1
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
2
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Placental Malfunction, Fetal Survival and Development Caused by Sow Metabolic Disorder: The Impact of Maternal Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020360. [PMID: 36829919 PMCID: PMC9951909 DOI: 10.3390/antiox12020360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The energy and metabolic state of sows will alter considerably over different phases of gestation. Maternal metabolism increases dramatically, particularly in late pregnancy. This is accompanied by the development of an increase in oxidative stress, which has a considerable negative effect on the maternal and the placenta. As the only link between the maternal and the fetus, the placenta is critical for the maternal to deliver nutrients to the fetus and for the fetus' survival and development. This review aimed to clarify the changes in energy and metabolism in sows during different pregnancy periods, as well as the impact of maternal oxidative stress on the placenta, which affects the fetus' survival and development.
Collapse
|
4
|
Phengpol N, Thongnak L, Lungkaphin A. The programming of kidney injury in offspring affected by maternal overweight and obesity: role of lipid accumulation, inflammation, oxidative stress, and fibrosis in the kidneys of offspring. J Physiol Biochem 2023; 79:1-17. [PMID: 36264422 DOI: 10.1007/s13105-022-00927-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Maternal overweight and obesity are considered important factors affecting fetal development with many potential consequences for offspring after delivery, including the increased risk of obesity and diabetes mellitus. Maternal obesity promotes adiposity in the offspring by increasing fat deposition and expansion in the body of the offspring. The expansion of adipose tissue changes adipokine levels, including a decrease in adiponectin and an increase in leptin. In addition to changes in adipokine levels, there are also increases in pro-inflammatory cytokines, pro-fibrotic cytokines, and reactive oxygen species, leading to oxidative stress in the offspring. These contribute to the promotion of insulin resistance in offspring, which is associated with kidney injury. Interestingly, maternal obesity can also promote renal lipid accumulation, which could activate inflammatory processes and promote renal oxidative stress and renal fibrosis. These alterations in the kidneys of the offspring imply that a mother being overweight/obese can program the development of kidney disease in offspring. This review will discuss the effects of a mother being overweight or obese on their offspring and the consequences with regard to the kidneys of their offspring. With a focus on the molecular mechanisms, including renal inflammation, renal oxidative stress, renal fibrosis, and renal lipid metabolism in offspring born to overweight and obese mothers, the causative mechanisms and perspective of these conditions will be included.
Collapse
Affiliation(s)
- Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand. .,Functional Foods for Health and Disease, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Brombach C, Tong W, Giussani DA. Maternal obesity: new placental paradigms unfolded. Trends Mol Med 2022; 28:823-835. [PMID: 35760668 DOI: 10.1016/j.molmed.2022.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/24/2023]
Abstract
The prevalence of maternal obesity is increasing at an alarming rate, and is providing a major challenge for obstetric practice. Adverse effects on maternal and fetal health are mediated by complex interactions between metabolic, inflammatory, and oxidative stress signaling in the placenta. Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are common downstream pathways of cell stress, and there is evidence that this conserved homeostatic response may be a key mediator in the pathogenesis of placental dysfunction. We summarize the current literature on the placental cellular and molecular changes that occur in obese women. A special focus is cast onto placental ER stress in obese pregnancy, which may provide a novel link for future investigation.
Collapse
Affiliation(s)
| | - Wen Tong
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK.
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK; Cambridge Cardiovascular Centre for Research Excellence, Cambridge CB2 0QQ, UK.
| |
Collapse
|
6
|
Chen Q, Li X, Cui J, Xu C, Wei H, Zhao Q, Yao H, You H, Zhang D, Yu H. Effects of Stocking Density on Fatty Acid Metabolism by Skeletal Muscle in Mice. Animals (Basel) 2022; 12:ani12192538. [PMID: 36230279 PMCID: PMC9559694 DOI: 10.3390/ani12192538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/22/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Specific pathogen-free (SPF) grade laboratory animals are kept in specific cages for life. The limited space could affect the characterization of colonization and dynamic changes related to gut microorganisms, and affect adipokines, even further affecting the fat synthesis and muscle quality of animals. The objective of this study was to analyze the stocking density on the dynamic distribution of gut microbiota, fat synthesis and muscle quality of SPF grade Kunming mice. Three housing densities were accomplished by raising different mice per cage with the same floor size. Kunming mice were reared at low stocking density (LSD, three mice a group), medium stocking density (MSD, 5 mice a group), and high stocking density (HSD, 10 mice a group) for 12 weeks. The results demonstrated that the stocking density affected intestinal microbial flora composition. We found that compared with the MSD group, the abundance of Lactobacillus in the LSD group and the HSD group decreased, but the abundance of unclassified_Porphyromonadaceae increased. Moreover, fat synthesis and muscle quality were linked to the intestinal microbial flora and stocking density. Compared with the LSD group and the HSD group, the MSD group had a more balanced gut flora, higher fat synthesis and higher muscle quality. Overall, this study demonstrated that stocking density could affect gut microbiota composition, and reasonable stocking density could improve fat synthesis and muscle quality. Our study will provide theoretical support for the suitable stocking density of laboratory animals.
Collapse
Affiliation(s)
- Qiuyan Chen
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaohui Li
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jiarun Cui
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Caiyun Xu
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hongfei Wei
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Qian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hongli Yao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hailong You
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dawei Zhang
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (D.Z.); (H.Y.); Tel.: +86-0-431-8561-9495 (H.Y.)
| | - Huimei Yu
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (D.Z.); (H.Y.); Tel.: +86-0-431-8561-9495 (H.Y.)
| |
Collapse
|
7
|
Zhao D, Liu Y, Jia S, He Y, Wei X, Liu D, Ma W, Luo W, Gu H, Yuan Z. Influence of maternal obesity on the multi-omics profiles of the maternal body, gestational tissue, and offspring. Biomed Pharmacother 2022; 151:113103. [PMID: 35605294 DOI: 10.1016/j.biopha.2022.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Epidemiological studies show that obesity during pregnancy affects more than half of the pregnancies in the developed countries and is associated with obstetric problems and poor outcomes. Obesity tends to increase the incidence of complications. Furthermore, the resulting offspring are also adversely affected. However, the molecular mechanisms of obesity leading to poor pregnancy outcomes remain unclear. Omics methods are used for genetic diagnosis and marker discovery. The aim of this review was to summarize the maternal and fetal pathophysiological alterations induced by gestational obesity,identified using multi-omics detection techniques, and to generalize the biological functions and potential mechanisms of the differentially expressed molecules.
Collapse
Affiliation(s)
- Duan Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
8
|
Microtubule Affinity-Regulating Kinase 4 Promotes Oxidative Stress and Mitochondrial Dysfunction by Activating NF-κB and Inhibiting AMPK Pathways in Porcine Placental Trophoblasts. Biomedicines 2022; 10:biomedicines10010165. [PMID: 35052845 PMCID: PMC8773735 DOI: 10.3390/biomedicines10010165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this investigation was to evaluate the role of MARK4 in the regulation of oxidative stress and mitochondrial dysfunction in pig placental trophoblasts and analyze the signaling pathways involved. In this study, we found that enhanced MARK4 contributed to augmented oxidative stress in pig trophoblasts, as evidenced by decreased total antioxidant capacity (TAC); higher production of reactive oxygen species (ROS); elevated protein carbonylation; and reduced SOD, CAT, and GSH-PX activities. Further analyses revealed MARK4 impaired mitochondrial oxidative respiration in cultured trophoblasts, which was associated with reduced ATP content, decreased mitochondrial membrane potential, lower mitochondrial Complexes I and III activities, and down-regulated protein contents of subunits of complexes I, II, and V. At same time, mitochondrial biogenesis and structure were negatively altered by elevated MARK4. By antioxidant treatment with vitamin E (VE), oxidative stress along with impaired mitochondrial function induced by enhanced MARK4 were blocked. Furthermore, we found activation of AMPK signaling prevented MARK4 from blocking mitochondrial biogenesis and function in pig trophoblast cells. Finally, we demonstrated that the IKKα/NF-κB signal pathway was involved in MARK4 activated oxidative stress and mitochondrial dysfunction. Thus, these data suggest that MARK4 promotes oxidative stress and mitochondrial injury in porcine placental trophoblasts and can contribute to the developing of knowledge of pathological processes leading to mitochondrial dysfunction associated with excessive back-fat in the pig placenta and to the obesity-associated pregnant syndrome.
Collapse
|
9
|
Overweight and obesity in pregnancy: their impact on epigenetics. Eur J Clin Nutr 2021; 75:1710-1722. [PMID: 34230629 PMCID: PMC8636269 DOI: 10.1038/s41430-021-00905-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
Over the last few decades, the prevalence of obesity has risen to epidemic proportions worldwide. Consequently, the number of obesity in pregnancy has risen drastically. Gestational overweight and obesity are associated with impaired outcomes for mother and child. Furthermore, studies show that maternal obesity can lead to long-term consequences in the offspring, increasing the risk for obesity and cardiometabolic disease in later life. In addition to genetic mechanisms, mounting evidence demonstrates the induction of epigenetic alterations by maternal obesity, which can affect the offspring’s phenotype, thereby influencing the later risk of obesity and cardiometabolic disease. Clear evidence in this regard comes from various animal models of maternal obesity. Evidence derived from clinical studies remains limited. The current article gives an overview of pathophysiological changes associated with maternal obesity and their consequences on placental structure and function. Furthermore, a short excurse is given on epigenetic mechanisms and emerging data regarding a putative interaction between metabolism and epigenetics. Finally, a summary of important findings of animal and clinical studies investigating maternal obesity-related epigenetic effects is presented also addressing current limitations of clinical studies.
Collapse
|
10
|
Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of Maternal Obesity On Placental Phenotype. Curr Vasc Pharmacol 2021; 19:113-131. [PMID: 32400334 DOI: 10.2174/1570161118666200513115316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - E J Camm
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
11
|
Impaired Mitochondrial Function Results from Oxidative Stress in the Full-Term Placenta of Sows with Excessive Back-Fat. Animals (Basel) 2020; 10:ani10020360. [PMID: 32102192 PMCID: PMC7070850 DOI: 10.3390/ani10020360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the effect of excessive back-fat (BF) of sows on placental oxidative stress, ATP generation, mitochondrial alterations in content and structure, and mitochondrial function in isolated trophoblasts. Placental tissue was collected by vaginal delivery from BFI (15-20 mm, n = 10) and BFII (21-27 mm, n = 10) sows formed according to BF at mating. Our results demonstrated that excessive back-fat contributed to augmented oxidative stress in term placenta, as evidenced by excessive production of ROS, elevated protein carbonylation, and reduced SOD, GSH-PX, and CAT activities (p < 0.05). Indicative of mitochondrial dysfunction, reduced mitochondrial respiration in cultured trophoblasts was linked to decreased ATP generation, lower mitochondrial Complex I activity and reduced expression of electron transport chain subunits in placenta of BFII sows (p < 0.05). Meanwhile, we observed negative alterations in mitochondrial biogenesis and structure in the placenta from BFII group (p < 0.05). Finally, our in vitro studies showed lipid-induced ROS production resulted in mitochondrial alterations in trophoblasts, and these effects were blocked by antioxidant treatment. Together, these data reveal that excessive back-fat aggravates mitochondrial injury induced by increased oxidative stress in pig term placenta, which may have detrimental consequences on placental function and therefore impaired fetal growth and development.
Collapse
|
12
|
Moreau M, Remy M, Nusinovici S, Rouger V, Molines L, Flamant C, Legendre G, Roze JC, Salle A, Van Bogaert P, Coutant R, Gascoin G. Neonatal and neurodevelopmental outcomes in preterm infants according to maternal body mass index: A prospective cohort study. PLoS One 2019; 14:e0225027. [PMID: 31805081 PMCID: PMC6894768 DOI: 10.1371/journal.pone.0225027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Maternal obesity is associated with an increase in maternal, foetal and neonatal morbidity and mortality. The aim of our study was to evaluate the relationships between maternal pre-pregnancy body mass index and (1) neonatal outcome in preterm infants, and (2) neurodevelopmental outcome at 2 years of corrected age. METHOD We conducted a single-centre cohort study. Infants born between 24+0 and 33+6 weeks of gestation between January 2009 and December 2013, hospitalised in the neonatal intensive care unit of Angers University Hospital, and with available data regarding maternal pre-pregnancy body mass index were eligible. Three groups were defined according to maternal body mass index: normal (n = 418), overweight (n = 136) and obese (n = 89). The primary outcome was neurodevelopment at 2 years of corrected age. Children with a non-optimal neuromotor and/or psychomotor assessment and/or a sensory disability were regarded as having a "non-optimal neurodevelopmental outcome". Neuromotor function was regarded as non-optimal when cerebral palsy was present or when the clinical examination revealed neurological signs of abnormal muscular tone. Psychomotor assessment was regarded as non-optimal if the revised Brunet-Lézine test was < 85 or when the overall score in the parental Ages and Stages Questionnaire (ASQ) was < 185. Finally, sensory disabilities such as blindness and children who required a hearing aid were taken into account. The secondary outcome was the composite criteria of neonatal complications. Multivariable analysis included the following variables: mother's age, gestational age, smoking during pregnancy, magnesium sulphate and steroid treatment during pregnancy, twin status, gender, socioeconomic status and social security benefits for those with low incomes. RESULTS The study population was composed of 643 preterm infants. Among them, 520 were assessed at 2 years. There was no difference in the proportion of infants with non-optimal neurodevelopmental outcomes between the three groups (16.6% for obese, 13.5% for overweight, 16.9% for normal body mass index mothers; p = 0.73). According to multivariable analysis, being born from an overweight or obese mother was not associated with an increased risk of non-optimal neuro-development at 2 years (adjusted OR = 0.84 [0.40-1.76] for obese, adjusted OR = 0.83 [0.43-1.59] for overweight mothers). There was no difference in the proportion of preterm infants with a non-optimal composite criterion of neonatal complications between the three groups. In the multivariable analysis, being born from an overweight or obese mother was not associated with an increased risk of non-optimal neonatal outcomes (adjusted OR = 0.95 [0.49-1.83] for obese, adjusted OR = 1.18 [0.69-2.01] for overweight mothers). CONCLUSION In this large prospective cohort of preterm infants born before 34 weeks of gestation, we found no relationship between maternal body mass index and neurodevelopmental outcomes at 2 years of corrected age and no relationship between maternal body mass index and neonatal outcomes. Other prematurity-related factors may be more relevant for neurodevelopmental outcome than the mother's pre-pregnancy BMI.
Collapse
Affiliation(s)
- Marie Moreau
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
| | - Mathilde Remy
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
| | - Simon Nusinovici
- CIC 1413, Nantes University Hospital, Nantes, France
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
| | - Valérie Rouger
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
| | - Lisa Molines
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
| | - Cyril Flamant
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
- Department of Neonatal Medicine, Nantes University Hospital, Nantes, France
| | - Guillaume Legendre
- Department of Obstetrics and Gynaecology, Angers University Hospital, Angers, France
| | - Jean-Christophe Roze
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
- Department of Neonatal Medicine, Nantes University Hospital, Nantes, France
| | - Agnès Salle
- Department of Endocrinology, Diabetology and Nutrition, Angers University Hospital, Angers, France
| | - Patrick Van Bogaert
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
- Department of Paediatric Neurology, Angers University Hospital, Angers, France
| | - Régis Coutant
- Department of Paediatric Endocrinology, Angers University Hospital, Angers, France
| | - Géraldine Gascoin
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
| |
Collapse
|
13
|
Kelley AS, Puttabyatappa M, Ciarelli JN, Zeng L, Smith YR, Lieberman R, Pennathur S, Padmanabhan V. Prenatal Testosterone Excess Disrupts Placental Function in a Sheep Model of Polycystic Ovary Syndrome. Endocrinology 2019; 160:2663-2672. [PMID: 31436841 PMCID: PMC6804485 DOI: 10.1210/en.2019-00386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common condition of reproductive-aged women. In a well-validated sheep model of PCOS, testosterone (T) treatment of pregnant ewes culminated in placental insufficiency and intrauterine growth restriction of offspring. The purpose of this study was to explore specific mechanisms by which T excess compromises placental function in early, mid, and late gestation. Pregnant Suffolk sheep received T propionate 100 mg intramuscularly or control vehicle twice weekly from gestational days (GD) 30 to 90 (term = 147 days). Placental harvest occurred at GD 65, 90, and 140. Real-time RT-PCR was used to assess transcript levels of proinflammatory (TNF, IL1B, IL6, IL8, monocyte chemoattractant protein-1/chemokine ligand 2, cluster of differentiation 68), antioxidant (glutathione reductase and superoxide dismutase 1 and 2), and angiogenic [vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF1A)] genes. Lipid accumulation was assessed using triglyceride assays and Oil Red O staining. Placental measures of oxidative and nitrative stress included the thiobarbituric acid reactive substance assay and high-pressure liquid chromatography. Tissue fibrosis was assessed with Picrosirius Red staining. Student t tests and Cohen effect-size analyses were used for statistical analysis. At GD 65, T-treated placentomes showed increased lipid accumulation and collagen deposition. Notable findings at GD 90 were a significant increase in HIF1A expression and a large effect increase in VEGF expression. At GD 140, T-treated placentomes displayed large effect increases in expression of hypoxia and inflammatory markers. In summary, T treatment during early pregnancy induces distinct gestational age-specific effects on the placental milieu, which may underlie the previously observed phenotype of placental insufficiency.
Collapse
Affiliation(s)
- Angela S Kelley
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Richard Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
14
|
Tian L, Wen A, Dong S, Yan P. Molecular Characterization of Microtubule Affinity-Regulating Kinase4 from Sus scrofa and Promotion of Lipogenesis in Primary Porcine Placental Trophoblasts. Int J Mol Sci 2019; 20:ijms20051206. [PMID: 30857324 PMCID: PMC6429113 DOI: 10.3390/ijms20051206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022] Open
Abstract
This study aimed to characterize the full-length cDNA of MARK4 in Sus scrofa, and evaluated its potential role in the regulation of lipid accumulation in pig placental trophoblasts and analyzed signaling pathways involved, thereby providing insights into mechanisms for placental lipotoxicity induced by excessive back-fat during pregnancy of sows. The cDNA obtained with 5′ and 3′ RACE amplification covered 3216 bp with an open reading frame of 2259 bp encoding 752 amino acids. Multiple alignments and phylogenetic analysis revealed MARK4 protein of Sus scrofa had a high homology (95%–99%) to that of other higher vertebrates. After transfection, enhanced MARK4 significantly promoted lipogenesis in pig trophoblasts, as evidenced by accelerated lipid accumulation and consistently increased mRNA expressions of lipogenic genes DGAT1, LPIN1, LPIN3, LPL, PPARδ and SREBP-1c. Meanwhile, PPARγ remarkably inhibited the stimulating effect of MARK4 on non-receptor-mediated lipid accumulation in trophoblasts. Further analyses revealed WNT signaling enhanced lipid accumulation and activation of MARK4 in pig trophoblast cells. Finally, we demonstrated that WNT/β-catenin signal pathway is involved in MARK4 activated lipogenesis. These results suggest that MARK4 promotes lipid accumulation in porcine placental trophoblasts and can be considered as a potential regulator of lipotoxicity associated with maternal obesity in the pig placenta.
Collapse
Affiliation(s)
- Liang Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Shusheng Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Echeverria C, Eltit F, Santibanez JF, Gatica S, Cabello-Verrugio C, Simon F. Endothelial dysfunction in pregnancy metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165414. [PMID: 30794867 DOI: 10.1016/j.bbadis.2019.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
In recent years, the vascular endothelium has gained attention as a key player in the initiation and development of pregnancy disorders. Endothelium acts as an endocrine organ that preserves the homeostatic balance by responding to changes in metabolic status. However, in metabolic disorders, endothelial cells adopt a dysfunctional function, losing their normal responsiveness. During pregnancy, several metabolic changes occur, in which endothelial function decisively participates. Similarly, when pregnancy metabolic disorders occur, endothelial dysfunction plays a key role in pathogenesis. This review outlines the main findings regarding endothelial dysfunction in three main metabolic pathological conditions observed during pregnancy: gestational diabetes, hypertensive disorders, and obesity and hyperlipidemia. Organ, histological and cellular characteristics were thoroughly described. Also, we focused in discussing the underlying molecular mechanisms involved in the cellular signaling pathways that mediate responses in these pathological conditions.
Collapse
Affiliation(s)
- Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772 Copiapo, Chile
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Sebastian Gatica
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile.
| |
Collapse
|