1
|
Luan J, Feng X, Du Y, Yang D, Geng C. Medium-chain fatty acid triglycerides improve feed intake and oxidative stress of finishing bulls by regulating ghrelin concentration and gastrointestinal tract microorganisms and rumen metabolites. MICROBIOME 2024; 12:230. [PMID: 39511583 PMCID: PMC11542207 DOI: 10.1186/s40168-024-01946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND As a feed additive, medium-chain fatty acids (MCFAs)/medium-chain fatty acid triglycerides (MCTs) have been used in ruminant production, but mostly added in the form of mixed esters. Studies have shown that MCTs may have a positive effect on feed intake or oxidative stress in animals, but it is unclear which MCT could play a role, and the mechanism has not been elucidated. In this study, the effects of individual MCT on growth performance, serum intake-related hormones, and oxidative stress indices in finishing bulls were investigated and further studied the effects of MCT supplementation on gastrointestinal tract bacteria and rumen fluid metabolomics. RESULTS Four ruminally fistulated Yanbian cattle (bulls) were selected in 4 × 4 Latin square designs and allocated to four treatment groups: a control group (CON) fed a basal diet (total mixed ration, TMR), three groups fed a basal diet supplemented with 60 g/bull/day glycerol monocaprylin (GMC, C8), glycerol monodecanoate (GMD, C10), and glycerol monolaurate (GML, C12), respectively. Compared with the CON group, GMD tended to increase the dry matter intake (DMI) of finishing bulls (P = 0.069). Compared with the CON group, GMD significantly increased the concentration of ghrelin O-acyl transferase (GOAT), total ghrelin (TG), acylated ghrelin (AG), and orexins (P < 0.05) and significantly decreased the concentrations of hydrogen peroxide (H2O2), malondialdehyde, reactive oxygen species (ROS), and lipopolysaccharides (LPS) in the serum of finishing bulls (P < 0.05). Compared with the CON group, GMD and GML significantly increased the concentrations of total antioxidant capacity (T-AOC), catalase, glutathione peroxidase (GSH-PX), glutathione reductase (GR), and nitric oxide (NO) in the serum of finishing bulls (P < 0.05). Compared with the CON group, there were 5, 14, and 6 significantly different bacteria in the rumen digesta in the C8, C10, and C12 groups, respectively; there were 3, 10, and 5 significantly different bacteria in the rumen fluid in the C8, C10, and C12 groups, respectively; and only one differential bacteria (genus level) in the feces among the four treatment groups. Compared with the CON group, there were 3, 14, and 15 significantly differential metabolites identified under positive ionization mode in the C8, C10, and C12 groups, respectively, while under negative ionization mode were 3, 11 and 14, respectively. Correlation analysis showed that there was a significant correlation between DMI, GOAT, AG, GSH-PX, LPS, gastrointestinal tract bacteria, and rumen fluid metabolites. CONCLUSIONS Our findings revealed that different types of MCTs have different application effects in ruminants. Among them, GMD may improve the feed intake of finishing bulls by stimulating the secretion of AG. GMD and GML may change gastrointestinal tract microorganisms and produce specific rumen metabolites to improve the oxidative stress of finishing bulls, and ghrelin may also be involved. This study enlightens the potential mechanisms by which MCT improves feed intake and oxidative stress in finishing bulls. Video Abstract.
Collapse
Affiliation(s)
- Jiaming Luan
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Xin Feng
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yunlong Du
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Dongxu Yang
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Chunyin Geng
- Agricultural College, Yanbian University, Yanji, 133002, China.
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
2
|
Valente EEL, Klotz JL, Egert-McLean AM, Costa GW, May JB, Harmon DL. Influence of intra-abomasal administration of L-DOPA on circulating catecholamines and feed intake in cattle. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1127575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Dopamine has multiple physiological functions including feed intake control in which it can act as an anorectic or orexigenic agent. This study had the objective to evaluate intra-abomasal administration of L-DOPA (levodopa; L-3,4-dihydroxyphenylalanine) from -Mucuna pruriens on circulating catecholamines, indicators of energy metabolism and feed intake in cattle. Eight Holstein steers (340 ± 20 kg) fitted with ruminal cannula were used in a replicated 4 x 4 Latin Square design experiment. Intra-abomasal infusion of L-DOPA at 0, 0.5, 1 and 2 mg/kg BW was carried out for seven days and blood samples were collected at 0, 30, 60, 120, 240 and 480 min from L-DOPA infusion on day 7. The area under the curve (AUC) of plasma L-DOPA and free dopamine increased quadratically with the administration of L-DOPA. However, the AUC of plasma total dopamine had a positive linear response with the increase of L-DOPA. Conversely, the serum 5-hydroxytriptophan (5-HTP), plasma serotonin, serum serotonin, serum tyrosine, plasma glucose and plasma free fatty acids were not affected by the intra-abomasal infusion of L-DOPA. The circulating concentration of the epinephrine, norepinephrine, serotonin, glucose and free fatty acids did not change with L-DOPA infusion. It can be concluded that intra-abomasal L-DOPA administration produced a strong increase in circulating dopamine with no change in energy metabolites and feed intake in cattle.
Collapse
|
3
|
Gao K, Geng C. Alterations in the rumen bacterial communities and metabolites of finishing bulls fed high-concentrate diets supplemented with active dry yeast and yeast culture. Front Microbiol 2022; 13:908244. [PMID: 36605509 PMCID: PMC9810264 DOI: 10.3389/fmicb.2022.908244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the effects of active dry yeast (ADY) and yeast culture (YC) supplementation on rumen bacteria and metabolites in finishing bulls fed high-concentrate diets using the full-length 16S rDNA gene sequencing and liquid chromatography-mass spectrometry. Supplementation with ADY improved the alpha diversity and relative abundance of rumen bacteria, while YC only affected relative abundance of rumen bacteria at the genus level. Sixty-three differential metabolites were identified in rumen fluid after ADY supplementation, and 17 after YC. PICRUSt2 functional prediction showed that ADY supplementation improved the capacity of amino acid metabolism, lipid metabolism, carbohydrate metabolism, metabolism of terpenoids and polyketides, and energy metabolism in rumen bacteria (all P < 0.05). Correlation analysis showed that the rumen differential metabolites following ADY supplementation were mainly related to Oligosphaera, Verruc, Mycoplasma, and Anaeroplasma. Supplementation with ADY was more effective than YC in remodeling the rumen bacterial flora structure and metabolite composition under high-concentrate diets.
Collapse
Affiliation(s)
- Kai Gao
- College of Agriculture, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| | - Chunyin Geng
- College of Agriculture, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
4
|
do Nascimento TG, Paes-Silva RP, da Luz MCL, Cabral PC, de Araújo Bezerra GK, Gomes ACB. Phase angle, muscle mass, and functionality in patients with Parkinson’s disease. Neurol Sci 2022; 43:4203-4209. [DOI: 10.1007/s10072-022-05975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
|
5
|
Zhang X, Xu T, Wang X, Geng Y, Zhao N, Hu L, Liu H, Kang S, Xu S. Effect of Dietary Protein Levels on Dynamic Changes and Interactions of Ruminal Microbiota and Metabolites in Yaks on the Qinghai-Tibetan Plateau. Front Microbiol 2021; 12:684340. [PMID: 34434174 PMCID: PMC8381366 DOI: 10.3389/fmicb.2021.684340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
To improve performance and optimize rumen function in yaks (Bos grunniens), further knowledge on the appropriate dietary protein levels for ruminal microbiota and the metabolite profiles of yaks in feedlot feeding is necessary. Current understanding of dietary protein requirements, ruminal microbiota, and metabolites is limited. In this study, yaks were fed a low-protein diet (L; 9.64%), middle low-protein diet (ML; 11.25%), middle high-protein diet (MH; 12.48%), or a high-protein diet (H; 13.87%), and the effects of those diets on changes and interactions in ruminal microbiota and metabolites were investigated. Twenty-four female yaks were selected, and the effects on ruminal microbiota and metabolites were investigated using 16s rRNA gene sequencing and gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS). Diets containing different protein levels changed the composition of the rumen bacterial community, the H group significantly reduced the diversity of ruminal microbiota (p < 0.05), and the number of shared amplicon sequence variants (ASVs) between the H group and the other three groups was lower, suggesting that the ruminal microbiota community fluctuated more with a high-protein diet. In rumen, Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant bacteria at the phylum level, and Bacteroidetes was significantly less abundant in the MH group than in the L and ML groups (p < 0.05). Prevotella_1, Rikenellaceae_RC9_gut_group, and Christensenellaceae_R-7_group had the highest abundance at the genus level. Prevotellaceae was enriched in the low-protein groups, whereas Bacteroidales_BS11_gut_group was enriched in the high-protein groups. Rumen metabolite concentrations and metabolic patterns were altered by dietary protein levels: organic acid metabolites, antioxidant-related metabolites, and some plant-derived metabolites showed variation between the groups. Enrichment analysis revealed that significant changes were concentrated in six pathways, including the citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and butanoate metabolism. Network analysis showed promotion or restraint relationships between different rumen microbiota and metabolites. Overall, the rumen function was higher in the MH group. This study provides a reference for appropriate dietary protein levels and improves understanding of rumen microbes and metabolites.
Collapse
Affiliation(s)
- XiaoLing Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - TianWei Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - XunGang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - YuanYue Geng
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - LinYong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - HongJin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - ShengPing Kang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - ShiXiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
6
|
Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z. Dynamic Alterations in Yak Rumen Bacteria Community and Metabolome Characteristics in Response to Feed Type. Front Microbiol 2019; 10:1116. [PMID: 31191470 PMCID: PMC6538947 DOI: 10.3389/fmicb.2019.01116] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Current knowledge about the relationships between ruminal bacterial communities and metabolite profiles in the yak rumen is limited. This is due to differences in the nutritional and metabolic features between yak and other ordinary cattle combined with difficulties associated with farm-based research and a lack of technical guidance. A comprehensive analysis of the composition and alterations in ruminal metabolites is required to advance the development of modern yak husbandry. In the current study, we characterized the effect of feed type on the ruminal fluid microbiota and metabolites in yak using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS). Bacteroidetes and Firmicutes were the predominant bacterial phyla in the yak rumen. At the genus level, the relative abundance of Bacteroidales BS11 gut group, Prevotellaceae UCG-003, Ruminococcaceae UCG-011, Bacteroidales RF16 group and Ruminococcaceae UCG-010 was significantly (P < 0.01) higher in the forage group compared to that in the concentrate group, while the concentrate group harbored higher proportions of Bacteroidales S24-7 group, Ruminococcaceae NK4A214, Succiniclasticum and Ruminococcus 2. Yak rumen metabolomics analysis combined with enrichment analysis revealed that feed type altered the concentrations of ruminal metabolites as well as the metabolic pattern, and significantly (P < 0.01) affected the concentrations of ruminal metabolites involved in protein digestion and absorption (e.g., L-arginine, ornithine, L-threonine, L-proline and β-alanine), purine metabolism (e.g., xanthine, hypoxanthine, deoxyadenosine and deoxyadenosine monophosphate) and fatty acid biosynthesis (e.g., stearic acid, myristic acid and arachidonic acid). Correlation analysis of the association of microorganisms with metabolite features provides us with a comprehensive understanding of the composition and function of microbial communities. Associations between utilization or production were widely identified between affected microbiota and certain metabolites, and these findings will contribute to the direction of future research in yak.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujie Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Shatuo Chai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhenming Zhou
| |
Collapse
|