1
|
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Kapoor H, Dhawan G, Kapoor R, Calabrese V. Kaempferol, a widely ingested dietary flavonoid and supplement, enhances biological performance via hormesis, especially for ageing-related processes. Mech Ageing Dev 2025; 225:112065. [PMID: 40287100 DOI: 10.1016/j.mad.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Kaempferol is a polyphenol in various fruits and vegetables. It is also commercially developed and sold to consumers as a supplement. It has been extensively assessed in clinical trials for clinical utility based upon its numerous experimentally based chemopreventive properties. Kaempferol has been evaluated at the levels of molecule, cell, and individual animal, showing a broad spectrum of biological effects. Kaempferol-induced hormetic concentration responses are common, being reported in many cell types and biological models for numerous endpoints. While the hormetic effects of kaempferol are biologically diverse, there has been a strong focus on age-related endpoints affecting numerous organ systems and endpoints, indicating that kaempferol is a senolytic agent, showing similar properties as quercetin and fisetin. This paper offers the first integrated evaluation of kaempferol-induced hormetic dose responses, their quantitative characteristics, mechanistic explanations, extrapolative strengths or limitations, and related experimental design, biomedical, therapeutic, ageing, and public health, including ageing related applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, University of Massachusetts, Morrill I-N344, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Linda Baldwin
- Independent Researcher, Sapphire Lane, Greenfield, MA 01301, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Harshita Kapoor
- Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India; Independent Consultant, Hartford, CT, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
2
|
Centonze M, Aloisio Caruso E, De Nunzio V, Cofano M, Saponara I, Pinto G, Notarnicola M. The Antiaging Potential of Dietary Plant-Based Polyphenols: A Review on Their Role in Cellular Senescence Modulation. Nutrients 2025; 17:1716. [PMID: 40431456 DOI: 10.3390/nu17101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physiological functions and an increased risk of chronic diseases. A key mechanism of this process is cellular senescence, the permanent arrest of the cell cycle in response to stress or damage, which contributes to the accumulation of dysfunctional cells in tissues. Recent research has highlighted the role of polyphenols, bioactive compounds present in numerous plant-based foods, in positively modulating these processes. Polyphenols exert antioxidant effects, regulate gene expression and improve mitochondrial function, helping to delay cellular aging and prevent age-related diseases. In addition, some polyphenols exhibit senolytic properties, selectively eliminating senescent cells and promoting tissue regeneration. This review summarizes the current evidence on the effects of polyphenols on aging and cellular senescence, exploring the underlying molecular mechanisms and discussing their potential in nutritional strategies aimed at promoting healthy aging.
Collapse
Affiliation(s)
- Matteo Centonze
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Miriam Cofano
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Ilenia Saponara
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Giuliano Pinto
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| |
Collapse
|
3
|
Lyu X, Shen C, Fang Y, Zhao Y. Study on the mechanism of Jiawei Shoutai Pill in the treatment of diminished ovarian reserve based on network pharmacology. Medicine (Baltimore) 2025; 104:e41729. [PMID: 40020109 PMCID: PMC11875589 DOI: 10.1097/md.0000000000041729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Jiawei Shoutai Pill is a traditional Chinese medicine formulation used clinically by physicians to treat diminished ovarian reserve (DOR) with positive outcomes. This study aimed to explore the potential pharmacological mechanisms of Jiawei Shoutai Pill in treating DOR by using network pharmacology methods. The effective compounds from traditional Chinese medicine were collected from the TCMSP, SYMmap, and PubChem, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, and DrugBank. Additionally, targets for DOR were obtained from GeneCards and Online Mendelian Inheritance in Man databases. Subsequently, multiple networks were constructed and gene enrichment analysis was performed using Cytoscape3.9.0 software. Molecular docking and molecular dynamics simulations were conducted based on previous research results. After screening, 72 active compounds and 292 target genes of Jiawei Shoutai Pill (excluding duplicate target genes) were identified, resulting in 1371 target genes related to the disease. A total of 149 cross-target genes were identified between the drug and disease targets. Kyoto encyclopedia of genes and genomes and gene ontology analyses emphasized the various gene functions and signaling pathways involved in treating DOR. Further molecular docking and dynamics simulations partially confirmed the practicality of the action Jiawei Shoutai Pill in vivo. The pharmacological effect of the Jiawei Shoutai Pill on DOR may be related to the PI3K-AKT, TNF, and lipopolysaccharide pathways. This study paves the way for further research on the mechanism of action of the Jiawei Shoutai Pill.
Collapse
Affiliation(s)
- Xiaoyue Lyu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Chun Shen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Yumin Fang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
4
|
Della Vedova L, Baron G, Morazzoni P, Aldini G, Gado F. The Potential of Polyphenols in Modulating the Cellular Senescence Process: Implications and Mechanism of Action. Pharmaceuticals (Basel) 2025; 18:138. [PMID: 40005954 PMCID: PMC11858549 DOI: 10.3390/ph18020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a biological process with a dual role in organismal health. While transient senescence supports tissue repair and acts as a tumor-suppressive mechanism, the chronic accumulation of senescent cells contributes to aging and the progression of age-related diseases. Senotherapeutics, including senolytics, which selectively eliminate senescent cells, and senomorphics, which modulate the senescence-associated secretory phenotype (SASP), have emerged as promising strategies for managing age-related pathologies. Among these, polyphenols, a diverse group of plant-derived bioactive compounds, have gained attention for their potential to modulate cellular senescence. Methods: This review synthesizes evidence from in vitro, in vivo, and clinical studies on the senolytic and senomorphic activities of bioactive polyphenols, including resveratrol, kaempferol, apigenin, and fisetin. The analysis focuses on their molecular mechanisms of action and their impact on fundamental aging-related pathways. Results: Polyphenols exhibit therapeutic versatility by activating SIRT1, inhibiting NF-κB, and modulating autophagy. These compounds demonstrate a dual role, promoting the survival of healthy cells while inducing apoptosis in senescent cells. Preclinical evidence indicates their capacity to reduce SASP-associated inflammation, restore tissue homeostasis, and attenuate cellular senescence in various models of aging. Conclusions: Polyphenols represent a promising class of senotherapeutics for mitigating age-related diseases and promoting healthy lifespan extension. Further research should focus on clinical validation and the long-term effects of these compounds, paving the way for their development as therapeutic agents in geriatric medicine.
Collapse
Affiliation(s)
- Larissa Della Vedova
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Paolo Morazzoni
- Divisione Nutraceutica, Distillerie Umberto Bonollo S.p.A, Via G. Galilei 6, 35035 Mestrino, Italy;
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| |
Collapse
|
5
|
Feng Z, Song J, Lin C, Wu S, Wang Y, Hui Q, Pan Y, Zou Y, Zeng C, Guo J, Pei Y. Enhancing porcine oocyte quality and embryo development through natural antioxidants. Theriogenology 2025; 232:96-108. [PMID: 39536623 DOI: 10.1016/j.theriogenology.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
During fetal development, primordial oocytes maintain their developmental potential through a ROS-minimizing metabolic mechanism. Maturation increases ROS levels, causing stress and damage, which are countered by in vivo antioxidants. In vitro maturation (IVM) worsens this due to fewer antioxidant presence and medium factors. To address this, we evaluated the effects of incorporating various natural antioxidants in the porcine oocyte IVM media. Our findings revealed that 10 μM Dendrobine (DEN), 1 μM Polydatin (PD), 20 μM Limonin (LIM), and 25 μM Nobiletin (NOB) significantly improved the first polar body extrusion rates (p < 0.05), reduced ROS, and increased GSH levels. Individual addition of 100 μg/mL Lycium barbarum polysaccharides (LBP), 0.1 μM Kaempferol (KAE), 250 μM Salidroside (SAL), 10 μM Curcumin (CUR), DEN, PD, LIM, and NOB to the porcine IVM system showed that KAE, LIM, NOB, and LBP treatments yielded the most favorable results. At the gene level, LIM, LBP, and NOB were found to upregulate the expression levels of GPX1, SIRT1, and TFAM, while downregulating Caspase3 and increasing the BCL2/BAX ratio. The inclusion of LIM, NOB, and LBP, either alone or in combination, into the IVM media effectively alleviated oxidative stress in porcine oocytes, decreased cell apoptosis, preserved mitochondrial membrane potential, and enhanced the blastocyst rate. These results offer valuable insights for optimizing the porcine oocyte IVM culture system.
Collapse
Affiliation(s)
- Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Siyu Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Qingyuan Hui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Yinting Pan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Yiman Zou
- Nanhai District Agricultural Law Enforcement Supervision Brigade, Foshan City, Foshan, 528225, China
| | - Chaofeng Zeng
- Nanhai District Agricultural Law Enforcement Supervision Brigade, Foshan City, Foshan, 528225, China
| | - Jinbiao Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| |
Collapse
|
6
|
Zhang Z, Zhao W, Wang Z, Pan Y, Wang Q, Zhang Z. Integration of ssGWAS and ROH analyses for uncovering genetic variants associated with reproduction traits in Large White pigs. Anim Genet 2024; 55:714-724. [PMID: 39129705 DOI: 10.1111/age.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/26/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
The low heritability of reproduction traits such as total number born (TNB), number born alive (NBA) and adjusted litter weight until 21 days at weaning (ALW) poses a challenge for genetic improvement. In this study, we aimed to identify genetic variants that influence these traits and evaluate the accuracy of genomic selection (GS) using these variants as genomic features. We performed single-step genome-wide association studies (ssGWAS) on 17 823 Large White (LW) pigs, of which 2770 were genotyped by 50K single nucleotide polymorphism (SNP) chips. Additionally, we analyzed runs of homozygosity (ROH) in the population and tested their effects on the traits. The genomic feature best linear unbiased prediction (GFBLUP) was then carried out in an independent population of 350 LW pigs using identified trait-related SNP subsets as genomic features. As a result, our findings identified five, one and four SNP windows that explaining more than 1% of genetic variance for ALW, TNB, and NBA, respectively and discovered 358 hotspots and nine ROH islands. The ROH SSC1:21814570-27186456 and SSC11:7220366-14276394 were found to be significantly associated with ALW and NBA, respectively. We assessed the genomic estimated breeding value accuracy through 20 replicates of five-fold cross-validation. Our findings demonstrate that GFBLUP, incorporating SNPs located in effective ROH (p-value < 0.05) as genomic features, might enhance GS accuracy for ALW compared with GBLUP. Additionally, using SNPs explaining more than 0.1% of the genetic variance in ssGWAS for NBA as genomic features might improve the GS accuracy, too. However, it is important to note that the incorporation of inappropriate genomic features can significantly reduce GS accuracy. In conclusion, our findings provide valuable insights into the genetic mechanisms of reproductive traits in pigs and suggest that the ssGWAS and ROH have the potential to enhance the accuracy of GS for reproductive traits in LW pigs.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co. Ltd, Hefei, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Oocyte maturation, blastocyst and embryonic development are mediated and enhanced via hormesis. Food Chem Toxicol 2024; 192:114941. [PMID: 39153727 DOI: 10.1016/j.fct.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).
Collapse
Affiliation(s)
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
8
|
Nandi S, Kumar B S, Gupta PSP, Mondal S, Kumar VG. Influence of phenolic flavonols (Kaempferol, Querectin and Myricetin) on the survival and growth of ovine preantral follicles and granulosa cells cultured in vitro. Theriogenology 2024; 214:266-272. [PMID: 37948816 DOI: 10.1016/j.theriogenology.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Study was carried out to examine the influence of plant bioactive compounds [Kaempferol (KAE), Querectin (QUE) and Myricetin (MYR)] on the survival and growth parameters of cultured ovine preantral follicles (PFs) granulosa cells (GCs) and expression of some key developmental genes. Ovine PFs were isolated from slaughterhouse derived ovaries and KAE, QUE and MYR were supplemented to the standard culture medium of GCs and PFs at concentrations of 0, 5, 10, 25, 50 and 100 μM and cultured for 5 and 7 days respectively. PFs morphological and functional parameters [follicle and enclosed oocyte growth rate, viability of follicles, antrum formation rate, oocyte maturation rate, estradiol concentration, reactive oxygen species (ROS) production] and GC growth parameters (metabolic activity, viability rate, cell number increment, ROS production) were measured after culture. Significantly higher PF growth, viability rate and estradiol concentration was observed at 10 μM, 25 μM and 10 μM concentration of KAE, MYR and QUE respectively compared to the control. ROS production was significantly decreased in the PF culture media treated with 10 μM KAE or MYR 25 μM or 10 μM QUE compared to those observed in the control group. Likewise, metabolic activity of GCs, viability rate and cell number increment cultured with KAE, MYR and QUE was significantly higher at 10, 25 and 10 μM concentrations respectively compared to those observed in control group. ROS production was significantly lower in the GC cultured with KAE, MYR and QUE at 10, 25 and 10 μM concentrations respectively compared to the control. Based on the results of the growth parameters, gene expression of PFs and GCs were studied by qPCR at selected concentrations (KAE, MYR and QUE at 10, 25 and 10 μM concentrations respectively) in the cultured PFs and GCs. Gene expression of GDF9, FGF2, CYP19A1 was significantly higher and Bax, Bcl2 expression was significantly lower in the PFs and GCs cultured with the KAE or QUE at 10 μM concentration. KAE, MYR and QUE have dose dependant responses on PFs and GCs morphological and functional parameters; however, KAE is more potent amongst the three in augmenting the ovarian functions.
Collapse
Affiliation(s)
- S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India.
| | - Sampath Kumar B
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India; Veterinary College, Bangalore Campus, Hebbal, Bangalore, India
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V Girish Kumar
- Veterinary College, Bangalore Campus, Hebbal, Bangalore, India
| |
Collapse
|
9
|
Xu YN, Han GB, Li YH, Piao CH, Li GH, Kim NH. Protective effect of onion peel extract on ageing mouse oocytes. ZYGOTE 2023; 31:451-456. [PMID: 37337719 DOI: 10.1017/s0967199423000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Mammalian oocytes not fertilized immediately after ovulation can undergo ageing and a rapid decline in quality. The addition of antioxidants can be an efficient approach to delaying the oocyte ageing process. Onion peel extract (OPE) contains quercetin and other flavonoids with natural antioxidant activities. In this study, we investigated the effect of OPE on mouse oocyte ageing and its mechanism of action. The oocytes were aged in vitro in M16 medium for 16 h after adding OPE at different concentrations (0, 50, 100, 200, and 500 μg/ml). The addition of 100 μg/ml OPE reduced the oocyte fragmentation rate, decreased the reactive oxygen species (ROS) level, increased the glutathione (GSH) level, and improved the mitochondrial membrane potential compared with the control group. The addition of OPE also increased the expression of SOD1, CAT, and GPX3 genes, and the caspase-3 activity in OPE-treated aged oocytes was significantly lower than that in untreated aged oocytes and similar to that in fresh oocytes. These results indicated that OPE delayed mouse oocyte ageing by reducing oxidative stress and apoptosis and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Yong-Nan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Guo-Bo Han
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Ying-Hua Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Chun-Hao Piao
- Jilin Wangqing Animal Quarantine Station, Wangqing, 133200, China
| | - Guan-Hao Li
- College of Agriculture, Yanbian University, Yanji, 133000, China
| | - Nam-Hyung Kim
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| |
Collapse
|
10
|
Li X, Duan J, Wang S, Cheng J, Chen H, Zhang Z, Yang L, Hua R, Li Q. Isorhamnetin protects porcine oocytes from zearalenone-induced reproductive toxicity through the PI3K/Akt signaling pathway. J Anim Sci Biotechnol 2023; 14:22. [PMID: 36732843 PMCID: PMC9896747 DOI: 10.1186/s40104-022-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Zearalenone (ZEA) widely exists in moldy grains, which seriously destroys the fertility of females. Isorhamnetin, a natural flavonoid, has extensive of pharmacological activities. However, the beneficial effect and the underlying molecular mechanism of isorhamnetin involvement in ZEA-induced porcine oocyte damage have not been investigated. METHODS Oocytes were treated with different concentrations of ZEA (3, 5, 8 and 10 μmol/L) and isorhamnetin (5, 10, 20 and 30 μmol/L) for 44 h at 39 ℃. ZEA (5 μmol/L) and isorhamnetin (10 μmol/L) were selected for subsequent studies. Polar body exclusion rate, apoptosis rate and apoptosis related proteins, ROS levels and SOD2 protein, mitochondrial membrane potential and distribution, endoplasmic reticulum distribution and proteins expression, and PI3K, Akt and p-Akt proteins expression of oocytes were detected. In addition, the effect of PI3K antagonist (LY294002) on oocyte nuclear maturation and apoptosis were used to determine the involvement of PI3K/Akt signaling pathway. RESULTS Our findings showed that ZEA exposure damaged oocytes and isorhamnetin therapy restored the developmental capability of porcine oocytes. Isorhamnetin promoted polar body extrusion rate to rescue ZEA-induced meiotic arrest in porcine oocytes. Isorhamnetin alleviated ZEA-induced oxidative stress by stimulating SOD2 protein expression and inhibiting ROS production. Moreover, isorhamnetin enhanced normal mitochondrial distribution and mitochondrial membrane potential to prevent mitochondrial dysfunction induced by ZEA. Changing the expression of endoplasmic reticulum stress-related marker proteins (CHOP, GRP78) and the distribution rate of normal endoplasmic reticulum showed that isorhamnetin relieved ZEA-caused endoplasmic reticulum stress. Mechanistically, isorhamnetin decreased Bax/Bcl-2 protein expression and inhibited ZEA-induced apoptosis through PI3K/Akt signaling pathway. CONCLUSIONS Collectively, these results suggest that isorhamnetin protects oocytes from ZEA-caused damage through PI3K/Akt signaling pathway, which enhances meiotic maturation and mitochondrial function, and inhibits early apoptosis, oxidative stress and endoplasmic reticulum stress in porcine oocytes. Our study provides a new strategy for solving the reproductive toxicity induced by ZEA and treating woman infertility. A possible mechanism by which isorhamnetin protected porcine oocytes from ZEA-induced damage. Isorhamnetin inhibited meiosis arrest and apoptosis of porcine oocytes induced by ZEA through the PI3K/Akt signaling pathway. Moreover, isorhamnetin repaired ZEA-induced oocyte damage by alleviating oxidative stress, mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Xiaoya Li
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 People’s Republic of China
| | - Jiaxin Duan
- grid.412545.30000 0004 1798 1300College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030031 People’s Republic of China
| | - Shiyou Wang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 People’s Republic of China
| | - Jianyong Cheng
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 People’s Republic of China
| | - Huali Chen
- grid.440649.b0000 0004 1808 3334School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000 People’s Republic of China
| | - Zelin Zhang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 People’s Republic of China
| | - Li Yang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 People’s Republic of China
| | - Rongmao Hua
- grid.499351.30000 0004 6353 6136College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118 People’s Republic of China
| | - Qingwang Li
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 People’s Republic of China
| |
Collapse
|
11
|
Diwan B, Sharma R. Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food Sci Biotechnol 2022; 31:1089-1109. [PMID: 35756719 PMCID: PMC9206104 DOI: 10.1007/s10068-022-01114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
The process of cellular senescence is rapidly emerging as a modulator of organismal aging and disease. Targeting the development and removal of senescent cells is considered a viable approach to achieving improved organismal healthspan and lifespan. Nutrition and health are intimately linked and an appropriate dietary regimen can greatly impact organismal response to stress and diseases including during aging. With a renewed focus on cellular senescence, emerging studies demonstrate that both primary and secondary nutritional elements such as carbohydrates, proteins, fatty acids, vitamins, minerals, polyphenols, and probiotics can influence multiple aspects of cellular senescence. The present review describes the recent molecular aspects of cellular senescence-mediated understanding of aging and then studies available evidence of the cellular senescence modulatory attributes of major and minor dietary elements. Underlying pathways and future research directions are deliberated to promote a nutrition-centric approach for targeting cellular senescence and thus improving human health and longevity.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
12
|
Zeng M, Zhang Y, Zhang X, Zhang W, Yu Q, Zeng W, Ma D, Gan J, Yang Z, Jiang X. Two birds with one stone: YQSSF regulates both proliferation and apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115028. [PMID: 35077825 DOI: 10.1016/j.jep.2022.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiqi Shengsui formula (YQSSF) is a commonly used formula to treat chemotherapy-induced myelosuppression, but little is known about its therapeutic mechanisms. AIM OF THIS STUDY This study aims to examine the effect of YQSSF in treating myelosuppression and explore its mechanism. MATERIALS AND METHODS A myelosuppression BALB/c mouse model was established by intraperitoneal (i.p.) injection of cyclophosphamide (CTX). The efficacy of YQSSF in alleviating chemotherapy-induced myelosuppression was evaluated by blood cell count, immune organ (thymus, spleen, liver) index, bone marrow nucleated cell (BMNC) count and histopathological analysis of bone marrow and spleen. Then, ultra-performance liquid chromatograph quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to analyze the ingredients of YQSSF extract. Key effects and potential mechanism of YQSSF extract in alleviating myelosuppression were predicted by network pharmacology method. Finally, cell cycle and TUNEL staining of bone marrow cells was detected to verify the key effects, and RT-qPCR or Western blotting were performed to measure the gene and protein expressions of the effect targets respectively to confirm the predicted mechanism of YQSSF for myelosuppression. RESULTS YQSSF up-regulated the number of peripheral blood leukocytes and BMNC, reduced spleen index and liver index, improved the pathological morphology of bone marrow and spleen. A total of 40 ingredients were isolated from YQSSF extract using UPLC-Q/TOF-MS analysis. Network pharmacology revealed that YQSSF regulated both proliferation and apoptosis to alleviate myelosuppression. Finally, YQSSF decreased G0/G1 ratio, increased the proportion of bone marrow cells in S phase and proliferation index (PI), and reduced apoptotic cells in femur bone marrow. RT-qPCR and Western blotting showed that YQSSF up-regulated the expression levels of CDK4, CDK6, CyclinB1, c-Myc and Bcl-2, as well as down-regulated the expression levels of Cyt-c, Fas, Caspase-8/3 and p53. CONCLUSIONS YQSSF promotes the proliferation and inhibits the apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Dongming Ma
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
13
|
Yang S, Dong Y, Liu Y, Yan X, Sun G, Jia G, Li X, Liu H, Su H, Li Y. Application of lipidomics strategy to explore aging-related biomarkers and potential anti-aging mechanisms of ginseng. Biogerontology 2021; 22:589-602. [PMID: 34542790 DOI: 10.1007/s10522-021-09937-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Aging often leads to an increase risk of age-related diseases, and the development of anti-aging drugs have become the trend and focus of the current scientific research. In this experiment, serum samples from healthy people of different ages were analyzed based on clinical lipidomics, and a total of 10 potential biomarkers in middle-aged and youth group, 20 biomarkers in the youth and the elderly group were obtained. Furthermore, dhSph and dhCer involved above may affect the aging process through sphingolipid metabolic pathway. As the first and rate-limiting step of catalyzing de novo sphingolipid pathway, SPT may play a key role in human anti-aging, which is revealed by lipidomics liposome tracer analysis. The potential active components in ginseng on SPT was further verified by molecular docking virtual screening and atomic force microscope. Four ingredients of ginseng may reduce the levels of metabolites dhSph and dhCer by inhibiting the activity of SPT, and play an anti-aging effect by affecting the sphingolipid metabolism pathway.A clinical trials registration number: ChiCTR1900026836.
Collapse
Affiliation(s)
- Shenshen Yang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yaqian Dong
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yuechen Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Xingxu Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Guijiang Sun
- Department of Kidney Disease and Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Street, Hexi District, Tianjin, 300211, China
| | - Guoxiang Jia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Xiaokai Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Hui Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Haihua Su
- Department of Endocrinology and Nephrology, PKU Care CNOOC Hospital, Tianjin, China.
| | - Yubo Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
14
|
Gao L, Zhang Y, Xu H, Zhao F, Wang W. Therapeutic Effects of Modified Gengnianchun Formula on Stress-Induced Diminished Ovarian Reserve Based on Experimental Approaches and Network Pharmacology. Drug Des Devel Ther 2021; 14:4975-4992. [PMID: 33239863 PMCID: PMC7680799 DOI: 10.2147/dddt.s279553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Aim To verify the effects of modified Gengnianchun formula (MGNC), a traditional Chinese medicine, on a stressed diminished ovarian reserve (DOR) animal model and predict the underlying mechanisms through network pharmacology strategies. Methods Sexually mature female C57BL/6 mice were allocated to five groups, abbreviated as the control (C) group, stress manipulated model (M) group, stress with normal saline gavage (N) group, stress with low-dose MGNC gavage (L) group, and stress with high-dose MGNC gavage (H) group. Body weight and the estrous cycle were monitored during the stress and gavage process. Serum stress hormones and reproductive hormones were evaluated by ELISA. Ovarian follicle counts were calculated, and ovarian follicle-stimulating hormone receptor (FSHR) and anti-Müllerian hormone (AMH) expression were assessed by Western blotting and immunohistochemistry. Network pharmacology strategies included active compound screening, drug and disease target analysis, gene ontology analysis, pathway analysis, and visualization of results. Results MGNC treatment significantly decreased serum corticosterone (CORT) and follicle-stimulating hormone (FSH) levels and increased testosterone (T) levels in the H group compared with the M and N groups. Primordial and preantral follicle counts and ovarian AMH and FSHR expression were significantly increased in the H group compared to those in the M and N groups. Through pharmacokinetic screening, we found 244 active compounds in MGNC. A total of 186 candidate intersection target genes of disease and MGNC were further screened to construct the interaction network. Gene ontology and KEGG pathway enrichment analysis ultimately unveiled a series of key targets that mainly mediated the effects of MGNC on DOR induced by chronic stress. The PI3K-Akt pathway may serve as the critical pathway underlying this therapeutic mechanism. Conclusion MGNC is a promising formula to treat DOR induced by chronic stress, and the PI3K-Akt pathway may play an essential role in this effect.
Collapse
Affiliation(s)
- Lingyun Gao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Yang Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Huangfang Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Fangui Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.,Department of Ultrasound Diagnosis, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China
| | - Wenjun Wang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|
15
|
Park SH, Jeong PS, Joo YE, Kang HG, Kim MJ, Lee S, Song BS, Kim SU, Cho SK, Sim BW. Luteolin Orchestrates Porcine Oocyte Meiotic Progression by Maintaining Organelle Dynamics Under Oxidative Stress. Front Cell Dev Biol 2021; 9:689826. [PMID: 34211977 PMCID: PMC8239245 DOI: 10.3389/fcell.2021.689826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation, but the underlying mechanisms remain largely unknown. Here, for the first time, we examined the antioxidant role of luteolin in meiotic progression and the underlying mechanisms. Supplementation of 5 μM luteolin increased the rates of first polar body extrusion and blastocyst formation after parthenogenetic activation, and the expression levels of oocyte competence (BMP15 and GDF9)-, mitogen-activated protein kinase (MOS)-, and maturation promoting factor (CDK1 and Cyclin B)-related genes were also improved. Luteolin supplementation decreased intracellular reactive oxygen species levels and increased the expression levels of oxidative stress-related genes (SOD1, SOD2, and CAT). Interestingly, luteolin alleviated defects in cell organelles, including actin filaments, the spindle, mitochondria, the endoplasmic reticulum, and cortical granules, caused by H2O2 exposure. Moreover, luteolin significantly improved the developmental competence of in vitro-fertilized embryos in terms of the cleavage rate, blastocyst formation rate, cell number, cellular survival rate, and gene expression and markedly restored the competencies decreased by H2O2 treatment. These findings revealed that luteolin supplementation during in vitro maturation improves porcine meiotic progression and subsequent embryonic development by protecting various organelle dynamics against oxidative stress, potentially increasing our understanding of the underlying mechanisms governing the relationship between oxidative stress and the meiotic events required for successful oocyte maturation.
Collapse
Affiliation(s)
- Soo-Hyun Park
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Ye Eun Joo
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Sanghoon Lee
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Seong-Keun Cho
- Department of Animal Science, College of Natural Resources and Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| |
Collapse
|
16
|
Yuan X, Tian GG, Pei X, Hu X, Wu J. Spermidine induces cytoprotective autophagy of female germline stem cells in vitro and ameliorates aging caused by oxidative stress through upregulated sequestosome-1/p62 expression. Cell Biosci 2021; 11:107. [PMID: 34099041 PMCID: PMC8186080 DOI: 10.1186/s13578-021-00614-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autophagy is required for oogenesis and plays a critical role in response to aging caused by oxidative stress. However, there have been no reports on regulation of cytoprotective autophagy in female germline stem cells (FGSCs) in response to aging caused by oxidative stress. RESULTS We found that Spermidine (SPD) significantly increased protein expression of autophagy markers microtubule-associated protein 1 light chain 3 beta-II (MAP1LC3B-II/LC3B-II) and sequestosome-1/p62 (SQSTM1/p62), and evoked autophagic flux in FGSCs. Moreover, SPD increased the number and viability of FGSCs in vitro. Further, we found that SPD significantly reduced basal or hydrogen peroxide (H2O2)-induced up-regulated protein expression of the aging markers, cyclin dependent kinase inhibitor 2A (p16/CDKN2A) and tumor protein 53 (p53). After knockdown of p62 in FGSCs, p16 protein levels were significant higher compared with controls. However, protein p16 levels were not significantly changed in p62 knockdown FGSCs with SPD treatment compared with without SPD. Moreover, SPD significantly changed the expression of autophagy-related genes and pathways in FGSCs, as shown by bioinformatics analysis of RNA sequencing data. Additionally, SPD significantly inhibited AKT/mTOR phosphorylation. CONCLUSIONS SPD induces cytoprotective autophagy in FGSCs in vitro and ameliorates cellular senescence of FGSCs induced by H2O2. Furthermore, SPD can ameliorate cellular senescence of FGSCs through p62. SPD might induce autophagy in FGSCs via the PI3K/Akt pathway. Our findings could be helpful for delaying aging of female germ cells due to oxidative stress and preserving female fertility.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China. .,Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Lan S, Duan J, Zeng N, Yu B, Yang X, Ning H, Huang Y, Rao Y. Network pharmacology-based screening of the active ingredients and mechanisms of Huangqi against aging. Medicine (Baltimore) 2021; 100:e25660. [PMID: 33907130 PMCID: PMC8084007 DOI: 10.1097/md.0000000000025660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 04/04/2021] [Indexed: 01/23/2023] Open
Abstract
ABSTRACT Studies have shown that Huangqi (HQ) has anti-aging efficacy. However, its active ingredients and mechanisms for anti-aging are still unclear. In this study, we will systematically screen the active ingredients of HQ and explore the possible mechanism of HQ in prevention from aging through network pharmacology technology.The main active ingredients of HQ were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The possible targets were predicted by TCMSP. The related targets for aging were obtained from GeneCards (The Human Gene Database) and Online Mendelian Inheritance in Man (OMIM) database. The common targets of HQ and aging were obtained using R 3.6.3 software. The protein-protein interaction (PPI) network and the ingredient-target-disease network were constructed using Cytoscape 3.7.2 software for visualization. In addition, the Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of potential targets were performed using R 3.6.3 software.Based on the screening conditions, 16 active ingredients and 28 drug targets were obtained. The PPI network contained 29 proteins, including PTGS2, AR, NOS2, and so on. GO functional enrichment analysis obtained 40 GO items (P < .05). KEGG pathway enrichment analysis obtained 110 aging related pathways (P < .05), including hypoxia inducible factor 1 signaling pathway, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complication, among others.Sixteen effective ingredients of HQ and 28 targets against aging were identified through network pharmacology. Multiple pathways were involved in the effect of HQ on preventing aging.
Collapse
Affiliation(s)
- Siyu Lan
- Department of Pharmacy, Mianyang Central Hospital, Mianyang
| | - Jie Duan
- Department of Clinical Pharmacy, Pidu District People's Hospital
| | - Nan Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, Mianyang
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Ning
- Department of Pharmacy, Mianyang Central Hospital, Mianyang
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youyi Rao
- Department of Pharmacy, Mianyang Central Hospital, Mianyang
| |
Collapse
|