1
|
Lee SY, Kim JH, Song Y, Kim S, Kang HJ, Kim J, Lee YJ, Seo HR. Inhibition of 11β-hydroxysteroid dehydrogenase 1 alleviates pulmonary fibrosis through inhibition of endothelial-to-mesenchymal transition and M2 macrophage polarization by upregulating heme oxygenase-1. Cell Death Dis 2025; 16:196. [PMID: 40118823 PMCID: PMC11928689 DOI: 10.1038/s41419-025-07522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
The intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyzes the interconversion of active glucocorticoid (cortisol) and its intrinsically inert form (cortisone) in metabolic tissues. Although 11βHSD1 is considered a promising therapeutic target in metabolic disorders such as type 2 diabetes, obesity, and nonalcoholic steatohepatitis because of its hepatic functions, its roles in other tissues have received less attention. In this study, we show that the 11βHSD1-specific inhibitor J2H-1702 facilitates the reversion of endothelial-to-mesenchymal transition in multicellular lung spheroid models encapsulating the complex crosstalk among lung cancer cells, vascular endothelial cells, and macrophages. In vascular endothelial cells, J2H-1702 not only suppressed interleukin-1α (IL-1α) expression but also attenuated reactive oxygen species-induced DNA damage by upregulating heme oxygenase-1. Additionally, in macrophages, which are key regulators of fibrogenesis, inhibition of 11βHSD1 markedly reduced IL-1β expression, thereby modulating the pro-inflammatory phenotype of activated macrophages. In mouse models of pulmonary fibrosis, including a bleomycin-induced idiopathic model and a radiation-induced model, J2H-1702 alleviated pulmonary fibrosis and markedly improved the efficacy of nintedanib. Collectively, our data suggest that J2H-1702 holds promise as a clinical candidate for the treatment of pulmonary fibrosis associated with reactive oxygen species-induced DNA damage, endothelial-to-mesenchymal transition, and inflammatory responses.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ji-Hee Kim
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, 75 nowongu nowon gil, Seoul, 139-706, Korea
| | - Yeonhwa Song
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sanghwa Kim
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyo Jin Kang
- R&D center, J2H Biotech Inc., Saneop-ro 156 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16648, Republic of Korea
| | - Jason Kim
- R&D center, J2H Biotech Inc., Saneop-ro 156 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16648, Republic of Korea
| | - Yoon-Jin Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, 75 nowongu nowon gil, Seoul, 139-706, Korea
| | - Haeng Ran Seo
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
2
|
Lee D, Jung K, Lee J, Kang HJ, Lee JY, Kim J, Ham D, Cho J, Eom DW, Kang KS. Role of 11β-hydroxysteroid dehydrogenase type 1 inhibition in the antiobesity effect of J2H-1702 on adipocytes and a high-fat diet-induced NASH model. Eur J Pharmacol 2025; 989:177272. [PMID: 39809350 DOI: 10.1016/j.ejphar.2025.177272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored. This study compared the antiadipogenic effects of J2H-1702, elafibranor (PPARα/δ agonist), and BVT14225 (selective 11β-HSD1 inhibitor) using mouse 3T3-L1 pre-adipocytes. J2H-1702, elafibranor, and BVT14225 inhibited adipocyte differentiation and intracellular lipid accumulation in 3T3-L1 cells by downregulating phospho-extracellular signal-regulated kinase, extracellular signal-regulated kinase, phospho-c-Jun-N-terminal Kinase, c-Jun-N-terminal Kinase, phospho-P38 (P-P38), P38, CCAAT/enhancer-binding proteins alpha and β, peroxisome proliferator-activated receptor γ, and glucocorticoid receptor. Additionally, J2H-1702, elafibranor, and BVT14225 treatments effectively inhibited 11β-HSD1 activity, as revealed by cortisol concentrations, and inhibited cortisone-induced adipocyte differentiation and intracellular lipid accumulation in 3T3-L1 cells. These effects were associated with 11β-HSD1 protein inhibition. Furthermore, J2H-1702 and BVT14225 increased the expression of Akt and phosphoinositide 3-kinase involved in insulin resistance in 3T3L-1 adipocytes. In the LX-2 human hepatic stellate cell line, the relative expression of N-cadherin, 11β-HSD1, collagen1α (COLA1), α-actin of smooth muscle (α-SMA) genes in LX-2 activated with TGF-β increased significantly, and after treatment with J2H-1702, it was significantly reduced. The expression of E-cadherin is decreased in TGF-β-treated LX-2 cells and increased after treatment with J2H-1702. We tested the potential of J2H-1702 as a therapeutic agent for NASH using a high-fat diet-induced NASH model, with obeticholic acid, an FXR agonist, and elafibranor as reference drugs. All drugs significantly decreased the elevated triglyceride levels in the livers of high-fat, high-carbohydrate (HFHC-fed mice. The results may add to the benefits of targeting 11β-HSD1 inhibitors with antiadipogenic activity in developing a therapeutic agent for obesity treatment.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea
| | - Kiwon Jung
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Jaemin Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea
| | - Hyo Jin Kang
- J2H Biotech, B-210ho,142-10, Saneop-ro 156, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Ju Young Lee
- J2H Biotech, B-210ho,142-10, Saneop-ro 156, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Jason Kim
- J2H Biotech, B-210ho,142-10, Saneop-ro 156, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Dayeon Ham
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, South Korea; Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Dae-Woon Eom
- Department of Pathology, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, 210-711, South Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea.
| |
Collapse
|
3
|
Kim JE, Kim Y, Bae J, Yoon EL, Kim HS, Lee SR, Yoon TH, Jun DW. A novel 11β-HSD1 inhibitor ameliorates liver fibrosis by inhibiting the notch signaling pathway and increasing NK cell population. Arch Pharm Res 2025; 48:166-180. [PMID: 39954198 DOI: 10.1007/s12272-025-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates hepatic glucose output and is implicated in liver fibrosis. We aimed to investigate the anti-fibrotic effect of a novel 11β-HSD1 inhibitor in a thioacetamide (TAA)-induced liver fibrosis mouse model. Mice were administered TAA for 19 weeks and treated with 11β-HSD1 inhibitor for the last 9 weeks. Treatment with 11β-HSD1 inhibitor significantly reduced fibrosis area, alanine aminotransferase, and aspartate aminotransferase levels compared to the TAA-only group. Inhibition of 11β-HSD1 led to a decrease in intracellular cortisol levels, which suppressed the activation of hepatic stellate cells. RNA sequencing revealed significant downregulation of the Notch signaling pathway, including reduced expression of Notch ligands and receptors, as well as downstream genes. Furthermore, 11β-HSD1 inhibition enhanced NK cell-mediated immune responses, as indicated by the upregulation of NK cell-related genes and increased NK cell populations confirmed by mass cytometry. This increase in NK cell activity contributed to the clearance of activated HSCs and the attenuation of fibrosis. These findings suggest that 11β-HSD1 inhibition alleviates liver fibrosis through Notch pathway suppression and enhancement of NK cell-mediated immune responses. Our results support the therapeutic potential of a novel 11β-HSD1 inhibitor for treating liver fibrosis.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, Republic of Korea
- Department of Clinical Pharmacy, College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Jiwon Bae
- Department of Chemistry, College of Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eileen Laurel Yoon
- Department of Internal Medicine, Hanyang University School of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Hyun Sung Kim
- Department of Pathology, Hanyang University School of Medicine, Seoul, Republic of Korea
| | - Sung Ryol Lee
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea.
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Republic of Korea.
- Yoon Idea Lab. Co. Ltd, Seoul, Republic of Korea.
| | - Dae Won Jun
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea.
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, Republic of Korea.
- Department of Internal Medicine, Hanyang University School of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Rolan P, Seckl J, Taylor J, Harrison J, Maruff P, Woodward M, Mills R, Jaros M, Hilt D. Clinical Pharmacology and Approach to Dose Selection of Emestedastat, a Novel Tissue Cortisol Synthesis Inhibitor for the Treatment of Central Nervous System Disease. Clin Pharmacol Drug Dev 2025; 14:105-115. [PMID: 39748632 PMCID: PMC11788964 DOI: 10.1002/cpdd.1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
This review demonstrates the value of central pharmacodynamics (PD), including positron emission tomography (PET) and computerized cognitive testing, to supplement pharmacokinetic (PK) and peripheral PD for determining the target dose range for clinical efficacy testing of emestedastat, an 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor. Combined data from 6 clinical trials in cognitively normal volunteers and patients with Alzheimer disease included a population PK model, endocrine PD, a human PET trial (11β-HSD1 brain imaging), and computerized cognitive testing. PK and PET findings were similar in volunteers and patients with Alzheimer disease. PK modeling suggested that 20 mg daily would be optimal to maintain cerebrospinal fluid concentrations above the brain half maximal inhibitory concentration. However, subsequent PET scanning suggested that emestedastat doses of 10 or even 5 mg daily may be sufficient to adequately inhibit 11β-HSD1. With once-daily doses of 5-20 mg in cognitively normal, older volunteers, a consistent pattern of pro-cognitive benefit, without dose-response, was seen as improvement in attention and working memory but not episodic memory. Thus, emestedastat therapeutic activity might be attained at doses lower than those predicted from cerebrospinal fluid drug levels. Doses as low as 5 mg daily may be efficacious and were studied in subsequent trials.
Collapse
Affiliation(s)
- Paul Rolan
- Actinogen Medical LtdSydneyNew South WalesAustralia
- University of Adelaide Medical SchoolAdelaideSouth AustraliaAustralia
| | - Jonathan Seckl
- Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Jack Taylor
- Actinogen Medical LtdSydneyNew South WalesAustralia
| | - John Harrison
- Scottish Brain SciencesEdinburghUK
- King's CollegeLondonUK
- Alzheimercentrum, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Paul Maruff
- Florey Institute for Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Michael Woodward
- Medical Health and Cognitive Research Unit, Austin HealthHeidelberg Repatriation HospitalHeidelberg WestVictoriaAustralia
| | | | | | - Dana Hilt
- Actinogen Medical LtdSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
6
|
Ma H, Sui GY, Park JS, Wang F, Ma Y, Shin DS, Rustamov N, Jang JS, Chang SI, Lee J, Roh YS. Blockade of 11β-hydroxysteroid dehydrogenase type 1 ameliorates metabolic dysfunction-associated steatotic liver disease and fibrosis. Heliyon 2024; 10:e39534. [PMID: 39498052 PMCID: PMC11534184 DOI: 10.1016/j.heliyon.2024.e39534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key enzyme involved in the conversion of cortisone to active cortisol in the liver. Elevated cortisol levels can trigger oxidative stress, inflammation, and hepatocyte damage, highlighting the importance of 11β-HSD1 inhibition as a potential therapeutic approach. This study aimed to explore the effects of INU-101, an inhibitor of 11β-HSD1, on the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis. Our findings demonstrated that INU-101 effectively mitigated cortisol-induced lipid accumulation, reactive oxygen species generation, and hepatocyte apoptosis. Furthermore, 11β-HSD1 inhibition suppressed hepatic stellate cell activation by modulating β-catenin and phosphorylated SMAD2/3. INU-101 administration significantly reduced hepatic lipid accumulation and liver fibrosis in mice fed fast-food diet. This study suggests that INU-101 holds promise as a clinical candidate for treating MASLD and fibrosis, offering potential therapeutic benefits by targeting the intricate processes involving 11β-HSD1 and cortisol regulation in the liver.
Collapse
Affiliation(s)
- Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Dong-Su Shin
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Nodir Rustamov
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | | | | | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| |
Collapse
|
7
|
Polyzos SA, Targher G. Role of Glucocorticoids in Metabolic Dysfunction-Associated Steatotic Liver Disease. Curr Obes Rep 2024; 13:242-255. [PMID: 38459229 PMCID: PMC11150302 DOI: 10.1007/s13679-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
PURPOSE OF THE REVIEW To summarize published data on the association between glucocorticoids and metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on the possible pathophysiological links and related treatment considerations. RECENT FINDINGS Glucocorticoids, commonly used for managing many inflammatory and autoimmune diseases, may contribute to the development and progression of MASLD. Glucocorticoids may induce hyperglycemia and hyperinsulinemia, thus increasing systemic and hepatic insulin resistance, a hallmark of MASLD pathogenesis. Furthermore, glucocorticoids increase adipose tissue lipolysis, and hepatic de novo lipogenesis and decrease hepatic fatty acid β-oxidation, thus promoting MASLD development. Preclinical evidence also suggests that glucocorticoids may adversely affect hepatic inflammation and fibrosis. 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 5α-reductase are implicated in the link between glucocorticoids and MASLD, the former enzyme increasing and the latter reducing the glucocorticoid action on the liver. Treatment considerations exist due to the pathogenic link between glucocorticoids and MASLD. Since iatrogenic hypercortisolism is common, glucocorticoids should be used at the minimum daily dose to control the subjective disease. Furthermore, the pharmacologic inhibition of 11β-HSD1 has provided favorable results in MASLD, both in preclinical studies and early MASH clinical trials. Glucocorticoids are closely linked to MASLD pathophysiology, with specific clinical and therapeutic implications.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| |
Collapse
|
8
|
Harrison SA, Dubourg J. Editorial: Liver hypercortisolism as a potential target for MASH treatment. Aliment Pharmacol Ther 2023; 58:1238-1239. [PMID: 37986603 DOI: 10.1111/apt.17757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
LINKED CONTENTThis article is linked to Kim et al papers. To view these articles, visit https://doi.org/10.1111/apt.17726 and https://doi.org/10.1111/apt.17780
Collapse
|