology Berlin Germany
| | - Anja B. Persson
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
5
|
Sun Y, Wang Z, Wang C, Tang Z, Zhao H. Psycho-cardiology therapeutic effects of Shuangxinfang in rats with depression-behavior post acute myocardial infarction: Focus on protein S100A9 from proteomics. Biomed Pharmacother 2021; 144:112303. [PMID: 34673424 DOI: 10.1016/j.biopha.2021.112303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Depressive disorders induced by acute myocardial infarction (AMI) play a pivotal role in the deterioration of cardiac function, and Shuangxinfang (Psycho-cardiology Formula, PCF) was reported to alleviate heart function damage and improve depression-like behavior, but the complex mechanism in such process has not been clarified. METHODS AMI models were established and PCF was administered in rats. Subjects were then assessed in open field test (OFT) and forced swimming test (FST) recapitulating symptoms of depressive disorder. Afterward, pharmacoproteomic profiling of the hippocampus and peri-infarct border zone (BZ) was performed using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique, to identify contributing proteins and pathways responsible for myocardial ischemia and behavioral allostasis. Bioinformatics analysis was processed for further investigation, while western blotting was employed for testing dominating proteins to validate proteomic results. RESULTS Rats in the AMI group showed depression-like behavior in OFT and FST, which was improved by PCF. There were 131 differentially expressed proteins (DEPs) in BZ and 64 proteins in the hippocampus being detected and quantified shared by the sham group, the AMI group, and the PCF group. Subsequently, pertinent pathways and molecular functions were further identified. Altered molecules were discovered to be enriched in the apoptotic process, innate immune response, and NF-κB transcription factor activity in BZ, as well as chemical synaptic transmission, axon, collagen binding, cell adhesion, response to carbohydrate, laminin binding, and cellular response to nitric oxide in the hippocampus. Groups of signal transducers were also able to select multiple pathways, including innate immunity and arginine biosynthesis in the heart, also integrin signaling in the brain. DEPs were intersected from the myocardium and hippocampus to screen out the protein S100A9, which was up-regulated in the AMI group compared with the sham, and showed a down-regulation trend after treatment with PCF. CONCLUSION Taken together, we present a comprehensive proteomics analysis of rat models with depression post-AMI. Reviewing the literatures concerned, it's hypothesized that macrophage/microglia inflammation mediated by S100A9 might be the pivotal pathogenic process of psycho-cardiology disease, as well as potential mechanisms for the treatment of PCF.
Collapse
Affiliation(s)
- Yize Sun
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zheyi Wang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuoran Tang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haibin Zhao
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
6
|
Salem JB, Nkambeu B, Arvanitis DN, Beaudry F. Resiniferatoxin Hampers the Nocifensive Response of Caenorhabditis elegans to Noxious Heat, and Pathway Analysis Revealed that the Wnt Signaling Pathway is Involved. Neurochem Res 2021; 47:622-633. [PMID: 34694534 DOI: 10.1007/s11064-021-03471-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Resiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat (32 - 35 °C). The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.
Collapse
Affiliation(s)
- Jennifer Ben Salem
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.,Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Université de Toulouse, Toulouse, France
| | - Bruno Nkambeu
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Dina N Arvanitis
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Université de Toulouse, Toulouse, France
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada. .,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|