1
|
Zhou Y, Li W, Chen Y, Hu X, Miao C. Research progress on the impact of opioids on the tumor immune microenvironment (Review). Mol Clin Oncol 2025; 22:53. [PMID: 40297497 PMCID: PMC12035512 DOI: 10.3892/mco.2025.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Opioids have been extensively used in cancer pain management because they can significantly improve the quality of life of patients with advanced cancer. However, recent evidence suggests that opioids can also modulate the tumor immune microenvironment by interacting with opioid receptors on immune cells, potentially regulating tumor progression and efficacy of cancer treatments. Notably, morphine can exhibit a dose-dependent effect on tumor immunity in pancreatic cancer and renal cell models, with lower doses potentially promoting tumor migration and invasion of pancreatic cancer cells, whereas higher doses shows the effect of inhibiting migration and invasion through distinct molecular pathways. The present review therefore comprehensively explored the mechanisms by which opioids can regulate the tumor immune microenvironment, focusing on their effects on immune cells, oxidative stress and angiogenesis. It also examined the interactions between opioids and other analgesics, along with their potential impact on immune modulation. All relevant articles and materials were retrieved from PubMed using the key words 'opioids', 'immune system', 'T cells', 'monocytes', 'macrophages', 'lymphocytes', 'natural killer cell', 'immunotherapy', 'immune cell function' and 'dose dependent effect'. The immunosuppressive effects of opioids, particularly through the µ-opioid receptor, can suppress the activity of natural killer cells, impair antigen presentation and promote the function of regulatory T cells (Tregs). These effects may contribute to tumor progression and metastasis. The severity of these immunosuppressive effects appears to be dose-dependent and can vary among different tumor types. There is evidence to suggest that tumors with higher immune responsiveness will experience more pronounced suppression, including the reduction of tumor angiogenesis, resulting in a decrease in tumor volume and decrease in tumor metastases. Furthermore, the combination of opioids with other analgesics, such as non-steroidal anti-inflammatory drugs, has the potential to exacerbate immunosuppression, which can in turn increase the risk of infections. Therefore, although opioids are essential for pain management in patients with cancer, their potential to modulate the immune microenvironment and promote tumor progression requires careful consideration. Clinicians should evaluate the advantages and disadvantages of opioids, especially regarding emerging immunotherapies, to minimize their potential negative effects on the outcomes of cancer treatments. Future studies are recommended to prioritize the development of strategies that optimize pain management whilst preserving immune function, such as receptor-specific opioid formulations or adjunctive therapies targeting immunosuppressive pathways.
Collapse
Affiliation(s)
- Yuancheng Zhou
- Department of Preventive Medicine, (Institute of Radiation Medicine), Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 251016, P.R. China
| | - Wenyu Li
- The Second School of Clinical Medicine of Binzhou Medical University, Anesthesiology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuanji Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xudong Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Chuanwang Miao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
2
|
Vitari N, Roy S. Intestinal immunoglobulins under microbial dysbiosis: implications in opioid-induced microbial dysbiosis. Front Microbiol 2025; 16:1580661. [PMID: 40297286 PMCID: PMC12034684 DOI: 10.3389/fmicb.2025.1580661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal immunoglobulins (Igs) maintain homeostasis between the microbiome and host. IgA facilitates microbial balance through a variety of increasingly well-described mechanisms. However, IgM and IgG have less defined intestinal functions but have the potential to activate clearance mechanisms such as the complement system and receptor-mediated bacterial killing. Very little is known regarding the role of Igs under microbial dysbiosis. In this review, we explore how Igs sculpt the intestinal microbiome and respond to microbial dysbiosis. We discuss how IgM, IgA, IgG, and complement individually maintain harmony with the microbiome and consider how these mechanisms could work in synergy. Finally, we explore using an opioid-induced microbial dysbiosis as a model to elucidate immediate changes in Ig-bacterial interactions.
Collapse
Affiliation(s)
- Nicolas Vitari
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
3
|
Gao Y, Kong D, Sun JX, Ma ZX, Wang GQ, Ma XF, Sun L, Luo HY, Xu Y, Wang KH. Intestinal barrier damage caused by addictive substance use disorder. Eur J Med Res 2025; 30:226. [PMID: 40176069 PMCID: PMC11963533 DOI: 10.1186/s40001-025-02446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
Addictive substance use disorder has a wide range of effects on the intestinal barrier, including damage to the biological, chemical, mechanical, and immune barriers. Damage to the intestinal barrier caused by addictive substance use disorder allows harmful substances and bacteria to cross the intestinal barrier into the circulatory system, leading to systemic inflammatory responses and immune imbalances. In addition, the interaction between the gut flora and the central nervous system is recognized as an important component of the gut-brain axis. Gut barrier damage leads to dysbiosis, which in turn affects brain function by activating immune cells and releasing inflammatory factors. This may lead to altered mood and cognitive function, increased addictive substance cravings, and dependence. Recent research has indicated that reshaping the gut-brain axis and adjusting the composition and abundance of gut microbiota holds promise in alleviating withdrawal symptoms with addictive substance dependence. This article reviews the effects of addictive substance use disorder on the intestinal barrier and explores the possibility of improving addictive substance dependence by treating gut barrier damage.
Collapse
Affiliation(s)
- Yan Gao
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650504, China
| | - Deshenyue Kong
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650504, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jia-Xue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650504, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zhong-Xu Ma
- Third People's Hospital of Kunming City, Kunming, 650041, China
| | - Guang-Qing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xing-Feng Ma
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Liang Sun
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yu Xu
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650504, China.
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Kun-Hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
4
|
Lozo KW, Aktipis A, Alcock J. Neuroimmune Pain and Its Manipulation by Pathogens. Evol Appl 2025; 18:e70098. [PMID: 40270922 PMCID: PMC12015744 DOI: 10.1111/eva.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
Recent studies highlight extensive crosstalk that exists between sensory neurons responsible for pain and the immune system. Cutaneous pain neurons detect harmful microbes, recruit immune cells, and produce anticipatory immunity in nearby tissues. These complementary systems generally protect hosts from infections. At the same time, neuroimmune pain is vulnerable to manipulation. Some pathogens evade immunity activated by nociceptors by producing opioid analogs and by interfering with sensory nerve function. Other organisms manipulate neuroimmune pain by increasing it. Hosts may gain protection from interference by adjusting pain sensitivity. Nociceptive sensitization follows expectations of signal detection theory and the smoke detector principle, allowing pain to be more easily triggered in response to microbial threats and damage. However, pain sensitization at the spinal level and cortical responses to pain are themselves the target of manipulation by parasites and other organisms. Here we review examples of parasites, bacteria, and other medically important organisms that interfere with pain signaling and describe their implications for public health, infectious disease, and the treatment of pain.
Collapse
Affiliation(s)
- Kevin W. Lozo
- University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Athena Aktipis
- Department of PsychologyArizona State UniversityTempeArizonaUSA
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
| | - Joe Alcock
- Department of Emergency MedicineUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse. Genes (Basel) 2025; 16:403. [PMID: 40282363 PMCID: PMC12027173 DOI: 10.3390/genes16040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES This review examines the role of pharmacogenomics in individual responses to the pharmacotherapy of various drugs of abuse, including alcohol, cocaine, and opioids, to identify genetic variants that contribute to variability in substance use disorder treatment outcomes. In addition, it explores the pharmacomicrobiomic aspects of substance use, highlighting the impact of the gut microbiome on bioavailability, drug metabolism, pharmacodynamics, and pharmacokinetics. RESULTS Research on pharmacogenetics has identified several promising genetic variants that may contribute to the individual variability in responses to existing pharmacotherapies for substance addiction. However, the interpretation of these findings remains limited. It is estimated that genetic factors may account for 20-95% of the variability in individual drug responses. Therefore, genetic factors alone cannot fully explain the differences in drug responses, and factors such as gut microbiome diversity may also play a significant role. Drug microbial biotransformation is produced by microbial exoenzymes that convert low molecular weight organic compounds into analogous compounds by oxidation, reduction, hydrolysis, condensation, isomerization, unsaturation, or by the introduction of heteroatoms. Despite significant advances in pharmacomicrobiomics, challenges persist including the lack of standardized methodologies, inter-individual variability, limited understanding of drug biotransformation mechanisms, and the need for large-scale validation studies to develop microbiota-based biomarkers for clinical use. CONCLUSIONS Progress in the pharmacogenomics of substance use disorders has provided biological insights into the pharmacological needs associated with common genetic variants in drug-metabolizing enzymes. The gut microbiome and its metabolites play a pivotal role in various stages of drug addiction including seeking, reward, and biotransformation. Therefore, integrating pharmacogenomics with pharmacomicrobiomics will form a crucial foundation for significant advances in precision and personalized medicine.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain;
| |
Collapse
|
6
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
7
|
Rubin JB, Aby ES, Barman P, Tincopa M. Opioid use and risks in candidates and recipients of liver transplant. Liver Transpl 2025; 31:231-241. [PMID: 38669598 PMCID: PMC11518881 DOI: 10.1097/lvt.0000000000000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Opioid use is extremely prevalent among patients with cirrhosis and those who received liver transplant (LT), despite concerns regarding opioid-related risks in this population. While there are many theoretical risks of opioids in patients with hepatic dysfunction, there is limited evidence on the effect of opioid use on clinical outcomes in cirrhosis and patients before and after LT specifically. As a result, there is significant center-level variability in opioid-related practices and policies. The existing data-largely based on retrospective observational studies-do suggest that opioids are associated with increased health resource utilization pre-LT and post-LT and that they may precipitate HE in patients with cirrhosis and increase the risk of graft loss and death after LT. The strongest predictor of opioid use after LT is opioid use before transplant; thus, a focus on safe opioid use in the pretransplant and peritransplant periods is essential for minimizing opioid-related harms. We describe 3 strategies to guide LT providers including (1) improved characterization of pain, mental health symptoms, and opioid and polysubstance use; (2) minimization of opioid prescriptions for those at highest risk of adverse events; and (3) safe prescribing strategies for those who do use opioids and for the management of opioid use disorder. Ultimately, our goal is to improve the quality of life and transplant outcomes among patients with cirrhosis and those who received LT, particularly those living with concurrent pain, mental health, and substance use disorders.
Collapse
Affiliation(s)
- Jessica B Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- Department of Medicine, Gastroenterology Section, San Francisco VA Health Care System, San Francisco, California, USA
| | - Elizabeth S Aby
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pranab Barman
- Division of Digestive Diseases, Department of Medicine, University of California-San Diego, San Diego, California, USA
| | - Monica Tincopa
- Division of Digestive Diseases, Department of Medicine, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
8
|
Andrei C, Zanfirescu A, Ormeneanu VP, Negreș S. Evaluating the Efficacy of Secondary Metabolites in Antibiotic-Induced Dysbiosis: A Narrative Review of Preclinical Studies. Antibiotics (Basel) 2025; 14:138. [PMID: 40001382 PMCID: PMC11852119 DOI: 10.3390/antibiotics14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Drug-induced dysbiosis, particularly from antibiotics, has emerged as a significant contributor to chronic diseases by disrupting gut microbiota composition and function. Plant-derived secondary metabolites, such as polysaccharides, polyphenols, alkaloids, and saponins, show potential in mitigating antibiotic-induced dysbiosis. This review aims to consolidate evidence from preclinical studies on the therapeutic effects of secondary metabolites in restoring gut microbial balance, emphasizing their mechanisms and efficacy. METHODS A narrative review was conducted using PubMed, Scopus, and Web of Science. Studies were selected based on specific inclusion criteria, focusing on animal models treated with secondary metabolites for antibiotic-induced dysbiosis. The search terms included "gut microbiota", "antibiotics", and "secondary metabolites". Data extraction focused on microbial alterations, metabolite-specific effects, and mechanisms of action. Relevant findings were systematically analyzed and summarized. RESULTS Secondary metabolites demonstrated diverse effects in mitigating the impact of dysbiosis by modulating gut microbial composition, reducing inflammation, and supporting host biological markers. Polysaccharides and polyphenols restored the Firmicutes/Bacteroidetes ratio, increased beneficial taxa such as Lactobacillus and Bifidobacterium, and suppressed pathogenic bacteria like Escherichia-Shigella. Metabolites such as triterpenoid saponins enhanced gut barrier integrity by upregulating tight junction proteins, while alkaloids reduced inflammation by modulating proinflammatory cytokines (e.g., TNF-α, IL-1β). These metabolites also improved short-chain fatty acid production, which is crucial for gut and systemic health. While antibiotic-induced dysbiosis was the primary focus, other drug classes (e.g., PPIs, metformin) require further investigation. CONCLUSIONS Plant-derived secondary metabolites show promise in managing antibiotic-induced dysbiosis by restoring microbial balance, reducing inflammation, and improving gut barrier function. Future research should explore their applicability to other types of drug-induced dysbiosis and validate findings in human studies to enhance clinical relevance.
Collapse
Affiliation(s)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.A.); (V.-P.O.); (S.N.)
| | | | | |
Collapse
|
9
|
Zhang GY, Cortella A, Lai JC, Rubin JB. Pain in chronic liver disease compared to other chronic conditions: Results from a contemporary nationally representative cohort study. Hepatol Commun 2025; 9:e0605. [PMID: 39670874 PMCID: PMC11637743 DOI: 10.1097/hc9.0000000000000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Pain is common in patients with chronic liver disease. Our limited understanding of patterns and severity of pain in this population hinders the development of effective cirrhosis-specific pain management strategies. METHODS Using cross-sectional data from the 2016-2021 National Health Interview Survey, we examined rates, severity, and functional limitations due to pain in respondents with liver disease (viral hepatitis, cirrhosis, and liver cancer), compared to the general population and those with other chronic conditions associated with pain (ie, arthritis, diabetes, and chronic kidney disease). Categorical and continuous variables were compared using χ2 and t test. Multivariable logistic regression was used to determine the predictors associated with pain and opioid use. RESULTS Our liver disease cohort comprised 5267 participants (63% viral hepatitis, 49% cirrhosis, and 2% liver cancer). Participants with liver disease were more likely to report pain than those without liver disease (42% vs. 22%); they were also more likely to report severe pain (42% vs. 30%) and functional limitations by pain (28% vs. 13%) (p < 0.001 for all). On multivariable logistic regression, liver disease is an independent predictor of pain (OR: 2.31, 95% CI: 2.05-2.59, p < 0.001), even after adjustment for demographic factors. Liver disease respondents had similar rates of pain as those with diabetes (p = 0.8) and were more functionally limited by pain than those with arthritis (p < 0.001). Adjusted for demographic and pain-related factors, liver disease was also an independent predictor of chronic opioid use (OR: 1.47, 95% CI: 1.12-1.92, p = 0.0054). CONCLUSIONS Liver disease independently increases the likelihood of experiencing widespread and debilitating pain. Clinicians should consider liver disease a painful condition, ensuring that they are frequently assessing and appropriately treating pain in all liver disease patients.
Collapse
Affiliation(s)
- Grace Y. Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Francisco California, USA
| | - Aly Cortella
- Department of Epidemiology and Biostatistics, University of California San Francisco California, USA
| | - Jennifer C. Lai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Francisco California, USA
| | - Jessica B. Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Francisco California, USA
| |
Collapse
|
10
|
Tarantino G, Cataldi M, Citro V. Could chronic opioid use be an additional risk of hepatic damage in patients with previous liver diseases, and what is the role of microbiome? Front Microbiol 2024; 15:1319897. [PMID: 39687876 PMCID: PMC11646994 DOI: 10.3389/fmicb.2024.1319897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Among illicit drugs, addiction from opioids and synthetic opioids is soaring in an unparalleled manner with its unacceptable amount of deaths. Apart from these extreme consequences, the liver toxicity is another important aspect that should be highlighted. Accordingly, the chronic use of these substances, of which fentanyl is the most frequently consumed, represents an additional risk of liver damage in patients with underlying chronic liver disease. These observations are drawn from various preclinical and clinical studies present in literature. Several downstream molecular events have been proposed, but recent pieces of research strengthen the hypothesis that dysbiosis of the gut microbiota is a solid mechanism inducing and worsening liver damage by both alcohol and illicit drugs. In this scenario, the gut flora modification ascribed to non-alcoholic fatty liver disease performs an additive role. Interestingly enough, HBV and HCV infections impact gut-liver axis. In the end, the authors tried to solicit the attention of operators on this major healthcare problem.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, Naples, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore, Italy
| |
Collapse
|
11
|
Iyengar P, Prause N, LeBrett W, Lee A, Chang L, Patel A. Opioid and Nonopioid Analgesic Prescribing Patterns of Hepatologists for Medicare Beneficiaries. Clin Transl Gastroenterol 2024; 15:e1. [PMID: 39082613 PMCID: PMC11500778 DOI: 10.14309/ctg.0000000000000729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 08/17/2024] Open
Abstract
INTRODUCTION Opioids are commonly prescribed to patients with chronic liver disease, but little is known regarding medication prescribing patterns of hepatologists. Opioid use increased until national guidelines limited opioid prescriptions in early 2016. We aimed to describe rates of opioid and nonopioid analgesics to Medicare beneficiaries by hepatologists from 2013 to 2017 and identify demographic characteristics associated with higher prescribing. METHODS Prescription data from 2013 to 2017 by 761 hepatologists identified in the Centers for Medicare and Medicaid Services Part D Public Use File were analyzed. Annual prescription volumes were compared for providers with >10 annual prescriptions of a given drug type. Provider characteristics associated with opioid prescriptions were identified through multivariate logistic regression analyses. RESULTS The proportion of hepatologists prescribing >10 annual opioid prescriptions decreased from 29% to 20.6%. Median annual opioid prescriptions per hepatologist significantly decreased from 24 to 20. Tramadol remained the most prescribed analgesic. Nonopioid analgesic prescription volume did not increase significantly. Provider characteristics associated with increased opioid prescriptions included male sex, practice location in the South and Midwest (vs West), more years in practice, and a greater proportion of beneficiaries who are white or with low-income subsidy claims. Characteristics associated with fewer prescriptions included non-university-based practice, having a greater proportion of female beneficiaries, and later prescription year. DISCUSSION Hepatologists are prescribing less opioids. However, the prevalence of tramadol use and the lack of increase in nonopioid analgesic use highlights the need for advancing the science and training of pain management in chronic liver disease and targeted implementation of nonopioid treatment programs.
Collapse
Affiliation(s)
- Preetha Iyengar
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California, USA
| | - Nicole Prause
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California, USA
| | - Wendi LeBrett
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California, USA
| | - Anna Lee
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California, USA
| | - Lin Chang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California, USA
| | - Arpan Patel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California, USA
- Department of Gastroenterology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
12
|
Kazemian N, Pakpour S. Understanding the impact of the gut microbiome on opioid use disorder: Pathways, mechanisms, and treatment insights. Microb Biotechnol 2024; 17:e70030. [PMID: 39388360 PMCID: PMC11466222 DOI: 10.1111/1751-7915.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The widespread use of opioids for chronic pain management not only poses a significant public health issue but also contributes to the risk of tolerance, dependence, and addiction, leading to opioid use disorder (OUD), which affects millions globally each year. Recent research has highlighted a potential bidirectional relationship between the gut microbiome and OUD. This emerging perspective is critical, especially as the opioid epidemic intensifies, emphasizing the need to investigate how OUD may alter gut microbiome dynamics and vice versa. Understanding these interactions could reveal new insights into the mechanisms of addiction and tolerance, as well as provide novel approaches for managing and potentially mitigating OUD impacts. This comprehensive review explores the intricate bidirectional link through the gut-brain axis, focusing on how opiates influence microbial composition, functional changes, and gut mucosal integrity. By synthesizing current findings, the review aims to inspire new strategies to combat the opioid crisis and leverage microbiome-centred interventions for preventing and treating OUD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Sepideh Pakpour
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
13
|
Barkus A, Baltrūnienė V, Baušienė J, Baltrūnas T, Barkienė L, Kazlauskaitė P, Baušys A. The Gut-Brain Axis in Opioid Use Disorder: Exploring the Bidirectional Influence of Opioids and the Gut Microbiome-A Comprehensive Review. Life (Basel) 2024; 14:1227. [PMID: 39459527 PMCID: PMC11508959 DOI: 10.3390/life14101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid Use Disorder is a chronic condition characterized by compulsive opioid use despite negative consequences, resulting in severe health risks such as overdose and contraction of infectious diseases. High dropout rates in opioid agonist therapy highlight the need for more effective relapse prevention strategies. Animal and clinical studies indicate that opioids influence gut microbiota, which in turn plays a critical role in addiction development and alters behavioral responses to opioids. This study provides a comprehensive review of the literature on the effects of opioids on the gut microbiome and explores the potential of microbiome manipulation as a therapeutic target in opioid addiction.
Collapse
Affiliation(s)
- Artūras Barkus
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Vaida Baltrūnienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Justė Baušienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Tomas Baltrūnas
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Lina Barkienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Paulina Kazlauskaitė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Augustinas Baušys
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
14
|
Han C, Manners MT, Robinson SA. Sex differences in opioid response: a role for the gut microbiome? Front Pharmacol 2024; 15:1455416. [PMID: 39268474 PMCID: PMC11390522 DOI: 10.3389/fphar.2024.1455416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Opioid drugs have been long known to induce different responses in males compared to females, however, the molecular mechanisms underlying these effects are yet to be fully characterized. Recent studies have established a link between the gut microbiome and behavioral responses to opioids. Chronic opioid use is associated with gut dysbiosis, or microbiome disruptions, which is thought to contribute to altered opioid analgesia and reward processing. Gut microbiome composition and functioning have also been demonstrated to be influenced by sex hormones. Despite this, there is currently very little work investigating whether sex differences in the gut microbiome mediate sex-dependent responses to opioids, highlighting a critical gap in the literature. Here, we briefly review the supporting evidence implicating a potential role for the gut microbiome in regulating sexually dimorphic opioid response and identify areas for future research.
Collapse
Affiliation(s)
- Caitlin Han
- Department of Psychology, Williams College, Williamstown, MA, United States
| | - Melissa T. Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, United States
| | - Shivon A. Robinson
- Department of Psychology, Williams College, Williamstown, MA, United States
| |
Collapse
|
15
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
16
|
Montrose JA, Desai A, Nephew L, Patidar KR, Ghabril MS, Campbell NL, Chalasani N, Qiu Y, Hays ME, Orman ES. Medication burden and anticholinergic use are associated with overt HE in individuals with cirrhosis. Hepatol Commun 2024; 8:e0460. [PMID: 39037388 PMCID: PMC11265776 DOI: 10.1097/hc9.0000000000000460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Polypharmacy and anticholinergic medications are associated with cognitive decline in elderly populations. Although several medications have been associated with HE, associations between medication burden, anticholinergics, and HE have not been explored. We examined medication burden and anticholinergics in patients with cirrhosis and their associations with HE-related hospitalization. METHODS We conducted a retrospective cohort study of patients aged 18-80 with cirrhosis seen in hepatology clinics during 2019. The number of chronic medications (medication burden) and anticholinergic use were recorded. The primary outcome was HE-related hospitalization. RESULTS A total of 1039 patients were followed for a median of 840 days. Thirty-seven percent had a history of HE, and 9.8% had an HE-related hospitalization during follow-up. The mean number of chronic medications was 6.1 ± 4.3. Increasing medication burden was associated with HE-related hospitalizations in univariable (HR: 1.09, 95% CI: 1.05-1.12) and multivariable (HR: 1.07, 95% CI: 1.03-1.11) models. This relationship was maintained in those with baseline HE but not in those without baseline HE. Twenty-one percent were taking an anticholinergic medication. Anticholinergic exposure was associated with increased HE-related hospitalizations in both univariable (HR: 1.68, 95% CI: 1.09-2.57) and multivariable (HR: 1.71, 95% CI: 1.11-2.63) models. This relationship was maintained in those with baseline HE but not in those without baseline HE. CONCLUSIONS Anticholinergic use and medication burden are both associated with HE-related hospitalizations, particularly in those with a history of HE. Special considerations to limit anticholinergics and minimize overall medication burden should be tested for potential benefit in this population.
Collapse
Affiliation(s)
- Jonathan A. Montrose
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Archita Desai
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lauren Nephew
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kavish R. Patidar
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marwan S. Ghabril
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Noll L. Campbell
- Department of Pharmacy Practice, Purdue University College of Pharmacy, Indianapolis, Indiana, USA
| | - Naga Chalasani
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yingjie Qiu
- Department of Biostatistics & Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew E. Hays
- Department of Biostatistics & Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eric S. Orman
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Coluzzi F, Scerpa MS, Loffredo C, Borro M, Pergolizzi JV, LeQuang JA, Alessandri E, Simmaco M, Rocco M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. Int J Mol Sci 2024; 25:7999. [PMID: 39063241 PMCID: PMC11276997 DOI: 10.3390/ijms25147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Chiara Loffredo
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Elisa Alessandri
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Rocco
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
18
|
Gong Z, Xue Q, Luo Y, Yu B, Hua B, Liu Z. The interplay between the microbiota and opioid in the treatment of neuropathic pain. Front Microbiol 2024; 15:1390046. [PMID: 38919504 PMCID: PMC11197152 DOI: 10.3389/fmicb.2024.1390046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Neuropathic pain (NP) is characterized by its complex and multifactorial nature and limited responses to opioid therapy; NP is associated with risks of drug resistance, addiction, difficulty in treatment cessation, and psychological disorders. Emerging research on gut microbiota and their metabolites has demonstrated their effectiveness in alleviating NP and augmenting opioid-based pain management, concurrently mitigating the adverse effects of opioids. This review addresses the following key points: (1) the current advances in gut microbiota research and the challenges in using opioids to treat NP, (2) the reciprocal effects and benefits of gut microbiota on NP, and (3) the interaction between opioids with gut microbiota, as well as the benefits of gut microbiota in opioid-based treatment of NP. Through various intricate mechanisms, gut microbiota influences the onset and progression of NP, ultimately enhancing the efficacy of opioids in the management of NP. These insights pave the way for further pragmatic clinical research, ultimately enhancing the efficacy of opioid-based pain management.
Collapse
Affiliation(s)
- Zexiong Gong
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Buwei Yu
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bo Hua
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiheng Liu
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Cai Y, Wen S, Hu J, Wang Z, Huang G, Zeng Q, Zou J. Multiple reports on the causal relationship between various chronic pain and gut microbiota: a two-sample Mendelian randomization study. Front Neurosci 2024; 18:1369996. [PMID: 38694896 PMCID: PMC11061420 DOI: 10.3389/fnins.2024.1369996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Previous evidence suggests a link between gut microbiota and chronic pain, but the causal relationship is not yet fully understood. METHODS We categorized gut microbiota based on phylum, class, order, family, and genus levels and gathered pain-related information from the UKB and FinnGen GWAS project. Then, we conducted MR analysis to explore the potential causal relationship between gut microbiota and chronic pain at 12 specific locations. RESULTS We have discovered a direct connection between genetic susceptibility in the gut microbiota (gut metabolites) and pain experienced at 12 specific locations. Notably, Serotonin (5-HT) and Glycine were found to be associated with a higher risk of pain in the extremities. On the other hand, certain microbial families and orders were found to have a protective effect against migraines. Specifically, the family Bifidobacteriaceae (IVW, FDR p = 0.013) was associated with a lower risk of migraines. Furthermore, the genus Oxalobacter (IVW, FDR p = 0.044) was found to be linked to an increased risk of low back pain. Importantly, these associations remained significant even after applying the Benjamini-Hochberg correction test. Our analysis did not find any heterogeneity in the data (p > 0.05), as confirmed by the Cochrane's Q-test. Additionally, both the MR-Egger and MR-PRESSO tests indicated no significant evidence of horizontal pleiotropy (p > 0.05). CONCLUSION Our MR analysis demonstrated a causal relationship between the gut microbiota and pain, highlighting its potential significance in advancing our understanding of the underlying mechanisms and clinical implications of microbiota-mediated pain.
Collapse
Affiliation(s)
- Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Shuyang Wen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ziyi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
21
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
22
|
Zhao H, Shang L, Zhang Y, Liang Z, Wang N, Zhang Q, Gao C, Luo J. IL-17A inhibitors alleviate Psoriasis with concomitant restoration of intestinal/skin microbiota homeostasis and altered microbiota function. Front Immunol 2024; 15:1344963. [PMID: 38482003 PMCID: PMC10933079 DOI: 10.3389/fimmu.2024.1344963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 04/12/2024] Open
Abstract
Background Disturbed gut microbiota and associated metabolic dysfunction exist in Psoriasis. Despite the growing use of interleukin-17 inhibitor (anti-IL17) therapy, the effect of anti-IL17 on gut/skin microbiota function is not fully understood in patients with Psoriasis. Objective Therefore, we explored whether Psoriasis is associated with alterations in selected gut/skin microbiota in a study cohort, and a longitudinal cohort study to reveal the effects of IL-17A inhibitor treatment on gut microbiota in Psoriasis. Methods In a case-control study, 14 patients with Psoriasis and 10 age, sex and body mass index-matched Healthy Controls were recruited. Longitudinal mapping of the gut microbiome was performed using 16S rRNA gene sequencing. Mouse models were used to further study and validate the interrelationship between the skin microbiome and the gut microbiome in Psoriasis. PICRUST2 was applied to predict the function of the bacterial community. Results In Psoriasis patients, gut microbiota dysbiosis was present with increased heterogeneity: decreased Bacteroidota and increased Firmicutes as well as Actinobacteriota predominating in Psoriasis. Escherichia-Shigella enrichment was associated with reduction in serum levels of total bile acid and markers in Apoptotic pathways. After IL-17A inhibitor treatment in Psoriasis patients, longitudinal studies observed a trend toward a normal distribution of the gut microbiome and modulation of apoptosis-related metabolic pathways. Results from a mouse model showed dysregulation of the skin microbiota in Psoriasis characterized by Staphylococcus colonization. Conclusion The psoriatic gut/skin microbiota exhibits loss of community stability and pathogen enrichment. IL-17A inhibitors restore microbiota homeostasis and metabolic pathways, reduce pro-inflammatory cytokine expression, and alleviate symptoms in patients with Psoriasis.
Collapse
Affiliation(s)
- Huixia Zhao
- Department of Dermatology, Heji Hospital of Changzhi Medical College, Changzhi, China
| | - Lili Shang
- Department of Rheumatology, The Second Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for immunomicroecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuting Zhang
- Department of Dermatology, Heji Hospital of Changzhi Medical College, Changzhi, China
| | - Zhaojun Liang
- Shanxi Key Laboratory for immunomicroecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Nan Wang
- Shanxi Key Laboratory for immunomicroecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Zhang
- Department of Dermatology, Heji Hospital of Changzhi Medical College, Changzhi, China
| | - Chong Gao
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Shanxi Key Laboratory for immunomicroecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Greenberg JM, Winters AD, Zagorac B, Kracht DJ, Francescutti DM, Cannella N, Ciccocioppo R, Woods LCS, Mackle J, Hardiman GT, Kuhn BN, Kalivas PW, Kuhn DM, Angoa-Perez M. Long access heroin self-administration significantly alters gut microbiome composition and structure. Front Psychiatry 2024; 15:1369783. [PMID: 38476614 PMCID: PMC10927763 DOI: 10.3389/fpsyt.2024.1369783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and β-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of β-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M. Greenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Andrew D. Winters
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Branislava Zagorac
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Dina M. Francescutti
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Leah C. Solberg Woods
- Department of Molecular Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - James Mackle
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gary T. Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Brittany N. Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Donald M. Kuhn
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Mariana Angoa-Perez
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
24
|
Han S, Gao J, Wang Z, Xiao Y, Ge Y, Liang Y, Gao J. Genetically supported causality between gut microbiota, immune cells and morphine tolerance: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1343763. [PMID: 38389539 PMCID: PMC10882271 DOI: 10.3389/fmicb.2024.1343763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Previous researches have suggested a significant connection between the gut microbiota/immune cells and morphine tolerance (MT), but there is still uncertainty regarding their causal relationship. Hence, our objective is to inverstigate this causal association and reveal the impact of gut microbiota/immune cells on the risk of developing MT using a two-sample Mendelian randomization (MR) study. Methods We conducted a comprehensive analysis using genome-wide association study (GWAS) summary statistics for gut microbiota, immune cells, and MT. The main approach employed was the inverse variance-weighted (IVW) method in MR. To assess horizontal pleiotropy and remove outlier single-nucleotide polymorphisms (SNPs), we utilized the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique as well as MR-Egger regression. Heterogeneity detection was performed using Cochran's Q-test. Additionally, leave-one-out analysis was carried out to determine if any single SNP drove the causal association signals. Finally, we conducted a reverse MR to evaluate the potential of reverse causation. Results We discovered that 6 gut microbial taxa and 16 immune cells were causally related to MT (p < 0.05). Among them, 2 bacterial features and 9 immunophenotypes retained a strong causal relationship with lower risk of MT: genus. Lachnospiraceae NK4A136group (OR: 0.962, 95% CI: 0.940-0.987, p = 0.030), genus. RuminococcaceaeUCG011 (OR: 0.960, 95% CI: 0.946-0.976, p = 0.003), BAFF-R on B cell (OR: 0.972, 95% CI: 0.947-0.998, p = 0.013). Furthermore, 4 bacterial features and 7 immunophenotypes were identified to be significantly associated with MT risk: genus. Flavonifractor (OR: 1.044, 95% CI: 1.017-1.069, p = 0.029), genus. Prevotella9 (OR: 1.054, 95% CI: 1.020-1.090, p = 0.037), B cell % CD3-lymphocyte (OR: 1.976, 95% CI: 1.027-1.129, p = 0.026). The Cochrane's Q test revealed no heterogeneity (p > 0.05). Furthermore, the MR-Egger and MR-PRESSO analyses reveal no instances of horizontal pleiotropy (p > 0.05). Besides, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the gut microbial taxa and immune cells exposure-outcome effect were attenuated. Conclusion Our research confirm the potential link between gut microbiota and immune cells with MT, shedding light on the mechanism by which gut microbiota and immune cells may contribute to MT. These findings lay the groundwork for future investigations into targeted prevention strategies.
Collapse
Affiliation(s)
- Shuai Han
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Jiapei Gao
- Yangzhou University Medical College, Yangzhou, China
| | - Zi Wang
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yongxin Liang
- Department of Anesthesiology, Women’s and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
25
|
Bettinger JJ, Friedman BC. Opioids and Immunosuppression: Clinical Evidence, Mechanisms of Action, and Potential Therapies. Palliat Med Rep 2024; 5:70-80. [PMID: 38435086 PMCID: PMC10908329 DOI: 10.1089/pmr.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 03/05/2024] Open
Abstract
Background In addition to the more well-known adverse effects of opioids, such as constipation, mounting evidence supports underlying immunosuppressive effects as well. Methods In this study, we provide a narrative review of preclinical and clinical evidence of opioid suppression of the immune system as well as possible considerations for therapies. Results In vitro and animal studies have shown clear effects of opioids on inflammatory cytokine expression, immune cell activity, and pathogen susceptibility. Observational data in humans have so far supported preclinical findings, with multiple reports of increased rates of infections in various settings of opioid use. However, the extent to which this risk is due to the impact of opioids on the immune system compared with other risk factors associated with opioid use remains uncertain. Considering the data showing immunosuppression and increased risk of infection with opioid use, measures are needed to mitigate this risk in patients who require ongoing treatment with opioids. In preclinical studies, administration of opioid receptor antagonists blocked the immunomodulatory effects of opioids. Conclusions As selective antagonists of peripheral opioid receptors, peripherally acting mu-opioid receptor (MOR) antagonists may be able to protect against immune impairment while still allowing for opioid analgesia. Future research is warranted to further investigate the relationship between opioids and infection risk as well as the potential application of peripherally acting MOR antagonists to counteract these risks.
Collapse
Affiliation(s)
- Jeffrey J. Bettinger
- Pain Management, Saratoga Hospital Medical Group, Saratoga Springs, New York, USA
| | - Bruce C. Friedman
- JM Still Burn Center, Doctors Hospital of Augusta, Augusta, Georgia, USA
| |
Collapse
|
26
|
Ma J, Björnsson ES, Chalasani N. The Safe Use of Analgesics in Patients with Cirrhosis: A Narrative Review. Am J Med 2024; 137:99-106. [PMID: 37918778 DOI: 10.1016/j.amjmed.2023.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Pain is prevalent in patients with cirrhosis. Due to potential alterations in drug metabolism, risk for adverse effects, and complications from cirrhosis, physicians are often faced with difficult choices when choosing appropriate analgesics in these patients. Overall, acetaminophen remains the preferred analgesic. Despite its potential for intrinsic liver toxicity, acetaminophen is safe when used at 2 g/d. In contrast, non-selective nonsteroidals should be avoided due to their multiple side effects, including worsening renal function, blunting diuretic response, and increasing risk of portal hypertensive and peptic ulcer bleeding. Celecoxib can be administered for short term (≤5 days) in patients with Child's A and Child's B cirrhosis (50% dose reduction). Opioids carry the risk of precipitating hepatic encephalopathy and should generally be avoided, when possible. If clinical situation demands their use, opioid use should be limited to short-acting agents for short duration. Gabapentin and pregabalin are generally safe. Duloxetine should be avoided in hepatic impairment. Topical diclofenac and lidocaine seem to be safe in patients with cirrhosis.
Collapse
Affiliation(s)
- Jiayi Ma
- Indiana University School of Medicine and Indiana University Health, Indianapolis
| | - Einar Stefán Björnsson
- Department of Gastroenterology, Landspitali University Hospital, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Naga Chalasani
- Indiana University School of Medicine and Indiana University Health, Indianapolis.
| |
Collapse
|
27
|
Antoine D, Chupikova I, Jalodia R, Singh PK, Roy S. Chronic Morphine Treatment and Antiretroviral Therapy Exacerbate HIV-Distal Sensory Peripheral Neuropathy and Induce Distinct Microbial Alterations in the HIV Tg26 Mouse Model. Int J Mol Sci 2024; 25:1569. [PMID: 38338849 PMCID: PMC10855564 DOI: 10.3390/ijms25031569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
Distal Sensory Peripheral Neuropathy (DSP) is a common complication in HIV-infected individuals, leading to chronic pain and reduced quality of life. Even with antiretroviral therapy (ART), DSP persists, often prompting the use of opioid analgesics, which can paradoxically worsen symptoms through opioid-induced microbial dysbiosis. This study employs the HIV Tg26 mouse model to investigate HIV-DSP development and assess gut microbiome changes in response to chronic morphine treatment and ART using 16S rRNA sequencing. Our results reveal that chronic morphine and ART exacerbate HIV-DSP in Tg26 mice, primarily through mechanical pain pathways. As the gut microbiome may be involved in chronic pain persistence, microbiome analysis indicated distinct bacterial community changes between WT and Tg26 mice as well as morphine- and ART-induced microbial changes in the Tg26 mice. This study reveals the Tg26 mouse model to be a relevant system that can help elucidate the pathogenic mechanisms of the opioid- and ART-induced exacerbation of HIV-associated pain. Our results shed light on the intricate interplay between HIV infection, ART, opioid use, and the gut microbiome in chronic pain development. They hold implications for understanding the mechanisms underlying HIV-associated pain and microbial dysbiosis, with potential for future research focused on prevention and treatment strategies.
Collapse
Affiliation(s)
- Danielle Antoine
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Irina Chupikova
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Richa Jalodia
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Praveen Kumar Singh
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sabita Roy
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
28
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
29
|
Hayward KL, Weersink RA, Bernardes CM, McIvor C, Rahman T, Skoien R, Clark PJ, Stuart KA, Hartel G, Valery PC, Powell EE. Changing Prevalence of Medication Use in People with Cirrhosis: A Retrospective Cohort Study Using Pharmaceutical Benefits Scheme Data. Drugs Real World Outcomes 2023; 10:605-618. [PMID: 37828144 PMCID: PMC10730495 DOI: 10.1007/s40801-023-00390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Safe and appropriate use of medicines is essential to improve health outcomes in cirrhosis. However, little is known about the number and type of medicines dispensed to people with cirrhosis in Australia, as this predominantly occurs in the community. We aimed to characterise the prescriptions dispensed to people with cirrhosis and explore changes in the use of medication groups over time. METHODS Pharmaceutical Benefits Scheme data between 1 January 2016 and 30 June 2020 was extracted for consenting CirCare participants (multi-site, prospective, observational study). Prescriptions dispensed from cirrhosis diagnosis until liver transplant or death were included. Safety classifications for dispensed medicines were defined using published evidence-based recommendations. The pattern of medication use was analysed in 6-monthly time intervals. Generalised estimating equations models were used to estimate the change in consumption of medicines over time. RESULTS Five hundred twenty-two patients (mean age 60 years, 70% male, 34% decompensated at recruitment) were dispensed 89,615 prescriptions during the follow-up period, representing a median of 136 [interquartile range (IQR) 62-237] prescriptions and a median of 16 (IQR 11-23) unique medicines per patient (total n = 9306 medicines). The most commonly used medicines were proton pump inhibitors (PPIs) (dispensed at least once to 73% of patients), opioids (68%) and antibiotics (89%). Polypharmacy was prevalent, with 59-69% of observed participants in each time period dispensed five or more unique medicines. Prescription medication use increased over time (p < 0.001) independently of age, comorbidity burden and liver disease aetiology. The likelihood of taking PPIs, opioids, antidepressants and inhaled medicines also increased with each successive time period. Use of angiotensin therapies, metformin and statins differed over time between patients with compensated versus decompensated cirrhosis. General practitioners prescribed 69% of dispensed medicines, including a higher proportion of 'unsafe' and 'safety unknown' medicines compared with consultants/specialists (p < 0.001). CONCLUSIONS Polypharmacy is common in people with cirrhosis and some medication groups may be overused. Pharmacovigilance is required and future medication safety efforts should target high-risk prescribing practices and promote medication rationalisation in the community.
Collapse
Affiliation(s)
- Kelly L Hayward
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Rianne A Weersink
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands
| | | | - Carolyn McIvor
- Department of Gastroenterology and Hepatology, Logan Hospital, Meadowbrook, QLD, Australia
| | - Tony Rahman
- Gastroenterology and Hepatology Department, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Richard Skoien
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Paul J Clark
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Gastroenterology and Hepatology, Mater Hospital, South Brisbane, QLD, Australia
| | - Katherine A Stuart
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
- School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Elizabeth E Powell
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia.
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
30
|
Taboun ZS, Sadeghi J. The bidirectional relationship between opioids and the gut microbiome: Implications for opioid tolerance and clinical interventions. Int Immunopharmacol 2023; 125:111142. [PMID: 37918085 DOI: 10.1016/j.intimp.2023.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Opioids are widely used in treating patients with acute and chronic pain; however, this class of drugs is also commonly abused. Opioid use disorder and associated overdoses are becoming more prevalent as the opioid crisis continues. Chronic opioid use is associated with tolerance, which decreases the efficacy of opioids over time, but also puts individuals at risk of fatal overdoses. Therefore, it is essential to identify strategies to reduce opioid tolerance in those that use these agents. The gut microbiome has been found to play a critical role in opioid tolerance, with opioids causing dysbiosis of the gut, and changes in the gut microbiome impacting opioid tolerance. These changes in turn have a detrimental effect on the gut microbiome, creating a positive feedback cycle. We review the bidirectional relationship between the gut microbiome and opioid tolerance, discuss the role of modulation of the gut microbiome as a potential therapeutic option in opioid-induced gut dysbiosis, and suggest opportunities for further research and clinical interventions.
Collapse
Affiliation(s)
- Zahra S Taboun
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Javad Sadeghi
- School of Engineering, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
| |
Collapse
|
31
|
Kolli U, Jalodia R, Moidunny S, Singh PK, Ban Y, Tao J, Cantu GN, Valdes E, Ramakrishnan S, Roy S. Multi-omics analysis revealing the interplay between gut microbiome and the host following opioid use. Gut Microbes 2023; 15:2246184. [PMID: 37610102 PMCID: PMC10448978 DOI: 10.1080/19490976.2023.2246184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Opioid crisis is an ongoing epidemic since the past several decades in the United States. Opioid use-associated microbial dysbiosis is emerging as a key regulator of intestinal homeostasis and behavioral responses to opioid. However, the mechanistic insight into the role of microbial community in modulating host response is unavailable. To uncover the role of opioid-induced dysbiosis in disrupting intestinal homeostasis we utilized whole genome sequencing, untargeted metabolomics, and mRNA sequencing to identify changes in microbiome, metabolome, and host transcriptome respectively. Morphine treatment resulted in significant expansion of Parasuterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and depletion of Lactobacillus johnsonii. These changes correlated with alterations in lipid metabolites and flavonoids. Significant alteration in microbial metabolism (metabolism of lipids, amino acids, vitamins and cofactors) and increased expression of virulence factors and biosynthesis of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) were observed in microbiome of morphine-treated animals. In concurrence with changes in microbiome and metabolome extensive changes in innate and adaptive immune response, lipid metabolism, and gut barrier dysfunction were observed in the host transcriptome. Microbiome depleted mice displayed lower levels of inflammation, immune response and tissue destruction compared to mice harboring a dysbiotic microbiome in response to morphine treatment, thus establishing dysbiotic microbiome as mediator of morphine gut pathophysiology. Integrative analysis of multi-omics data highlighted the associations between Parasutterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and altered levels of riboflavin, flavonoids, and lipid metabolites including phosphocholines, carnitines, bile acids, and ethanolamines with host gene expression changes involved in inflammation and barrier integrity of intestine. Omic analysis also highlighted the role of probiotic bacteria Lactobacillus johnsonii, metabolites flavonoids and riboflavin that were depleted with morphine as important factors for intestinal homeostasis. This study presents for the first time ever an interactive view of morphine-induced changes in microbial metabolism, strain level gut microbiome analysis and comprehensive view of changes in gut transcriptome. We also identified areas of potential therapeutic interventions to limit microbial dysbiosis and present a unique resource to the opioid research community.
Collapse
Affiliation(s)
- Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Praveen Kumar Singh
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Fl, USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eridania Valdes
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
Chen J, Chen S, Luo H, Long S, Yang X, He W, Wu W, Wang S. The negative effect of concomitant medications on immunotherapy in non-small cell lung cancer: An umbrella review. Int Immunopharmacol 2023; 124:110919. [PMID: 37722262 DOI: 10.1016/j.intimp.2023.110919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Conflicting results about the effect of concomitant medications on immunotherapy in non-small cell lung cancer (NSCLC) were reported by many meta-analyses (MAs), and the certainty of evidence linking concomitant medications with immunotherapy efficacy has not been quantified, which may cause some evidence to be misinterpreted. METHODS Four databases including Embase, Cochrane Library, PubMed, and Web of Science were searched from inception to January 2023 in English. Based on prospective or retrospective clinical controlled trials including immunotherapy with concomitant medications or not in NSCLC, quantitative MAs reporting the efficacy of immunotherapy with binary direct comparison and enough extractable data were collected. The methodological quality, reporting quality, and risk of bias of included MAs were evaluated respectively. New meta-analyses were conducted and their evidence certainty was classified as nonsignificant, weak, suggestive, highly suggestive, or convincing. RESULTS Fifteen MAs with 5 medications were included. After being assessed by AMSTAR-2, PRISMA, and ROBIS, the major shortcomings were focused on the registration of protocol, literature retrieval or data extraction, implementation of sensitivity analysis or evidence certainty assessment, and incomplete reporting in the section of method and result. New pooled analyses indicated that antibiotics (HR = 1.545[1.318-1.811]), steroids (HR = 1.784[1.520-2.093]), proton pump inhibitors (PPIs) (HR = 1.303[1.048-1.621]) and opioids (HR = 1.910[1.213-3.006]) could shorten overall survival (OS) in patients with NSCLC receiving immunotherapy. Besides, antibiotics (HR = 1.285[1.129-1.462]) and steroids (HR = 1.613[1.315-1.979]) were harmful to progression-free survival (PFS) in these patients significantly. No negative effect was found in nonsteroidal anti-inflammatory drugs and the objective response rate of all medications. High-level evidence suggested that using PPIs before or after the initiation of immunotherapy and using steroids during the first-course immunotherapy could weaken the OS of patients with NSCLC. Meanwhile, the negative effects of antibiotics and opioids on OS or PFS were only supported by moderate or low-level evidence. CONCLUSIONS The concurrent usage of PPIs or steroids adversely affects the survival of patients with NSCLC receiving immunotherapy. Future investigations are required to ascertain whether these adverse effects are primarily attributed to the comorbidities or the concurrent medications.
Collapse
Affiliation(s)
- Jixin Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Shuqi Chen
- Department of Acupuncture, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Huiyan Luo
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Shunqin Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Xiaobing Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Wenfeng He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Wanyin Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China.
| | - Sumei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China.
| |
Collapse
|
33
|
Yan P, Ma H, Tian W, Liu J, Yan X, Ma L, Wei S, Zhu J, Zhu Y, Lai J. Methadone maintenance treatment is more effective than compulsory detoxification in addressing gut microbiota dysbiosis caused by heroin abuse. Front Microbiol 2023; 14:1283276. [PMID: 37954240 PMCID: PMC10635210 DOI: 10.3389/fmicb.2023.1283276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Heroin use disorder (HUD) is commonly accompanied by gut dysbiosis, but the roles of gut microbiota in HUD treatment, such as compulsory detoxification and methadone maintenance treatment (MMT), remain poorly understood. Methods In this study, we performed 16 s rDNA and whole metagenome sequencing to analyze the gut microbial profiles of HUD patients undergoing heroin addiction, heroin withdrawal (compulsory detoxification), and MMT. Results Our findings revealed that, compared to healthy controls, microbial diversity was significantly decreased in HUD patients who were in a state of heroin addiction and withdrawal, but not in those receiving MMT. We observed significant alterations in 10 bacterial phyla and 20 bacterial families in HUD patients, while MMT partially restored these changes. Whole metagenome sequencing indicated gut microbiota functions were significantly disrupted in HUD patients experiencing heroin addiction and withdrawal, but MMT was found to almost reverse these dysfunctions. In addition, we identified 24 featured bacteria at the genus level that could be used to effectively distinguish between healthy individuals and those with heroin addiction, heroin withdrawal, or receiving MMT. Furthermore, we found the relative abundance of Actinomyces, Turicibacter and Weissella were positively associated with the Hamilton Depression Scale score in different states of HUD patients. Discussion This study provides evidence from the gut microbiota perspective that MMT is a more effective approach than compulsory detoxification for HUD treatment.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Wenrong Tian
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Yan
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Lei Ma
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhu
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Kouraki A, Kelly A, Vijay A, Gohir S, Astbury S, Georgopoulos V, Millar B, Walsh DA, Ferguson E, Menni C, Valdes AM. Reproducible microbiome composition signatures of anxiety and depressive symptoms. Comput Struct Biotechnol J 2023; 21:5326-5336. [PMID: 37954149 PMCID: PMC10637863 DOI: 10.1016/j.csbj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The gut microbiome is a significant contributor to mental health, with growing evidence linking its composition to anxiety and depressive disorders. Gut microbiome composition is associated with signs of anxiety and depression both in clinically diagnosed mood disorders and subclinically in the general population and may be influenced by dietary fibre intake and the presence of chronic pain. We provide an update of current evidence on the role of gut microbiome composition in depressive and anxiety disorders or symptoms by reviewing available studies. Analysing data from three independent cohorts (osteoarthritis 1 (OA1); n = 46, osteoarthritis 2 (OA2); n = 58, and healthy controls (CON); n = 67), we identified microbial composition signatures of anxiety and depressive symptoms at genus level and cross-validated our findings performing meta-analyses of our results with results from previously published studies. The genera Bifidobacterium (fixed-effect beta (95% CI) = -0.22 (-0.34, -0.10), p = 3.90e-04) and Lachnospiraceae NK4A136 group (fixed-effect beta (95% CI) = -0.09 (-0.13, -0.05), p = 2.53e-06) were found to be the best predictors of anxiety and depressive symptoms, respectively, across our three cohorts and published literature taking into account demographic and lifestyle covariates, such as fibre intake. The association with anxiety was robust in accounting for heterogeneity between cohorts and supports previous observations of the potential prophylactic effect of Bifidobacterium against anxiety symptoms.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Vasileios Georgopoulos
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Bonnie Millar
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - David Andrew Walsh
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Eamonn Ferguson
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Ana M. Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| |
Collapse
|
35
|
Li H, Zhang L, Yang F, Zhao R, Li X, Li H. Impact of concomitant medications on the efficacy of immune checkpoint inhibitors: an umbrella review. Front Immunol 2023; 14:1218386. [PMID: 37841249 PMCID: PMC10570520 DOI: 10.3389/fimmu.2023.1218386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Cancer is a major global health concern, and immune checkpoint inhibitors (ICIs) offer a promising treatment option for cancer patients. However, the efficacy of ICIs can be influenced by various factors, including the use of concomitant medications. Methods We searched databases (PubMed, Embase, Cochrane Library, Web of Science) for systematic reviews and meta-analyses for systematic reviews and meta-analyses on the impact of concomitant medications on ICIs efficacy, published from inception to January 1, 2023. We evaluated the methodological quality of the included meta-analyses, and re-synthesized data using a random-effects model and evidence stratification. Results We included 23 publications, comprising 11 concomitant medications and 112 associations. Class II-IV evidence suggested that antibiotics have a negative impact on ICIs efficacy. However, ICIs efficacy against melanoma, hepatocellular carcinoma, and esophageal squamous cell carcinoma was not affected, this effect was related to the exposure window (class IV). Class III evidence suggested that proton pump inhibitors have a negative impact on ICIs efficacy; nevertheless, the efficacy against melanoma and renal cell carcinoma was not affected, and the effect was related to exposure before the initiation of ICIs therapy (class II). Although class II/III evidence suggested that steroids have a negative impact, this effect was not observed when used for non-cancer indications and immune-related adverse events (class IV). Class IV evidence suggested that opioids reduce ICIs efficacy, whereas statins and probiotics may improve ICIs efficacy. ICIs efficacy was not affected by histamine 2 receptor antagonists, aspirin, metformin, β-blockers, and nonsteroidal anti-inflammatory agents. Conclusion Current evidence suggests that the use of antibiotics, PPIs, steroids, and opioids has a negative impact on the efficacy of ICIs. However, this effect may vary depending on the type of tumor, the timing of exposure, and the intended application. Weak evidence suggests that statins and probiotics may enhance the efficacy of ICIs. Aspirin, metformin, β-blockers, and NSAIDs do not appear to affect the efficacy of ICIs. However, caution is advised in interpreting these results due to methodological limitations. Systematic review registration https://www.crd.york.ac.uk/PROSPERO,identifier, CRD42022328681.
Collapse
Affiliation(s)
- Honglin Li
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lei Zhang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feiran Yang
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiurong Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huijie Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
36
|
Kolli U, Roy S. The role of the gut microbiome and microbial metabolism in mediating opioid-induced changes in the epigenome. Front Microbiol 2023; 14:1233194. [PMID: 37670983 PMCID: PMC10475585 DOI: 10.3389/fmicb.2023.1233194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
The current opioid pandemic is a major public health crisis in the United States, affecting millions of people and imposing significant health and socioeconomic burdens. Preclinical and clinical research over the past few decades has delineated certain molecular mechanisms and identified various genetic, epigenetic, and environmental factors responsible for the pathophysiology and comorbidities associated with opioid use. Opioid use-induced epigenetic modifications have been identified as one of the important factors that mediate genetic changes in brain regions that control reward and drug-seeking behavior and are also implicated in the development of tolerance. Recently, it has been shown that opioid use results in microbial dysbiosis, leading to gut barrier disruption, which drives systemic inflammation, impacting the perception of pain, the development of analgesic tolerance, and behavioral outcomes. In this review, we highlight the potential role of microbiota and microbial metabolites in mediating the epigenetic modifications induced by opioid use.
Collapse
Affiliation(s)
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
37
|
Lewin-Epstein O, Jaques Y, Feldman MW, Kaufer D, Hadany L. Evolutionary modeling suggests that addictions may be driven by competition-induced microbiome dysbiosis. Commun Biol 2023; 6:782. [PMID: 37495841 PMCID: PMC10372008 DOI: 10.1038/s42003-023-05099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Recent studies revealed mechanisms by which the microbiome affects its host's brain, behavior and wellbeing, and that dysbiosis - persistent microbiome-imbalance - is associated with the onset and progress of various chronic diseases, including addictive behaviors. Yet, understanding of the ecological and evolutionary processes that shape the host-microbiome ecosystem and affect the host state, is still limited. Here we propose that competition dynamics within the microbiome, associated with host-microbiome mutual regulation, may promote dysbiosis and aggravate addictive behaviors. We construct a mathematical framework, modeling the dynamics of the host-microbiome ecosystem in response to alterations. We find that when this ecosystem is exposed to substantial perturbations, the microbiome may shift towards a composition that reinforces the new host state. Such a positive feedback loop augments post-perturbation imbalances, hindering attempts to return to the initial equilibrium, promoting relapse episodes and prolonging addictions. We show that the initial microbiome composition is a key factor: a diverse microbiome enhances the ecosystem's resilience, whereas lower microbiome diversity is more prone to lead to dysbiosis, exacerbating addictions. This framework provides evolutionary and ecological perspectives on host-microbiome interactions and their implications for host behavior and health, while offering verifiable predictions with potential relevance to clinical treatments.
Collapse
Affiliation(s)
- Ohad Lewin-Epstein
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Yanabah Jaques
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
38
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
39
|
Satish S, Abu Y, Gomez D, Kumar Dutta R, Roy S. HIV, opioid use, and alterations to the gut microbiome: elucidating independent and synergistic effects. Front Immunol 2023; 14:1156862. [PMID: 37168868 PMCID: PMC10164749 DOI: 10.3389/fimmu.2023.1156862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
Background The microbiome is essential to immune development, defense against pathogens, and modulation of inflammation. Microbial dysbiosis has been reported in various diseases including human immunodeficiency virus (HIV) and opioid use disorder (OUD). Notably, people living with HIV (PLWH) have been reported to both have higher rates of OUD and use opioids at higher rates than the general public. Thus, studying gut microbial alterations in people living with HIV and with OUD could elucidate mechanisms pertaining to how these conditions both shape and are shaped by the microbiome. However, to date few studies have investigated how HIV and OUD in combination impact the microbiome. Aim of review Here, we review previous studies outlining interactions between HIV, opioid use, and microbial dysbiosis and describe attempts to treat this dysbiosis with fecal microbial transplantation, probiotics, and dietary changes. Key scientific concepts of review While the limited number of studies prevent overgeneralizations; accumulating data suggest that HIV and opioid use together induce distinct alterations in the gut microbiome. Among the three existing preclinical studies of HIV and opioid use, two studies reported a decrease in Lachnospiraceae and Ruminococcaceae, and one study reported a decrease in Muribaculaceae in the combined HIV and opioid group relative to HIV-alone, opioid-alone, or control groups. These bacteria are known to modulate immune function, decrease colonic inflammation, and maintain gut epithelial barrier integrity in healthy individuals. Accordingly, modulation of the gut microbiome to restore gut homeostasis may be attempted to improve both conditions. While mixed results exist regarding treating dysbiosis with microbial restoration in PLWH or in those with opioid dependency, larger well-defined studies that can improve microbial engraftment in hosts hold much promise and should still be explored.
Collapse
Affiliation(s)
- Sanjana Satish
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yaa Abu
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Gomez
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajib Kumar Dutta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
40
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
41
|
He L, Yang BZ, Ma YJ, Wen L, Liu F, Zhang XJ, Liu TQ. Differences in clinical features and gut microbiota between individuals with methamphetamine casual use and methamphetamine use disorder. Front Cell Infect Microbiol 2023; 13:1103919. [PMID: 36909722 PMCID: PMC9996337 DOI: 10.3389/fcimb.2023.1103919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Background The transition from methamphetamine (MA) casual use (MCU) to compulsive use is enigmatic as some MA users can remain in casual use, but some cannot. There is a knowledge gap if gut microbiota (GM) play a role in differing MCU from MA use disorder (MUD). We aimed to investigate the clinical features and GM differences between individuals with MCU and MUD. Method We recruited two groups of MA users -MCU and MUD - and matched them according to age and body mass index (n=21 in each group). Participants were accessed using the Semi-Structured Assessment for Drug Dependence and Alcoholism, and their fecal samples were undergone 16S ribosomal DNA sequencing. We compared the hosts' clinical features and GM diversity, composition, and structure (represented by enterotypes) between the two groups. We have identified differential microbes between the two groups and performed network analyses connecting GM and the clinical traits. Result Compared with the casual users, individuals with MUD had higher incidences of MA-induced neuropsychiatric symptoms (e.g., paranoia, depression) and withdrawal symptoms (e.g., fatigue, drowsiness, and increased appetite), as well as stronger cravings for and intentions to use MA, and increased MA tolerance. The GM diversity showed no significant differences between the two groups, but four genera (Halomonas, Clostridium, Devosia, and Dorea) were enriched in the individuals with MUD (p<0.05). Three distinct enterotypes were identified in all MA users, and Ruminococcus-driven enterotype 2 was dominant in individuals with MUD compared to the MCU (61.90% vs. 28.60%, p=0.03). Network analysis shows that Devosia is the hub genus (hub index = 0.75), which is not only related to the counts of the MUD diagnostic criteria (ρ=0.40; p=0.01) but also to the clinical features of MA users such as reduced social activities (ρ=0.54; p<0.01). Devosia is also associated with the increased intention to use MA (ρ=0.48; p<0.01), increased MA tolerance (ρ=0.38; p=0.01), craving for MA (ρ=0.37; p=0.01), and MA-induced withdrawal symptoms (p<0.05). Conclusion Our findings suggest that Ruminococcus-driven enterotype 2 and the genera Devosia might be two influential factors that differentiate MA casual use from MUD, but further studies are warranted.
Collapse
Affiliation(s)
- Li He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yue-Jiao Ma
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Wen
- Department of Internal Medicine, Section of Endocrinology & Core Laboratory of Yale Center for Clinical Investigation, Yale University School of Medicine, New Haven, CT, United States
| | - Feng Liu
- Compulsory Detoxification Center of Changsha Public Security Bureau, Changsha, Hunan, China
| | - Xiao-Jie Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tie-Qiao Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Abstract
Hepatic encephalopathy (HE) is brain dysfunction secondary to liver insufficiency or portosystemic shunting. HE is a major burden on patients and caregivers, impairs quality of life and is associated with higher mortality. Overt HE is a clinical diagnosis while Covert HE, needs specialized diagnostic strategies. Mainstay of treatment of HE is nonabsorbable disaccharides such as lactulose as well as rifaximin; however, investigational therapies are discussed in this review. Better tools are needed to prognosticate which patients will go on to develop HE but microbiome and metabolomic-driven strategies are promising. Here we review methods to prevent the HE development and admissions.
Collapse
|
43
|
Rubin JB, Lai JC, Shui AM, Hohmann SF, Auerbach A. Cirrhosis Inpatients Receive More Opioids and Fewer Nonopioid Analgesics Than Patients Without Cirrhosis. J Clin Gastroenterol 2023; 57:48-56. [PMID: 34653064 PMCID: PMC9008074 DOI: 10.1097/mcg.0000000000001624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022]
Abstract
GOALS/BACKGROUND Pain is common among cirrhosis patients, particularly those hospitalized with acute illness. Managing pain in this population is challenging due to concern for adverse events and lack of guidelines for analgesic use. We sought to characterize analgesic use among inpatients with cirrhosis compared with matched noncirrhosis controls, as well as hospital-level variation in prescribing patterns. METHODS We utilized the Vizient Clinical Database, which includes clinical and billing data from hospitalizations at >500 US academic medical centers. We identified cirrhosis patients hospitalized in 2017-2018, and a matched cohort of noncirrhosis patients. Types of analgesic given-acetaminophen (APAP), nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, and adjuvants (eg, gabapentinoids, antidepressants) were defined from inpatient prescription records. Conditional logistic regression was used to associate cirrhosis diagnosis with analgesic use. RESULTS Of 116,363 cirrhosis inpatients, 83% received at least 1 dose of an analgesic and 58% had regular inpatient analgesic use, rates that were clinically similar to noncirrhosis controls. Cirrhosis inpatients were half as likely to receive APAP (26% vs. 42%, P <0.01) or NSAIDs (3% vs. 7%, P <0.01), but were more likely to receive opioids (59% vs. 54%, P <0.01), particularly decompensated patients (60%). There was notable variation in analgesic prescribing patterns between hospitals, especially among cirrhosis patients. CONCLUSIONS Analgesic use was common among inpatients, with similar rates among patients with and without cirrhosis. Cirrhosis patients-particularly decompensated patients-were less likely to receive APAP and NSAIDs and more likely to receive opioid analgesics. Because of lack of evidence-based guidance for management of cirrhosis patients with pain, providers may avoid nonopioid analgesics due to perceived risks and consequently may overutilize opioids in this high-risk population.
Collapse
Affiliation(s)
- Jessica B Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine
| | - Jennifer C Lai
- Division of Gastroenterology and Hepatology, Department of Medicine
| | - Amy M Shui
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Samuel F Hohmann
- Vizient Inc
- Department of Health Systems Management, Rush University, Chicago, IL
| | | |
Collapse
|
44
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Zhao K, Ni Z, Qin Y, Zhu R, Yu Z, Ma Y, Chen W, Sun Q, Wang Z, Liu Y, Zhao J, Peng W, Hu S, Shi J, Lu L, Sun H. Disrupted diurnal oscillations of the gut microbiota in patients with alcohol dependence. Front Cell Infect Microbiol 2023; 13:1127011. [PMID: 36875518 PMCID: PMC9983756 DOI: 10.3389/fcimb.2023.1127011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Background Patients with alcohol dependence (AD) can exhibit gut dysbacteria. Dysbacteria may co-occur with disruptions of circadian rhythmicity of the gut flora, which can aggravate AD. Herein, this study aimed to investigate diurnal oscillations of the gut microbiota in AD patients. Methods Thirty-two patients with AD, based on the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, and 20 healthy subjects were enrolled in this study. Demographic and clinical data were collected by self-report questionnaires. Fecal samples at 7:00 AM, 11:00 AM, 3:00 PM, and 7:00 PM were collected from each subject. 16S rDNA sequencing was conducted. Wilcoxon and Kruskal-Wallis tests were performed to characterize alterations and oscillations of the gut microbiota. Results We found that β-diversity of the gut microbiota in AD patients oscillated diurnally compared with healthy subjects (p = 0.01). Additionally, 0.66% of operational taxonomic units oscillated diurnally in AD patients versus 1.68% in healthy subjects. At different taxonomic levels, bacterial abundance oscillated diurnally in both groups, such as Pseudomonas and Prevotella pallens (all p < 0.05). β-diversity of the gut microbiota in AD patients with high daily alcohol consumption, high-level cravings, short AD durations, and mild withdrawal symptoms oscillated diurnally compared with other AD patients (all p < 0.05). Conclusion The gut microbiota in AD patients exhibits disruptions of diurnal oscillation, which may provide novel insights into mechanisms of AD and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Kangqing Zhao
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhaojun Ni
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ying Qin
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Ran Zhu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhoulong Yu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yundong Ma
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Wenhao Chen
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qiqing Sun
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhong Wang
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yanjing Liu
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Jingwen Zhao
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Wenjuan Peng
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Sifan Hu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| | - Lin Lu
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hongqiang Sun
- NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- *Correspondence: Hongqiang Sun,
| |
Collapse
|
46
|
Ren M, Lotfipour S. Antibiotic Knockdown of Gut Bacteria Sex-Dependently Enhances Intravenous Fentanyl Self-Administration in Adult Sprague Dawley Rats. Int J Mol Sci 2022; 24:409. [PMID: 36613853 PMCID: PMC9820294 DOI: 10.3390/ijms24010409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Communication between the brain and gut bacteria impacts drug- and addiction-related behaviors. To investigate the role of gut microbiota on fentanyl reinforcement and reward, we depleted gut bacteria in adult Sprague Dawley male and female rats using an oral, nonabsorbable antibiotic cocktail and allowed rats to intravenously self-administer fentanyl on an escalating schedule of reinforcement. We found that antibiotic treatment enhanced fentanyl self-administration in males, but not females, at the lowest schedule of reinforcement (i.e., fixed ratio 1). Both males and females treated with antibiotics self-administered greater amounts of fentanyl at higher schedules of reinforcement. We then replete microbial metabolites via short-chain fatty acid administration to evaluate a potential mechanism in gut-brain communication and found that restoring metabolites decreases fentanyl self-administration back to controls at higher fixed ratio schedules of reinforcement. Our findings highlight an important relationship between the knockdown and rescue of gut bacterial metabolites and fentanyl self-administration in adult rats, which provides support for a significant relationship between the gut microbiome and opioid use. Further work in this field may lead to effective, targeted treatment interventions in opioid-related disorders.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Emergency Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
47
|
Lin L, Lin J, Qiu J, Wei F, Bai X, Ma W, Zeng J, Lin D. Gut microbiota alterations may increase the risk of prescription opioid use, but not vice versa: A two-sample bi-directional Mendelian randomization study. Front Microbiol 2022; 13:994170. [PMID: 36483210 PMCID: PMC9722965 DOI: 10.3389/fmicb.2022.994170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Gut microbiota alterations are strongly associated with prescription opioid use (POU) and multisite chronic pain (MCP). However, whether or not these associations are causal remains unknown. Therefore, we aim to explore the causal relationships between them comprehensively. METHODS A two-sample bi-directional Mendelian randomization was conducted to assess the potential associations between gut microbiota and POU/MCP using summary level Genome-wide association studies (GWASs) that were based on predominantly European ancestry. RESULTS Potential causal effects were identified between seven host genetic-driven traits of gut microbiota on POU, including Adlercreutzia, Allisonella, Dialister, Anaerofilum, Anaerostipes, ChristensenellaceaeR.7group, and LachnospiraceaeNC2004group at the genus level (p < 0.05) by the Inverse-variance weighted method, with significant causal effects of ChristensenellaceaeR.7group and Allisonella on POU (p < 0.025). A total of five genetically greater abundance of gut microbiota traits were identified to be possibly related to the level of MCP (p < 0.05), including genus ErysipelotrichaceaeUCG003, family Clostridiaceae1, order Gastranaerophilales, order Actinomycetales, and family Actinomycetaceae. In the other direction, no clear evidence was found to support a significant causal relationship between POU and gut microbiota, as well as MCP and gut microbiota. In addition, evidence was also provided for the relationship between triacylglycerols and diacylglycerol elevation, and an increased risk of POU and MCP. No evidence was found across various sensitivity analyses, including reverse causality, pleiotropy, and heterogeneity. CONCLUSION The findings from this study provide robust evidence that gut microbiota alterations may be a risk of POU/MCP, but not vice versa.
Collapse
Affiliation(s)
- Liling Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Lin
- Big Data Laboratory, Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxian Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Lin L, Lin J, Qiu J, Wei F, Bai X, Ma W, Zeng J, Lin D. Gut microbiota alterations may increase the risk of prescription opioid use, but not vice versa: A two-sample bi-directional Mendelian randomization study. Front Microbiol 2022; 13:994170. [PMID: 36483210 DOI: 10.3389/fmicb.2022.994170.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Gut microbiota alterations are strongly associated with prescription opioid use (POU) and multisite chronic pain (MCP). However, whether or not these associations are causal remains unknown. Therefore, we aim to explore the causal relationships between them comprehensively. METHODS A two-sample bi-directional Mendelian randomization was conducted to assess the potential associations between gut microbiota and POU/MCP using summary level Genome-wide association studies (GWASs) that were based on predominantly European ancestry. RESULTS Potential causal effects were identified between seven host genetic-driven traits of gut microbiota on POU, including Adlercreutzia, Allisonella, Dialister, Anaerofilum, Anaerostipes, ChristensenellaceaeR.7group, and LachnospiraceaeNC2004group at the genus level (p < 0.05) by the Inverse-variance weighted method, with significant causal effects of ChristensenellaceaeR.7group and Allisonella on POU (p < 0.025). A total of five genetically greater abundance of gut microbiota traits were identified to be possibly related to the level of MCP (p < 0.05), including genus ErysipelotrichaceaeUCG003, family Clostridiaceae1, order Gastranaerophilales, order Actinomycetales, and family Actinomycetaceae. In the other direction, no clear evidence was found to support a significant causal relationship between POU and gut microbiota, as well as MCP and gut microbiota. In addition, evidence was also provided for the relationship between triacylglycerols and diacylglycerol elevation, and an increased risk of POU and MCP. No evidence was found across various sensitivity analyses, including reverse causality, pleiotropy, and heterogeneity. CONCLUSION The findings from this study provide robust evidence that gut microbiota alterations may be a risk of POU/MCP, but not vice versa.
Collapse
Affiliation(s)
- Liling Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Lin
- Big Data Laboratory, Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxian Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Rogal SS, Chinman MJ, DeMonte W, Gibson S, Hoyt-Trapp S, Klima GJ, Jonassaint NL, Liebschutz JM, Kraemer KL, Merlin J. Using Intervention Mapping to Develop a Novel Pain Self-Management Intervention for People with Cirrhosis. Dig Dis Sci 2022; 67:5063-5078. [PMID: 35147816 DOI: 10.1007/s10620-022-07380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/02/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chronic pain is common among patients with cirrhosis and is challenging to treat. While promising, pain self-management (PSM) interventions have not been tailored to this population's needs. AIMS To design a PSM intervention for patients with cirrhosis. METHODS Semi-structured interviews with 17 patients with cirrhosis, 12 hepatologists, and 6 administrators from two medical centers were conducted to inform a rigorous, structured intervention mapping (IM) process. Qualitative content analysis was guided by social cognitive theory (SCT) and the Consolidated Framework for Implementation Research (CFIR) and incorporated into intervention development. A planning group met regularly throughout the intervention, to reach consensus about how to use data and theory to develop the intervention through IM. RESULTS Participants described barriers to PSM behaviors, including the absence of simple, evidence-based interventions for pain for patients with cirrhosis, inadequate provider knowledge, time, and training, and lack of champions, funding, and communication. Patients described high motivation to treat pain using behavioral methods including meditation, prayer, and exercise. The intervention was designed to address barriers to PSM behaviors for patients with cirrhosis, using behavior change methods that address knowledge, self-efficacy, and outcome expectations. The LEAP (Liver Education About Pain) intervention is a 12-week, modular intervention delivered by phone via individual and group sessions with a health coach. CONCLUSIONS People with cirrhosis, hepatologists, and administrators informed this theory-driven, tailored PSM intervention, which was designed to be implementable in the real world.
Collapse
Affiliation(s)
- Shari S Rogal
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, University Drive (151C), Pittsburgh, PA, 15240, USA.
| | - Matthew J Chinman
- Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, University Drive (151C), Pittsburgh, PA, 15240, USA.,RAND Corporation, Pittsburgh, PA, 15213, USA
| | - William DeMonte
- Virginia Mason Franciscan Health, Bonney Lake, WA, 98391, USA
| | - Sandra Gibson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, University Drive (151C), Pittsburgh, PA, 15240, USA
| | | | - Gloria J Klima
- Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, University Drive (151C), Pittsburgh, PA, 15240, USA
| | - Naudia L Jonassaint
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jane M Liebschutz
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kevin L Kraemer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jessica Merlin
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
50
|
Ustianowska K, Ustianowski Ł, Machaj F, Gorący A, Rosik J, Szostak B, Szostak J, Pawlik A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int J Mol Sci 2022; 23:13267. [PMID: 36362056 PMCID: PMC9659276 DOI: 10.3390/ijms232113267] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|