1
|
Wahl L, Rau S, Dawczynski CA, Lorkowski S, Ulrich R, Blüher M, Vervuert I. Type of diet has no major influence on inflammatory response in a Saddleback pig model. Sci Rep 2025; 15:8381. [PMID: 40069546 PMCID: PMC11897318 DOI: 10.1038/s41598-025-92420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Fermentable carbohydrates and resulting short-chain fatty acids (SCFAs) received attention via modifying potential on obesity-associated systemic low-grade inflammation. However, their effects on inflammation remain poorly understood. In this study, the anti-inflammatory properties of pectin or inulin supplementation were investigated in an atherogenic-fed pig obesity model. Pigs were divided into three atherogenic-fed groups with or without 5% pectin/inulin supplementation (AD, ADp, ADi, n = 10) and a conventional-fed group (CD, n = 10) for a 15-week feeding period. We demonstrated that faecal SCFA concentrations decreased and faecal pH increased in all groups over the feeding period (P < 0.05). SCFA concentrations were comparable between colon and faeces in all groups. Liver inflammatory-marker expressions were on average < 1 in all groups, except TNF-α (AD < CD and ADi; P < 0.01). Inflammatory-marker expressions in abdominal adipose tissue exceeded subcutaneous marker expressions in all groups. AD showed significantly lower IL-1β and CD68 mRNA levels than CD (P < 0.03). Comparing the atherogenic diet groups, the IL-1β mRNA levels were higher in ADi versus AD and ADp (P = 0.02). Our data indicated that fermentable carbohydrates added to an atherogenic diet cannot resolve low-grade adipose tissue inflammatory associated with obesity.
Collapse
Affiliation(s)
- Lisa Wahl
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Jena, Germany
| | - Susanne Rau
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Christine A Dawczynski
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Jena, Germany
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Jena, Germany
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at Leipzig University and University Hospital Leipzig, Leipzig, Germany
| | - Ingrid Vervuert
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany.
| |
Collapse
|
2
|
Cosier DJ, Lambert K, Neale EP, Probst Y, Charlton K. The effect of oral synbiotics on the gut microbiota and inflammatory biomarkers in healthy adults: a systematic review and meta-analysis. Nutr Rev 2025; 83:e4-e24. [PMID: 38341803 DOI: 10.1093/nutrit/nuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024] Open
Abstract
CONTEXT Prior research has explored the effect of synbiotics, the combination of probiotics and prebiotics, on the gut microbiota in clinical populations. However, evidence related to the effect of synbiotics on the gut microbiota in healthy adults has not been reviewed to date. OBJECTIVE A systematic review and meta-analysis was conducted to comprehensively investigate the effect of synbiotics on the gut microbiota and inflammatory markers in populations of healthy adults. DATA SOURCES Scopus, PubMed, Web of Science, ScienceDirect, MEDLINE, CINAHL, and The Cochrane Library were systematically searched to retrieve randomized controlled trials examining the primary outcome of gut microbiota or intestinal permeability changes after synbiotic consumption in healthy adults. Secondary outcomes of interest were short-chain fatty acids, inflammatory biomarkers, and gut microbiota diversity. DATA EXTRACTION Weighted (WMD) or standardized mean difference (SMD) outcome data were pooled in restricted maximum likelihood models using random effects. Twenty-seven articles reporting on 26 studies met the eligibility criteria (n = 1319). DATA ANALYSIS Meta-analyses of 16 studies showed synbiotics resulted in a significant increase in Lactobacillus cell count (SMD, 0.74; 95% confidence interval [CI], 0.15, 1.33; P = 0.01) and propionate concentration (SMD, 0.22; 95% CI, 0.02, 0.43; P = 0.03) compared with controls. A trend for an increase in Bifidobacterium relative abundance (WMD, 0.97; 95% CI, 0.42, 2.52; P = 0.10) and cell count (SMD, 0.82; 95% CI, 0.13, 1.88; P = 0.06) was seen. No significant differences in α-diversity, acetate, butyrate, zonulin, IL-6, CRP, or endotoxins were observed. CONCLUSION This review demonstrates that synbiotics modulate the gut microbiota by increasing Lactobacillus and propionate across various healthy adult populations, and may result in increased Bifidobacterium. Significant variations in synbiotic type, dose, and duration should be considered as limitations when applying findings to clinical practice. SYSTEMATIC REVIEW REGISTRATION PROSPERO no. CRD42021284033.
Collapse
Affiliation(s)
- Denelle J Cosier
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kelly Lambert
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elizabeth P Neale
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine Probst
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Karen Charlton
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Brown JA, Bashir H, Zeng MY. Lifelong partners: Gut microbiota-immune cell interactions from infancy to old age. Mucosal Immunol 2025:S1933-0219(25)00006-6. [PMID: 39862964 DOI: 10.1016/j.mucimm.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check, while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, when microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens. The immune system during childhood is programmed, with the support of the microbiota, to develop robust immune tolerance, and limit autoimmunity and metabolic dysregulation, which are prevalent during aging. This review comprehensively explores the mechanistic underpinnings of gut microbiota-immune cell interactions during infancy and old age, with the goal to gain a better understanding of potential strategies to leverage the gut microbiota to combat age-related immune decline.
Collapse
Affiliation(s)
- Julia A Brown
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Hilal Bashir
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Melody Y Zeng
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States.
| |
Collapse
|
4
|
Hairul Hisham HI, Lim SM, Neoh CF, Abdul Majeed AB, Shahar S, Ramasamy K. Effects of non-pharmacological interventions on gut microbiota and intestinal permeability in older adults: A systematic review: Non-pharmacological interventions on gut microbiota/barrier. Arch Gerontol Geriatr 2025; 128:105640. [PMID: 39305569 DOI: 10.1016/j.archger.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
This systematic review appraised previous findings of non-pharmacological interventions on gut microbiota and/ or intestinal permeability in older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on the inclusion and exclusion criteria, and evaluated for risks of bias using the "Cochrane Collaboration's Risk of Bias 2" and the "NIH Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group". The primary outcomes were the effects of non-pharmacological interventions on gut microbiota diversity and composition, and intestinal permeability in older adults. Out of 85,114 studies, 38 were shortlisted. Generally, the non-pharmacological interventions were beneficial against dysbiosis and the leaky gut in older adults. Considering specific interventions with two or more studies that reported consistent outcomes, a pattern was observed amongst the Mediterranean diet (MD), polyphenol-rich (PR) diet and supplements (i.e., probiotics, prebiotics and synbiotics). As for the other interventions, the very few studies that have been conducted did not allow a strong conclusion to be made just yet. The MD (single and multidomain interventions) restored gut microbiota by increasing species richness (alpha diversity) and reduced intestinal permeability (zonulin) and inflammation (CRP). The PR diet only showed slight changes in the gut microbiota but improved the gut barrier by reducing zonulin, CRP and IL-6. Probiotics, prebiotics and synbiotics increased the genus Bifidobacterium spp. which are considered beneficial bacteria. This review has uncovered insights into the relationship between gut microbiota and intestinal epithelial barriers of specific non-pharmacological interventions in older adults.
Collapse
Affiliation(s)
- Hazwanie Iliana Hairul Hisham
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Chin Fen Neoh
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Suzana Shahar
- Centre of Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Salamat S, Jahan-Mihan A, Gharibvand L, Reza Tabandeh M, Mansoori A. Multi-species synbiotic supplementation increased fecal short chain fatty acids and anti-inflammatory cytokine interleukin-10 in adult men with dyslipidemia; A randomized, double-blind, clinical trial. Cytokine 2024; 179:156608. [PMID: 38631185 DOI: 10.1016/j.cyto.2024.156608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Mounting evidence revealed that an imbalance of Gut Microbiota (GM) leads to metabolic disorders. Synbiotics through regulation of GM composition can be an effective intervention in the management of metabolic diseases. This study aimed to investigate the effects of multi-species synbiotic supplementation on serum interleukin10 (IL-10) and fecal Short Chain Fatty Acids (SCFAs) in patients with dyslipidemia. METHODS In this double-blind, randomized, placebo-controlled clinical trial, fifty-six adult men with dyslipidemia were randomly allocated to intervention and control groups and received either synbiotic or placebo powder twice a day for 12 weeks. Each synbiotic sachet contained 6 species of probiotic microorganisms with a total dose of 3 × 1010 Colony Forming Unit (CFU) and 5 gr inulin and Fructooligosaccharide (FOS) as prebiotics. Blood and stool samples were collected at the baseline and end of the study. Dietary intake, physical activity, anthropometric measurements, serum IL-10, and fecal SCFAs were assessed before and after the intervention. RESULT There were no significant differences between the baseline characteristics of patients in the two groups. Serum IL-10 was increased in the synbiotic group (p < 0.0001). Moreover, synbiotic supplementation increased fecal concentration of acetate (p < 0.0001), butyrate (p = 0.043), propionate (p < 0.0001), and valerate (p < 0.026). A significant positive correlation was observed between the changes in fecal butyrate level and serum IL-10 concentration in the control group (r = 0.48, p = 0.01). CONCLUSIONS A Twelve-week synbiotic supplementation increased fecal SCFAs and improved inflammation in adult men with dyslipidemia.
Collapse
Affiliation(s)
- Shekoufeh Salamat
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Lida Gharibvand
- Loma Linda University School of Allied Health Professions, Loma Linda, CA, USA
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Iran
| | - Anahita Mansoori
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Lazou-Ahrén I, Björklund M, Molin G, Xu J, Önning G, Elmståhl S, Jeppsson B. Probiotic-Reduced Inflammaging in Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10310-7. [PMID: 38896223 DOI: 10.1007/s12602-024-10310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The disparity between increased lifespan and healthy aging, marked by prevalent "inflammaging", highlights the global challenge in care of older persons. This study explored the anti-inflammatory effects of Lactiplantibacillus plantarum HEAL9 (LpHEAL9), alone or combined with berries, on older volunteers with chronic low-grade inflammation (LGI). It was a randomized, double-blind, placebo-controlled trial, with a total of 66 volunteers (> 70 years old), randomly assigned, and equally distributed, to placebo, LpHEAL9 or LpHEAL9 + Berries group. After a 2-week run-in period, participants underwent a 4-week dietary intervention. Intake of LpHEAL9 showed a trend towards reduction in serum CRP but without reaching statistical significance. However, LpHEAL9 significantly decreased fecal calprotectin levels compared to placebo. LpHEAL9+Berries did not show any effect on inflammation. Both probiotic groups showed a trend in improving cognitive function albeit not reaching statistical significance. Our findings suggest that the probiotic strain L. plantarum HEAL9 has a modest impact on LGI in a healthy older population (ClinicalTrials.gov ID: NCT02342496).
Collapse
Affiliation(s)
| | | | - Göran Molin
- Department of Process and Life Science Engineering, Lund University, Lund, Sweden
| | - Jie Xu
- Sapfo Research AB, Bjärred, Sweden
| | | | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Bengt Jeppsson
- Department of Surgery, Skåne University Hospital, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Barry DJ, Farragher JB, Betik AC, Fyfe JJ, Convit L, Cooke MB. Investigating the effects of synbiotic supplementation on functional movement, strength and muscle health in older Australians: a study protocol for a double-blind, randomized, placebo-controlled trial. Trials 2024; 25:307. [PMID: 38715143 PMCID: PMC11077830 DOI: 10.1186/s13063-024-08130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Aging has been associated with a progressive loss of skeletal muscle quality, quantity and strength, which may result in a condition known as sarcopenia, leading to a decline in physical performance, loss of independence and reduced quality of life. While the cause of impaired physical functioning observed in elderly populations appears to be multifactorial, recent evidence suggests that age-associated alterations in gut microbiota could be a contributing factor. The primary objective will be to assess the effects of a dietary synbiotic formulation on sarcopenia-related functional outcomes such as handgrip strength, gait speed and physical performance within older individuals living independently. The secondary objective will be to examine associations between changes in gut microbiota composition, functional performance and lean muscle mass. METHODS Seventy-four elderly (60-85 years) participants will be randomized in a double-blind, placebo-controlled fashion to either an intervention or control group. The intervention group (n = 37) will receive oral synbiotic formulation daily for 16 weeks. The control group (n = 37) will receive placebo. Assessments of physical performance (including Short Physical Performance Battery, handgrip strength and timed up-and-go tests) and muscle ultrasonography will be performed at 4 time points (baseline and weeks 8, 16 and 20). Likewise, body composition via bioelectric impedance analysis and blood and stool samples will be collected at each time point. Dual-energy X-ray absorptiometry will be performed at baseline and week 16. The primary outcomes will be between-group changes in physical performance from baseline to 16 weeks. Secondary outcomes include changes in body composition, muscle mass and architecture, fecal microbiota composition and diversity, and fecal and plasma metabolomics. DISCUSSION Gut-modulating supplements appear to be effective in modifying gut microbiota composition in healthy older adults. However, it is unclear whether these changes translate into functional and/or health improvements. In the present study, we will investigate the effects of a synbiotic formulation on measures of physical performance, strength and muscle health in healthy older populations. TRIAL REGISTRATION This study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000652774) in May 2022.
Collapse
Affiliation(s)
- David J Barry
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Joshua B Farragher
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lilia Convit
- Centre for Sports Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Matthew B Cooke
- Sport, Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
8
|
Meng Q, Guo J, Lv K, Liu Y, Zhang J, Li M, Cheng X, Chen S, Huo X, Zhang Q, Chen Y, Li J. 5 S-Heudelotinone alleviates experimental colitis by shaping the immune system and enhancing the intestinal barrier in a gut microbiota-dependent manner. Acta Pharm Sin B 2024; 14:2153-2176. [PMID: 38799623 PMCID: PMC11120280 DOI: 10.1016/j.apsb.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 05/29/2024] Open
Abstract
Aberrant changes in the gut microbiota are implicated in many diseases, including inflammatory bowel disease (IBD). Gut microbes produce diverse metabolites that can shape the immune system and impact the intestinal barrier integrity, indicating that microbe-mediated modulation may be a promising strategy for preventing and treating IBD. Although fecal microbiota transplantation and probiotic supplementation are well-established IBD therapies, novel chemical agents that are safe and exert strong effects on the gut microbiota are urgently needed. Herein, we report the total synthesis of heudelotinone and the discovery of 5S-heudelotinone (an enantiomer) as a potent agent against experimental colitis that acts by modulating the gut microbiota. 5S-Heudelotinone alters the diversity and composition of the gut microbiota and increases the concentration of short-chain fatty acids (SCFAs); thus, it regulates the intestinal immune system by reducing proinflammatory immune cell numbers, and maintains intestinal mucosal integrity by modulating tight junctions (TJs). Moreover, 5S-heudelotinone (2) ameliorates colitis-associated colorectal cancer (CAC) in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced in situ carcinoma model. Together, these findings reveal the potential of a novel natural product, namely, 5S-heudelotinone, to control intestinal inflammation and highlight that this product is a safe and effective candidate for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Qing Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Ke Lv
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Mingyue Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Xirui Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Shenghua Chen
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | | | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
10
|
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 2024; 25:107-129. [PMID: 38150088 DOI: 10.1007/s10522-023-10082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Chen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Jiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-E Deng
- Nephrology department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Yan-Yang Li
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shi-Chao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China.
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
11
|
Yu Y, Liu Y, Meng Z. Role of traditional Chinese medicine in age-related macular degeneration: exploring the gut microbiota's influence. Front Pharmacol 2024; 15:1356324. [PMID: 38333011 PMCID: PMC10850396 DOI: 10.3389/fphar.2024.1356324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD), a degenerative retinopathy, remains unclear. Administration of anti-vascular endothelial growth factor agents, antioxidants, fundus lasers, photodynamic therapy, and transpupillary warming has proven effective in alleviating symptoms; however, these interventions cannot prevent or reverse AMD. Increasing evidence suggests that AMD risk is linked to changes in the composition, abundance, and diversity of the gut microbiota (GM). Activation of multiple signaling pathways by GM metabolites, including lipopolysaccharides, oxysterols, short-chain fatty acids (SCFAs), and bile acids (BAs), influences retinal physiology. Traditional Chinese medicine (TCM), known for its multi-component and multi-target advantages, can help treat AMD by altering GM composition and regulating the levels of certain substances, such as lipopolysaccharides, reducing oxysterols, and increasing SCFA and BA contents. This review explores the correlation between GM and AMD and interventions for the two to provide new perspectives on treating AMD with TCM.
Collapse
Affiliation(s)
- Yujia Yu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhaoru Meng
- The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Li X, Hu S, Yin J, Peng X, King L, Li L, Xu Z, Zhou L, Peng Z, Ze X, Zhang X, Hou Q, Shan Z, Liu L. Effect of synbiotic supplementation on immune parameters and gut microbiota in healthy adults: a double-blind randomized controlled trial. Gut Microbes 2023; 15:2247025. [PMID: 37614109 PMCID: PMC10453972 DOI: 10.1080/19490976.2023.2247025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Synbiotics are increasingly used by the general population to boost immunity. However, there is limited evidence concerning the immunomodulatory effects of synbiotics in healthy individuals. Therefore, we conducted a double-blind, randomized, placebo-controlled study in 106 healthy adults. Participants were randomly assigned to receive either synbiotics (containing Bifidobacterium lactis HN019 1.5 × 108 CFU/d, Lactobacillus rhamnosus HN001 7.5 × 107 CFU/d, and fructooligosaccharide 500 mg/d) or placebo for 8 weeks. Immune parameters and gut microbiota composition were measured at baseline, mid, and end of the study. Compared to the placebo group, participants receiving synbiotic supplementation exhibited greater reductions in plasma C-reactive protein (P = 0.088) and interferon-gamma (P = 0.008), along with larger increases in plasma interleukin (IL)-10 (P = 0.008) and stool secretory IgA (sIgA) (P = 0.014). Additionally, synbiotic supplementation led to an enrichment of beneficial bacteria (Clostridium_sensu_stricto_1, Lactobacillus, Bifidobacterium, and Collinsella) and several functional pathways related to amino acids and short-chain fatty acids biosynthesis, whereas reduced potential pro-inflammatory Parabacteroides compared to baseline. Importantly, alternations in anti-inflammatory markers (IL-10 and sIgA) were significantly correlated with microbial variations triggered by synbiotic supplementation. Stratification of participants into two enterotypes based on pre-treatment Prevotella-to-Bacteroides (P/B) ratio revealed a more favorable effect of synbiotic supplements in individuals with a higher P/B ratio. In conclusion, this study suggested the beneficial effects of synbiotic supplementation on immune parameters, which were correlated with synbiotics-induced microbial changes and modified by microbial enterotypes. These findings provided direct evidence supporting the personalized supplementation of synbiotics for immunomodulation.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational, Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xuguang Zhang
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei province, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Nabrdalik K, Drożdż K, Kwiendacz H, Skonieczna-Żydecka K, Łoniewski I, Kaczmarczyk M, Wijata AM, Nalepa J, Holleman F, Nieuwdorp M, Gumprecht J. Clinical Trial: Probiotics in Metformin Intolerant Patients with Type 2 Diabetes (ProGasMet). Biomed Pharmacother 2023; 168:115650. [PMID: 37812890 DOI: 10.1016/j.biopha.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND For decades, metformin has been the drug of first choice in the management of type 2 diabetes. However, approximately 2-13% of patients do not tolerate metformin due to gastrointestinal (GI) side effects. Since metformin influences the gut microbiota, we hypothesized that a multi-strain probiotics supplementation would mitigate the gastrointestinal symptoms associated with metformin usage. METHODS AND ANALYSIS This randomized, double-blind, placebo-controlled, single-center, cross-over trial (ProGasMet study) assessed the efficacy of a multi-strain probiotic in 37 patients with metformin intolerance. Patients were randomly allocated (1:1) to receive probiotic (PRO-PLA) or placebo (PLA-PRO) at baseline and, after 12 weeks (period 1), they crossed-over to the other treatment arm (period 2). The primary outcome was the reduction of GI adverse events of metformin. RESULTS 37 out of 82 eligible patients were enrolled in the final analysis of whom 35 completed the 32 weeks study period and 2 patients resigned at visit 5. Regardless of the treatment arm allocation, while on probiotic supplementation, there was a significant reduction of incidence (for the probiotic period in PRO-PLA/PLA-PRO: P = 0.017/P = 0.054), quantity and severity of nausea (P = 0.016/P = 0.024), frequency (P = 0.009/P = 0.015) and severity (P = 0.019/P = 0.005) of abdominal bloating/pain as well as significant improvement in self-assessed tolerability of metformin (P < 0.01/P = 0.005). Moreover, there was significant reduction of incidence of diarrhea while on probiotic supplementation in PRO-PLA treatment arm (P = 0.036). CONCLUSION A multi-strain probiotic diminishes the incidence of gastrointestinal adverse effects in patients with type 2 diabetes and metformin intolerance.
Collapse
Affiliation(s)
- Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| | - Karolina Drożdż
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| | | | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland; Sanprobi sp. z o. o. sp. k, Szczecin, Poland.
| | - Mariusz Kaczmarczyk
- Department of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland; Sanprobi sp. z o. o. sp. k, Szczecin, Poland.
| | - Agata M Wijata
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.
| | - Jakub Nalepa
- Faculty of Automatic Control, Electronics and Computer Science, Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Frits Holleman
- Department of Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Max Nieuwdorp
- Internal and Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| |
Collapse
|
14
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
15
|
Shokri‐Mashhadi N, Navab F, Ansari S, Rouhani MH, Hajhashemy Z, Saraf‐Bank S. A meta-analysis of the effect of probiotic administration on age-related sarcopenia. Food Sci Nutr 2023; 11:4975-4987. [PMID: 37701185 PMCID: PMC10494607 DOI: 10.1002/fsn3.3515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 09/14/2023] Open
Abstract
Global increase in the prevalence of age-related diseases, such as sarcopenia, highlights the need of recognizing agents that improve muscle health; however, the evidence synthesis on the impact of probiotic administration on sarcopenia is scarce. To summarize and evaluate findings regarding the effect of supplementation with probiotics on sarcopenia, this meta-analysis was conducted. Using databases, including PubMed, SCOPUS, ISI-Web of Science, and Cochrane Library, interventional studies were included if they investigate the effect of probiotic administration on at least one of the components of sarcopenia up to 6 October 2022. Risk of bias evaluation was conducted using the Cochrane quality assessment tool. The random-effects model which takes between-study variations into account was used to obtain the overall effect sizes. The STATA version 14.0 was used for statistical analyses. Overall, 17 studies were included. There was high certainty of evidence that probiotic supplementation has a beneficial effect on muscle mass (kg) (WMD: 0.55, 95% CI: 0.05, 1.05; I 2: 0.0%, p = .995), and muscle function (WMD: 0.13, 95% CI: 0.03, 0.23; I 2: 65.6%, p = .05). Moreover, administration of probiotics for more than 12 weeks significantly increased muscle strength (WMD: 1.16, 95% CI: 0.88, 1.44; I 2: 0.0%, p = .77). However, probiotic supplementation had no effect on anthropometric indices, including body mass index. Probiotic supplementation could improve muscle mass and muscle function in adults more than 55 years old. The beneficial effect of probiotics on muscle strength could appear after 12 weeks of supplementation.
Collapse
Affiliation(s)
- Nafiseh Shokri‐Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Fatemeh Navab
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Shakila Ansari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Hossein Rouhani
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Zahra Hajhashemy
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Sahar Saraf‐Bank
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
16
|
Salles J, Gueugneau M, Patrac V, Malnero-Fernandez C, Guillet C, Le Bacquer O, Giraudet C, Sanchez P, Collin ML, Hermet J, Pouyet C, Boirie Y, Jacobs H, Walrand S. Associating Inulin with a Pea Protein Improves Fast-Twitch Skeletal Muscle Mass and Muscle Mitochondrial Activities in Old Rats. Nutrients 2023; 15:3766. [PMID: 37686798 PMCID: PMC10490296 DOI: 10.3390/nu15173766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.
Collapse
Affiliation(s)
- Jérôme Salles
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Marine Gueugneau
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Véronique Patrac
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | | | - Christelle Guillet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Olivier Le Bacquer
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Christophe Giraudet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Phelipe Sanchez
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Marie-Laure Collin
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Julien Hermet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Corinne Pouyet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, PlateForme d’Exploration du Métabolisme, MetaboHUB-Clermont, 63000 Clermont-Ferrand, France
| | - Yves Boirie
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
- CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| | - Heidi Jacobs
- Cosucra-Groupe Warcoing S.A., 7740 Warcoing, Belgium; (C.M.-F.); (H.J.)
| | - Stéphane Walrand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
- CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Shen Y, Song M, Wu S, Zhao H, Zhang Y. Plant-Based Dietary Fibers and Polysaccharides as Modulators of Gut Microbiota in Intestinal and Lung Inflammation: Current State and Challenges. Nutrients 2023; 15:3321. [PMID: 37571257 PMCID: PMC10420973 DOI: 10.3390/nu15153321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Recent research has underscored the significant role of gut microbiota in managing various diseases, including intestinal and lung inflammation. It is now well established that diet plays a crucial role in shaping the composition of the microbiota, leading to changes in metabolite production. Consequently, dietary interventions have emerged as promising preventive and therapeutic approaches for managing these diseases. Plant-based dietary fibers, particularly polysaccharides and oligosaccharides, have attracted attention as potential therapeutic agents for modulating gut microbiota and alleviating intestinal and lung inflammation. This comprehensive review aims to provide an in-depth overview of the current state of research in this field, emphasizing the challenges and limitations associated with the use of plant-based dietary fibers and polysaccharides in managing intestinal and lung inflammation. By shedding light on existing issues and limitations, this review seeks to stimulate further research and development in this promising area of therapeutic intervention.
Collapse
Affiliation(s)
- Yu Shen
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Mingming Song
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Shihao Wu
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi 154007, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| |
Collapse
|
18
|
Kadyan S, Park G, Wang B, Singh P, Arjmandi B, Nagpal R. Resistant starches from dietary pulses modulate the gut metabolome in association with microbiome in a humanized murine model of ageing. Sci Rep 2023; 13:10566. [PMID: 37386089 PMCID: PMC10310774 DOI: 10.1038/s41598-023-37036-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Emerging evidence suggests that plant-based fiber-rich diets improve ageing-associated health by fostering a healthier gut microbiome and microbial metabolites. However, such effects and mechanisms of resistant starches from dietary pulses remain underexplored. Herein, we examine the prebiotic effects of dietary pulses-derived resistant starch (RS) on gut metabolome in older (60-week old) mice carrying a human microbiome. Gut metabolome and its association with microbiome are examined after 20-weeks feeding of a western-style diet (control; CTL) fortified (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). NMR spectroscopy-based untargeted metabolomic analysis yield differential abundance linking phenotypic differences in specific metabolites among different RS groups. LEN and CKP increase butyrate, while INU promotes propionate. Conversely, bile acids and cholesterol are reduced in prebiotic groups along with suppressed choline-to-trimethylamine conversion by LEN and CKP, whereas amino acid metabolism is positively altered. Multi-omics microbiome-metabolome interactions reveal an association of beneficial metabolites with the Lactobacilli group, Bacteroides, Dubosiella, Parasutterella, and Parabacteroides, while harmful metabolites correlate with Butyricimonas, Faecalibaculum, Colidextribacter, Enterococcus, Akkermansia, Odoribacter, and Bilophila. These findings demonstrate the functional effects of pulses-derived RS on gut microbial metabolism and their beneficial physiologic responses in an aged host.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
19
|
Sheykhsaran E, Abbasi A, Ebrahimzadeh Leylabadlo H, Sadeghi J, Mehri S, Naeimi Mazraeh F, Feizi H, Bannazadeh Baghi H. Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgrad Med J 2023; 99:384-402. [PMID: 35140178 DOI: 10.1136/postgradmedj-2021-141311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of obesity and overweight is a significant public concern throughout the world. Obesity is a complex disorder involving an excessive amount of body fat. It is not just a cosmetic concern. It is a medical challenge that increases the risk of other diseases and health circumstances, such as diabetes, heart disease, high blood pressure and certain cancers. Environmental and genetic factors are involved in obesity as a significant metabolic disorder along with diabetes. Gut microbiota (GM) has a high potential for energy harvesting from the diet. In the current review, we aim to consider the role of GM, gut dysbiosis and significant therapies to treat obesity. Dietary modifications, probiotics, prebiotics, synbiotics compounds, using faecal microbiota transplant, and other microbial-based therapies are the strategies to intervene in obesity reducing improvement. Each of these factors serves through various mechanisms including a variety of receptors and compounds to control body weight. Trial and animal investigations have indicated that GM can affect both sides of the energy-balancing equation; first, as an influencing factor for energy utilisation from the diet and also as an influencing factor that regulates the host genes and energy storage and expenditure. All the investigated articles declare the clear and inevitable role of GM in obesity. Overall, obesity and obesity-relevant metabolic disorders are characterised by specific modifications in the human microbiota's composition and functions. The emerging therapeutic methods display positive and promising effects; however, further research must be done to update and complete existing knowledge.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Sciences and Technology Research Institute, Faculty of Nutrition Sciences and food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Mehri
- Department of Biochemistry and structural Biology, University of Alabama, Birmingham, Alabama, USA
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Oh S, Seo H. Dietary intervention with functional foods modulating gut microbiota for improving the efficacy of COVID-19 vaccines. Heliyon 2023; 9:e15668. [PMID: 37124341 PMCID: PMC10121067 DOI: 10.1016/j.heliyon.2023.e15668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Dysbiosis of the gut microbiota with aging contributes to a reduction in important cross-feeding bacterial reactions in the gut and immunosenescence, which could contribute to a decrease in vaccine efficacy. Fever, cough, and fatigue are the main signs of coronavirus disease 2019 (COVID-19); however, some patients with COVID-19 present with gastrointestinal symptoms. COVID-19 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best measures to reduce SARS-CoV-2 infection rates and the severity of COVID-19. The immunogenicity of COVID-19 vaccines is influenced by the composition of the gut microbiota, and the immune response to COVID-19 vaccines decreases with age. In this review, we discuss gut microbiota dysbiosis and immunosenescence in the older adults, the role of gut microbiota in improving the efficacy of COVID-19 vaccines, and dietary interventions to improve the efficacy of COVID-19 vaccines in the older adults.
Collapse
Affiliation(s)
- Soyoung Oh
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| | - Haesook Seo
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| |
Collapse
|
21
|
Agostini D, Gervasi M, Ferrini F, Bartolacci A, Stranieri A, Piccoli G, Barbieri E, Sestili P, Patti A, Stocchi V, Donati Zeppa S. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients 2023; 15:nu15081802. [PMID: 37111021 PMCID: PMC10141535 DOI: 10.3390/nu15081802] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandro Stranieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
22
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
23
|
Lee MH, Kim J, Kim GH, Kim MS, Yoon SS. Effects of Lactiplantibacillus plantarum FBT215 and prebiotics on the gut microbiota structure of mice. Food Sci Biotechnol 2023; 32:481-488. [PMID: 36911336 PMCID: PMC9992507 DOI: 10.1007/s10068-022-01185-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022] Open
Abstract
Imbalanced intestinal microbiota is associated with diseases, including inflammatory bowel disease and obesity, and diet can alter the structure of the gut microbiota. In this study, the effects of dietary treatments including the potential probiotic Lactiplantibacillus plantarum FBT215 with/without prebiotics on the intestinal microbiota composition of mice were investigated. Lactiplantibacillus plantarum FBT215 administration significantly decreased the Firmicutes/Bacteroidetes ratio and increased the abundance of Muribaculum and Duncaniella. The diversity within and between groups was measured according to α and β diversity metrics, respectively. The Shannon index of α diversity decreased significantly in all treatment groups except the probiotic group, although this group showed an increase in the Chao1 index. Principal coordinate analysis of β diversity showed that the groups had different species distributions. Finally, gamma-aminobutyric acid (GABA) concentration increased in groups fed L. plantarum FBT215. These findings improve our understanding of the association between the gut microbiota structure and specific probiotic/prebiotic-containing diets.
Collapse
Affiliation(s)
- Myung-Hyun Lee
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Jaegon Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Gyeong-Hwuii Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Min-Sun Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Sung-Sik Yoon
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| |
Collapse
|
24
|
Li M, Zhang C, Xiao X, Zhu M, Quan W, Liu X, Zhang S, Liu Z. Theaflavins in Black Tea Mitigate Aging-Associated Cognitive Dysfunction via the Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2356-2369. [PMID: 36718846 DOI: 10.1021/acs.jafc.2c06679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aging-associated cognitive dysfunction has a great influence on the lifespan and healthspan of the elderly. Theaflavins (TFs), a mixture of ingredients formed from enzymatic oxidation of catechins during the manufacture of tea, have a positive contribution to the qualities and antiaging activities of black tea. However, the role of TFs in mitigating aging-induced cognitive dysfunction and the underlying mechanism remains largely unknown. Here, we find that TFs effectively improve behavioral impairment via the microbiota-gut-brain axis: TFs maintain gut homeostasis by improving antioxidant ability, strengthening the immune response, increasing the expression of tight junction proteins, restructuring the gut microbiota, and altering core microbiota metabolites, i.e., short-chain fatty acids and essential amino acids (SCFAs and AAs), and upregulating brain neurotrophic factors. Removing the gut microbiota with antibiotics partly abolishes the neuroprotective effects of TFs. Besides, correlation analysis indicates that the decrease in gut microbiota, such as Bacteroidetes and Lachnospiraceae, and the increase in microbiota metabolites' levels are positively correlated with behavioral improvements. Taken together, our findings reveal a potential role of TFs in mitigating aging-driven cognitive dysfunction via the microbiota-gut-brain axis. The intake of TFs can be translated into a novel dietary intervention approach against aging-induced cognitive decline.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xing Xiao
- Hunan Provincial People's Hospital, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xia Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
25
|
Mills S, Yang B, Smith GJ, Stanton C, Ross RP. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes 2023; 15:2186098. [PMID: 36896934 PMCID: PMC10012958 DOI: 10.1080/19490976.2023.2186098] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The significance of Bifidobacterium to human health can be appreciated from its early colonization of the neonatal gut, where Bifidobacterium longum represents the most abundant species. While its relative abundance declines with age, it is further reduced in several diseases. Research into the beneficial properties of B. longum has unveiled a range of mechanisms, including the production of bioactive molecules, such as short-chain fatty acids, polysaccharides, and serine protease inhibitors. From its intestinal niche, B. longum can have far-reaching effects in the body influencing immune responses in the lungs and even skin, as well as influencing brain activity. In this review, we present the biological and clinical impacts of this species on a range of human conditions beginning in neonatal life and beyond. The available scientific evidence reveals a strong rationale for continued research and further clinical trials that investigate the ability of B. longum to treat or prevent a range of diseases across the human lifespan.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Co Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Beneficial Effects of Lactic Acid Bacteria on Animal Reproduction Function. Vet Med Int 2022; 2022:4570320. [PMID: 36505731 PMCID: PMC9729032 DOI: 10.1155/2022/4570320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Considering the importance of a healthy uterus to the success of breeding, the beneficial effects of lactic acid bacteria on animal reproduction function are of particular interest. In recent decades, infertility has become a widespread issue, with microbiological variables playing a significant role. According to reports, dysbiosis of the vaginal microbiota is connected with infertility; however, the effect of the normal vaginal microbiota on infertility is unknown. In addition, lactic acid bacteria dominate the reproductive system. According to evidence, vaginal lactic acid bacteria play a crucial role in limiting the invasion of pathogenic bacteria by triggering anti-inflammatory chemicals through IL-8, IL-1, and IL-6; immunological responses through inhibition of the adherence of other microorganisms, production of inhibiting substances, and stimulation of mucus production; and also reproductive hormones by increased testosterone hormone release, enhanced the levels of luteinizing hormone, follicle stimulating hormone, the amount of prostaglandin E (2), and prostaglandin F2 alpha. The objective of this study was to compare the advantages of lactic acid bacteria in animal reproduction based on the most recent literature. The administration of a single strain or numerous strains of lactic acid bacteria has a favourable impact on steroidogenesis, gametogenesis, and animal fertility.
Collapse
|
27
|
Synbiotic Intervention with Lactobacilli, Bifidobacteria, and Inulin in Healthy Volunteers Increases the Abundance of Bifidobacteria but Does Not Alter Microbial Diversity. Appl Environ Microbiol 2022; 88:e0108722. [PMID: 36165644 PMCID: PMC9552601 DOI: 10.1128/aem.01087-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synbiotics combine probiotics and prebiotics and are being investigated for potential health benefits. In this single-group-design trial, we analyzed changes in the gut microbiome, stool quality, and gastrointestinal well-being in 15 healthy volunteers after a synbiotic intervention comprising Lacticaseibacillus rhamnosus (LGG), Lactobacillus acidophilus (LA-5), Lacticaseibacillus paracasei subsp. paracasei (L. CASEI 431), and Bifidobacterium animalis subsp. lactis BB-12 and 20 g of chicory-derived inulin powder consumed daily for 4 weeks. Fecal samples were collected at baseline and at completion of the intervention, and all participants completed a fecal diary based on the Bristol Stool Scale and recorded their gastrointestinal well-being. No adverse effects were observed after consumption of the synbiotic product, and stool consistency and frequency remained almost unchanged during the trial. Microbiome analysis of the fecal samples was achieved using shotgun sequencing followed by taxonomic profiling. No changes in alpha and beta diversity were seen after the intervention. Greater relative abundances of Bifidobacteriaceae were observed in 12 subjects, with indigenous bifidobacteria species constituting the main increase. All four probiotic organisms increased in abundance, and L. rhamnosus, B. animalis, and L. acidophilus were differentially abundant, compared to baseline. Comparison of the fecal strains to the B. animalis subsp. lactis BB-12 reference genome and the sequenced symbiotic product revealed only a few single-nucleotide polymorphisms differentiating the probiotic B. animalis subsp. lactis BB-12 from the fecal strains identified, indicating that this probiotic strain was detectable after the intervention. IMPORTANCE The effects of probiotics/synbiotics are seldom investigated in healthy volunteers; therefore, this study is important, especially considering the safety aspects of multiple probiotics together with prebiotic fiber in consumption by humans. The study explores at the potential of a synbiotic intervention with lactobacilli, bifidobacteria, and inulin in healthy volunteers and tracks the ingested probiotic strain B. animalis subsp. lactis.
Collapse
|
28
|
Age-Related NAFLD: The Use of Probiotics as a Supportive Therapeutic Intervention. Cells 2022; 11:cells11182827. [PMID: 36139402 PMCID: PMC9497179 DOI: 10.3390/cells11182827] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Human aging, a natural process characterized by structural and physiological changes, leads to alterations of homeostatic mechanisms, decline of biological functions, and subsequently, the organism becomes vulnerable to external stress or damage. In fact, the elderly population is prone to develop diseases due to deterioration of physiological and biological systems. With aging, the production of reactive oxygen species (ROS) increases, and this causes lipid, protein, and DNA damage, leading to cellular dysfunction and altered cellular processes. Indeed, oxidative stress plays a key role in the pathogenesis of several chronic disorders, including hepatic diseases, such as non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common liver disorder in the Western world, is characterized by intrahepatic lipid accumulation; is highly prevalent in the aging population; and is closely associated with obesity, insulin resistance, hypertension, and dyslipidemia. Among the risk factors involved in the pathogenesis of NAFLD, the dysbiotic gut microbiota plays an essential role, leading to low-grade chronic inflammation, oxidative stress, and production of various toxic metabolites. The intestinal microbiota is a dynamic ecosystem of microbes involved in the maintenance of physiological homeostasis; the alteration of its composition and function, during aging, is implicated in different liver diseases. Therefore, gut microbiota restoration might be a complementary approach for treating NAFLD. The administration of probiotics, which can relieve oxidative stress and elicit several anti-aging properties, could be a strategy to modify the composition and restore a healthy gut microbiota. Indeed, probiotics could represent a valid supplement to prevent and/or help treating some diseases, such as NAFLD, thus improving the already available pharmacological intervention. Moreover, in aging, intervention of prebiotics and fecal microbiota transplantation, as well as probiotics, will provide novel therapeutic approaches. However, the relevant research is limited, and several scientific research works need to be done in the near future to confirm their efficacy.
Collapse
|
29
|
Abstract
The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
30
|
Huang Z, Cheng Z, Li X, Tao J, Li Y, Zhu X, Guo H, Zhou X, Du Q. The effect of intestinal flora intervention on bone development in children: A systematic review and meta-analysis. Complement Ther Clin Pract 2022; 48:101591. [DOI: 10.1016/j.ctcp.2022.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
|
31
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
32
|
De Giani A, Sandionigi A, Zampolli J, Michelotti A, Tursi F, Labra M, Di Gennaro P. Effects of Inulin-Based Prebiotics Alone or in Combination with Probiotics on Human Gut Microbiota and Markers of Immune System: A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Subjects. Microorganisms 2022; 10:microorganisms10061256. [PMID: 35744774 PMCID: PMC9229734 DOI: 10.3390/microorganisms10061256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 01/01/2023] Open
Abstract
The gut microbiota is implicated in diverse interactions affecting human health. The present study reports a randomized, double-blind, placebo-controlled clinical study conducted by administering a new synbiotic formulation composed of two Lactobacillus strains (L. plantarum and L. acidophilus) and one Bifidobacterium strain (B. animalis subsp. lactis) and two types of fructans (fructo-oligosaccharides with a degree of polymerization of 3–5 and inulin-type fructans with 10 DP). The effects of this synbiotic were evaluated on healthy subjects for 28 days and the maintenance of its efficacy was evaluated at the end of a follow-up period of 28 days. The synbiotic treatment contributes to higher biodiversity of the gut microbiota, increasing the community richness with respect to the group with the prebiotics alone and the placebo group. Its positive effect is also reflected in the variation of microbial community structure favoring the beneficial short-chain fatty acids bacterial producers. The amelioration of the health status of the subjects was also established by the reduction of common infectious disease symptom incidence, the stimulation of the gut immune system showing a noteworthy variation of fecal β-defensin2 and calprotectin levels, and the modulation of the response of the respiratory tract’s immune system by salivary IgA as well as total antioxidant capacity biomarkers.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Angela Michelotti
- Complife Italia S.r.l., Via Angelini 21, 27028 San Martino Siccomario, PV, Italy; (A.M.); (F.T.)
| | - Francesco Tursi
- Complife Italia S.r.l., Via Angelini 21, 27028 San Martino Siccomario, PV, Italy; (A.M.); (F.T.)
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
- Correspondence: ; Tel.: +39-0264482949; Fax: +39-0264483450
| |
Collapse
|
33
|
Abstract
Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.
Collapse
|
34
|
Chenhuichen C, Cabello-Olmo M, Barajas M, Izquierdo M, Ramírez-Vélez R, Zambom-Ferraresi F, Martínez-Velilla N. Impact of probiotics and prebiotics in the modulation of the major events of the aging process: A systematic review of randomized controlled trials. Exp Gerontol 2022; 164:111809. [DOI: 10.1016/j.exger.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
35
|
Houtman TA, Eckermann HA, Smidt H, de Weerth C. Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci Rep 2022; 12:3140. [PMID: 35210542 PMCID: PMC8873392 DOI: 10.1038/s41598-022-07176-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Childhood obesity is a risk factor for numerous health conditions. A critical factor in the etiology of obesity appears to be the gut microbiota, which is the microbial community that resides in the human gut. The ratio of the phyla Firmicutes and Bacteroidetes (F/B) and gut bacterial genera that produce short-chain fatty acids (SCFA) have been suggested to contribute to obesity. The current study investigated (1) whether differences in F/B ratio can be observed in infancy and childhood in relation to zBMI in healthy children, and (2) whether an innovative proxy measure adds evidence to a relationship between SCFA producers and the etiology of obesity. Stool samples were collected at five time points, and zBMI was assessed at eight time points throughout the first 12 years of life. Our confirmatory analyses with Bayesian multilevel models showed no relationship between the F/B ratio and zBMI. Also, a proxy measure constructed from known SCFA producers was unrelated to zBMI throughout the first 12 years of life. Exploratory analyses using multilevel and random forest models suggest that the relative abundances of Firmicutes and Bacteroidetes were independently negatively associated with zBMI from infancy through childhood, and the SCFA producing genera Subdoligranulum and Alistipes were negatively related to future BMI in childhood.
Collapse
Affiliation(s)
- Timothy A Houtman
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Henrik A Eckermann
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
The Potential Roles of Probiotics, Resistant Starch, and Resistant Proteins in Ameliorating Inflammation during Aging (Inflammaging). Nutrients 2022; 14:nu14040747. [PMID: 35215397 PMCID: PMC8879781 DOI: 10.3390/nu14040747] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is typically accompanied by biological and physiological changes that alter cellular functions. Two of the most predominant phenomena in aging include chronic low-grade inflammation (inflammaging) and changes in the gut microbiota composition (dysbiosis). Although a direct causal relationship has not been established, many studies have reported significant reductions in inflammation during aging through well-maintained gut health and microbial balance. Prebiotics and probiotics are known to support gut health and can be easily incorporated into the daily diet. Unfortunately, few studies specifically focus on their significance in reducing inflammation during aging. Therefore, this review summarizes the scientific evidence of the potential roles of probiotics and two types of prebiotics, resistant starch and resistant proteins, in later age. Studies have demonstrated that the oral consumption of bacteria that may contribute to anti-inflammatory response, such as Bifidobacterium spp., Akkermansia munichipilla, and Faecalis praunitzii, contributes significantly to the suppression of pro-inflammatory markers in elderly humans and aged animals. Colonic fermentation of resistant starch and proteins also demonstrates anti-inflammatory activity owing to the production of butyrate and an improvement in the gut microbiota composition. Collectively, probiotics, resistant starch, and resistant proteins have the potential to promote healthy aging.
Collapse
|
37
|
Williams LM, Stoodley IL, Berthon BS, Wood LG. The Effects of Prebiotics, Synbiotics, and Short-Chain Fatty Acids on Respiratory Tract Infections and Immune Function: A Systematic Review and Meta-Analysis. Adv Nutr 2022; 13:167-192. [PMID: 34543378 PMCID: PMC8803493 DOI: 10.1093/advances/nmab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
Prebiotics, synbiotics, and SCFAs have been shown to decrease systemic inflammation and play a protective role in chronic respiratory conditions. However, their effects on infection and immune function are unclear. The objective of this systematic review was to summarize the current evidence for prebiotic, synbiotic, and SCFA supplementation on respiratory tract infections (RTIs) and immune function. The protocol for this systematic review was registered with PROSPERO (National Institute for Health Research, University of York, UK), accessed online at https://www.crd.york.ac.uk/prospero (CRD42019118786). Relevant English-language articles up to May 2021 were identified via online databases: MEDLINE, EMBASE, CINAHL, and Cochrane Library. Included studies (n = 58) examined the effect of prebiotics, synbiotics, or SCFA, delivered orally, on the incidence, severity, or duration of RTIs and/or markers of immune function (e.g., peripheral blood immunophenotyping, NK cell activity). The majority of studies were randomized controlled trials reporting on RTIs in infants and children. The meta-analysis indicated that the numbers of subjects with ≥1 RTI were reduced with prebiotic (OR, 0.73; 95% CI: 0.62-0.86; P = 0.0002; n = 17) and synbiotic (OR, 0.75; 95% CI: 0.65-0.87; P = 0.0001; n = 9) supplementation compared to placebo. Further, NK cell activity was increased with synbiotic (standardized mean difference, 0.74; 95% CI: 0.42-1.06; P < 0.0001, n = 3) supplementation. This review provides evidence that prebiotic, specifically oligosaccharide, supplementation may play a protective role in RTIs in infants and children. There is less evidence for this effect in adults. Supplementation with prebiotic and synbiotic treatment may alter immune function by increasing NK cell activity, though effects on immunophenotype were less clear.
Collapse
Affiliation(s)
- Lily M Williams
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Isobel L Stoodley
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
| | - Bronwyn S Berthon
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Lisa G Wood
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
38
|
Abstract
Identifying ways to deal with the challenges presented by aging is an urgent task, as we are facing an aging society. External factors such as diet, exercise and drug therapy have proven to be major elements in controlling healthy aging and prolonging life expectancy. More recently, the intestinal microbiota has also become a key factor in the anti-aging process. As the intestinal microbiota changes with aging, an imbalance in intestinal microorganisms can lead to many age-related degenerative diseases and unhealthy aging. This paper reviews recent research progress on the relationship between intestinal microorganisms and anti-aging effects, focusing on the changes and beneficial effects of intestinal microorganisms under dietary intervention, exercise and drug intervention. In addition, bacteriotherapy has been used to prevent frailty and unhealthy aging. Most of these anti-aging approaches improve the aging process and age-related diseases by regulating the homeostasis of intestinal flora and promoting a healthy intestinal environment. Intervention practices based on intestinal microorganisms show great potential in the field of anti-aging medicine.
Collapse
Affiliation(s)
- Yanjiao Du
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Gao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,CONTACT Mingyao Yang Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan611130, P. R. China
| |
Collapse
|
39
|
Ebrahimi V, Tarhriz V, Talebi M, Rasouli A, Farjami A, Razi Soofiyani S, Soleimanian A, Forouhandeh H. A new insight on feasibility of pre-, pro-, and synbiotics-based therapies in Alzheimer’s disease. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_170_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Devi P, Khan A, Chattopadhyay P, Garg A, Pandey R. Gut Microbiota and the Liver: Interaction Shaping Interactome. COMPREHENSIVE GUT MICROBIOTA 2022:400-411. [DOI: 10.1016/b978-0-12-819265-8.00080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A, Hosseini-Fard SR, Keyvani H, Teimoori A, Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2022; 145:112352. [PMID: 34840032 DOI: 10.1016/j.biopha.2021.112352] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Elahe Dehkhodaie
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gholestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Zhang L, Ko CY, Zeng YM. Immunoregulatory Effect of Short-Chain Fatty Acids from Gut Microbiota on Obstructive Sleep Apnea-Associated Hypertension. Nat Sci Sleep 2022; 14:393-405. [PMID: 35299627 PMCID: PMC8922759 DOI: 10.2147/nss.s354742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
The intestine is the largest bacterial ecosystem and immune response organ of the human body. The microbiota regulates the metabolic and immune functions of the host through their metabolites. Short-chain fatty acids (SCFAs) are part of the metabolites of the gut microbiota (GM), providing energy to intestinal epithelial cells and regulating the immune system. A decrease in SCFA-producing bacteria, imbalanced effector T-helper cells (Th cells), and increasing corresponding inflammatory cytokine were found in both animal models and clinical patients with obstructive sleep apnea (OSA) and hypertension (HTN). Intervention with probiotics, prebiotics, or postbiotics in animal models simulating OSA-associated HTN restored blood pressure to normal, which allows the hypothesis that GM are involved in the pathophysiology of OSA-induced HTN patients through their metabolites' SCFAs; however, the exact regulatory mechanism is not completely clear. This review describes the potential mechanisms of SCFAs, a major metabolite of the GM, in the pathology of OSA-induced HTN, from the perspective of immune system regulation in the available studies.
Collapse
Affiliation(s)
- Li Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| | - Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China.,Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| |
Collapse
|
43
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
44
|
Fu Z, Jia Q, Zhang H, Kang L, Sun X, Zhang M, Wang Y, Hu P. Simultaneous quantification of eleven short-chain fatty acids by derivatization and solid phase microextraction - Gas chromatography tandem mass spectrometry. J Chromatogr A 2021; 1661:462680. [PMID: 34879311 DOI: 10.1016/j.chroma.2021.462680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/09/2023]
Abstract
As metabolites of the gut microbiome, short-chain fatty acids (SCFAs) played an important role in the diagnosis of the metabolic diseases. Because of the high polarity, high volatility and complex matrix of biological samples, the highly sensitive, selective and accurate method to determine SCFAs remains a major challenge. Herein, a new method for simultaneous quantification of eleven SCFAs by derivatization combined with solid phase microextraction (SPME) and gas chromatography tandem mass spectrometry (GC-MS/MS) was developed. Isobutyl chloroformate coupled with isobutanol was used as the reaction reagent to derivatize SCFAs. The method validation data showed a satisfactory linearity with the linear regression coefficients (R) ranging from 0.9964 to 0.9996. The limit of detection (LOD) of all SCFAs ranges from 0.01 ng·mL-1 to 0.72 ng·mL-1 and the limit of quantification (LOQ) ranges from 0.04 ng·mL-1 to 2.41 ng·mL-1. The intra-day and inter-day precision (RSDs) ranged from 0.65% to 8.92% and 1.62% to 15.61%, respectively. The recovery ranged from 88.10% to 108.71%. Finally, the developed method was successfully used to determine SCFAs in mice fecal sample, and ten of the SCFAs were found in feces of mice, including formic acid.
Collapse
Affiliation(s)
- Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Qiangqiang Jia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, P.R. China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.
| | - Lu Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xuezhi Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Min Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.
| |
Collapse
|
45
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
46
|
Bai J, Zhao J, Al-Ansi W, Wang J, Xue L, Liu J, Wang Y, Fan M, Qian H, Li Y, Wang L. Oat β-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice. Food Funct 2021; 12:8976-8993. [PMID: 34382058 DOI: 10.1039/d1fo01446c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases (IBD) worldwide, while oat β-glucan has been shown to suppress the progress of colitis in UC mice. However, the underlying mechanism of oat β-glucan in ameliorating colitis is unclear and the role of gut microbiota in the protective effect of oat β-glucan against colitis remains unknown. In the present study, we aim to investigate the effect of oat β-glucan on gut microbiota in colitis mice and explore the health effect related mechanism. Dextran sulfate sodium (DSS) was used to induce the colitis model in mice. The results showed that β-glucan treatment attenuated hematochezia, splenomegaly and colon shortening in colitis mice. Histological evaluation of H&E and TUNEL staining showed that β-glucan treatment suppressed DSS-induced colonic inflammatory infiltration and reduced cell apoptosis levels of colon tissues. mRNA expression levels of the pro-inflammatory factors were also significantly reduced in the β-glucan group. Moreover, β-glucan treatment increased the protein and mRNA expression levels of tight junction proteins. Analysis of gut microbiota community showed that β-glucan treatment modulated gut microbial composition and structure at the OTU level in colitis mice. Further analysis of gut microbial metabolism revealed that β-glucan treatment significantly increased acetate, propionate and butyrate concentrations, and affected microbial metabolome in colitis mice. Notably, the increased acetate and propionate concentrations could directly affect pro-inflammatory factor expression levels and tight junction protein levels. In contrast, the changes in metabolic profiles affected pro-inflammatory factor levels and thus affected tight junction protein levels. Overall, our study revealed that oat β-glucan ameliorated DSS-induced colitis in mice simultaneously through regulating gut-derived short-chain fatty acids (SCFAs) and microbial metabolic biomarkers. Our study demonstrated that oat β-glucan could be an effective nutritional intervention strategy towards targeting gut microbiota metabolism for ameliorating colitis.
Collapse
Affiliation(s)
- Junying Bai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou 225000, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
47
|
Xu Y, Liu X, Liu X, Chen D, Wang M, Jiang X, Xiong Z. The Roles of the Gut Microbiota and Chronic Low-Grade Inflammation in Older Adults With Frailty. Front Cell Infect Microbiol 2021; 11:675414. [PMID: 34277468 PMCID: PMC8282182 DOI: 10.3389/fcimb.2021.675414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Frailty is a major public issue that affects the physical health and quality of life of older adults, especially as the population ages. Chronic low-grade inflammation has been speculated to accelerate the aging process as well as the development of age-related diseases such as frailty. Intestinal homeostasis plays a crucial role in healthy aging. The interaction between the microbiome and the host regulates the inflammatory response. Emerging evidence indicates that in older adults with frailty, the diversity and composition structure of gut microbiota are altered. Age-associated changes in gut microbiota composition and in their metabolites contribute to increased gut permeability and imbalances in immune function. In this review, we aim to: identify gut microbiota changes in the aging and frail populations; summarize the role of chronic low-grade inflammation in the development of frailty; and outline how gut microbiota may be related to the pathogenesis of frailty, more specifically, in the regulation of gut-derived chronic inflammation. Although additional research is needed, the regulation of gut microbiota may represent a safe, easy, and inexpensive intervention to counteract the chronic inflammation leading to frailty.
Collapse
Affiliation(s)
- YuShuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XiangJie Liu
- Division of Geriatric, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XiaoXia Liu
- Division of Geriatric, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Chen
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - MengMeng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ZhiFan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
The Effect of Probiotics on Health Outcomes in the Elderly: A Systematic Review of Randomized, Placebo-Controlled Studies. Microorganisms 2021; 9:microorganisms9061344. [PMID: 34205818 PMCID: PMC8234958 DOI: 10.3390/microorganisms9061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence suggests that probiotic supplementation may be efficacious in counteracting age-related shifts in gut microbiota composition and diversity, thereby impacting health outcomes and promoting healthy aging. However, randomized controlled trials (RCTs) with probiotics in healthy older adults have utilized a wide variety of strains and focused on several different outcomes with conflicting results. Therefore, a systematic review was conducted to determine which outcomes have been investigated in randomized controlled trials with probiotic supplementation in healthy older adults and what has been the effect of these interventions. For inclusion, studies reporting on randomized controlled trials with probiotic and synbiotic supplements in healthy older adults (defined as minimum age of 60 years) were considered. Studies reporting clinical trials in specific patient groups or unhealthy participants were excluded. In addition to assessment of eligibility and data extraction, each study was examined for risk of bias and quality assessment was performed by two independent reviewers. Due to the heterogeneity of outcomes, strains, study design, duration, and methodology, we did not perform any meta-analyses and instead provided a narrative overview of the outcomes examined. Of 1997 potentially eligible publications, 17 studies were included in this review. The risk of bias was low, although several studies failed to adequately describe random sequence generation, allocation concealment, and blinding. The overall study quality was high; however, many studies did not include sample calculations, and the majority of studies had a small sample size. The main outcomes examined in the trials included microbiota composition, immune-related measurements, digestive health, general well-being, cognitive function, and lipid and other biomarkers. The most commonly assessed outcome with the most consistent effect was microbiota composition; all but one study with this outcome showed significant effects on gut microbiota composition in healthy older adults. Overall, probiotic supplementation had modest effects on markers of humoral immunity, immune cell population levels and activity, as well as the incidence and duration of the common cold and other infections with some conflicting results. Digestive health, general-well-being, cognitive function, and lipid and other biomarkers were investigated in a very small number of studies; therefore, the impact on these outcomes remains inconclusive. Probiotics appear to be efficacious in modifying gut microbiota composition in healthy older adults and have moderate effects on immune function. However, the effect of probiotic supplementation on other health outcomes remains inconclusive, highlighting the need for more well-designed, sufficiently-powered studies to investigate if and the mechanisms by which probiotics impact healthy aging.
Collapse
|
49
|
Neyrinck AM, Rodriguez J, Taminiau B, Amadieu C, Herpin F, Allaert FA, Cani PD, Daube G, Bindels LB, Delzenne NM. Improvement of gastrointestinal discomfort and inflammatory status by a synbiotic in middle-aged adults: a double-blind randomized placebo-controlled trial. Sci Rep 2021; 11:2627. [PMID: 33514774 PMCID: PMC7846804 DOI: 10.1038/s41598-020-80947-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Several studies suggest that microbial alterations (dysbiosis) are intimately linked to chronic inflammation occurring upon aging. The aim of this study was to investigate the potential interest of a synbiotic approach (co-administration of a probiotic bacteria and a prebiotic dietary fibre) to improve gastrointestinal wellness and inflammatory markers in middle-aged people. Middle-aged subjects were randomized to take synbiotic (Bifidobacterium animalis lactis and fructo-oligosaccharides (FOS)) or placebo for 30 days. Stool frequency and consistency were improved in both placebo and synbiotic-treated volunteers while the synbiotic treatment significantly decreased the number of days with abdominal discomfort. Synbiotic treatment had no impact on mood dimensions, quality of life scores or the overall composition of the gut microbiota (16S rRNA gene sequencing of DNA extracted from stool). Importantly, plasma proinflammatory cytokines (interleukin (IL)-6, IL-8, IL-17a and interferon-gamma (IFNγ)) were significantly lower after 30 days of synbiotic supplementation. This effect appears to be independent of the gut barrier function. This study demonstrates that a combination of B. animalis lactis and the well-known prebiotic FOS could be a promising synbiotic strategy to decrease inflammatory status with improvement of gut disorders in middle-aged people.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue E. Mounier, Box B1.73.11, 1200, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue E. Mounier, Box B1.73.11, 1200, Brussels, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue E. Mounier, Box B1.73.11, 1200, Brussels, Belgium
| | | | | | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue E. Mounier, Box B1.73.11, 1200, Brussels, Belgium.,WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue E. Mounier, Box B1.73.11, 1200, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue E. Mounier, Box B1.73.11, 1200, Brussels, Belgium.
| |
Collapse
|
50
|
Ale EC, Binetti AG. Role of Probiotics, Prebiotics, and Synbiotics in the Elderly: Insights Into Their Applications. Front Microbiol 2021; 12:631254. [PMID: 33584631 PMCID: PMC7876055 DOI: 10.3389/fmicb.2021.631254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Elderly people are an important part of the global population who suffer from the natural processes of senescence, which lead to changes in the gut microbiota composition. These modifications have a great impact on their quality of life, bringing a general putrefactive and inflammatory status as a consequence. Some of the most frequent conditions related to this status are constipation, undernutrition, neurodegenerative diseases, susceptibility to opportunistic pathogens, and metabolic disbalance, among others. For these reasons, there is an increasing interest in improving their quality of life by non-invasive treatments such as the consumption of probiotics, prebiotics, and synbiotics. The aim of the present mini-review is to describe the benefits of these functional supplements/food according to the most recent clinical and pre-clinical studies published during the last decade. In addition, insights into several aspects we consider relevant to improve the quality of future studies are provided.
Collapse
Affiliation(s)
- Elisa C Ale
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química (UNL), Santa Fe, Argentina
| | - Ana G Binetti
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química (UNL), Santa Fe, Argentina
| |
Collapse
|