1
|
Maturana M, Castillejos L, Jose-Cunilleras E, Montserrat-Malagarriga M, Alcaraz J, García J, Martín-Orúe SM. Effects of Blueberry Consumption on Preference, Digestibility, and Oxidative Balance in Dogs. Animals (Basel) 2025; 15:1502. [PMID: 40427378 DOI: 10.3390/ani15101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
The growing awareness of the diet-health connection drives interest in natural dog diets, which replace synthetic additives like antioxidants with natural ingredients. In Trial 1 of this study, preference for diets containing powdered Fucus algae (1.5%), powdered clove (0.45%), or whole blueberries (3%) was evaluated using the two-bowl method. Dogs exhibited a clear preference for the blueberry diet. In Trial 2, the impact of blueberries on apparent digestibility was assessed. Twelve Beagles were fed either a control diet (CON) or the same diet with 3% blueberries (BLU). No differences were observed, except for cellulose digestibility. Trial 3 evaluated the effect of blueberries on oxidative status during submaximal exercise. The same dogs were fed either CON or BLU diets for 4 weeks, with eight dogs completing treadmill exercises at the start and end of this period. Blood samples were collected before and after exercise. Trial 3 was replicated in summer and winter, reversing diet groups. Exercise increased creatine kinase (CK), urea, and malondialdehyde and decreased glutathione peroxidase, with stronger effects in summer, suggesting heat stress. Although the BLU diet did not mitigate exercise-induced changes, lower resting CK levels after 4 weeks in summer suggest protection against heat stress, warranting further study.
Collapse
Affiliation(s)
- Marta Maturana
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Eduard Jose-Cunilleras
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Miquel Montserrat-Malagarriga
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Juan Alcaraz
- Visán Industrias Zootécnicas SL, 28500 Madrid, Spain
| | - Jose García
- Visán Industrias Zootécnicas SL, 28500 Madrid, Spain
| | - Susana M Martín-Orúe
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| |
Collapse
|
2
|
García-Silva I, Farfán-Castro S, Rosales-Mendoza S, Palestino G. Synthesis and Characterization of Thiolated Nanoparticles Based on Poly (Acrylic Acid) and Algal Cell Wall Biopolymers for the Delivery of the Receptor Binding Domain from SARS-CoV-2. Pharmaceutics 2024; 16:891. [PMID: 39065588 PMCID: PMC11279463 DOI: 10.3390/pharmaceutics16070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic required great efforts to develop efficient vaccines in a short period of time. However, innovative vaccines against SARS-CoV-2 virus are needed to achieve broad immune protection against variants of concern. Polymeric-based particles can lead to innovative vaccines, serving as stable, safe and immunostimulatory antigen delivery systems. In this work, polymeric-based particles called thiolated PAA/Schizo were developed. Poly (acrylic acid) (PAA) was thiolated with cysteine ethyl ester and crosslinked with a Schizochytrium sp. cell wall fraction under an inverse emulsion approach. Particles showed a hydrodynamic diameter of 313 ± 38 nm and negative Zeta potential. FT-IR spectra indicated the presence of coconut oil in thiolated PAA/Schizo particles, which, along with the microalgae, could contribute to their biocompatibility and bioactive properties. TGA analysis suggested strong interactions between the thiolated PAA/Schizo components. In vitro assessment revealed that thiolated particles have a higher mucoadhesiveness when compared with non-thiolated particles. Cell-based assays revealed that thiolated particles are not cytotoxic and, importantly, increase TNF-α secretion in murine dendritic cells. Moreover, immunization assays revealed that thiolated PAA/Schizo particles induced a humoral response with a more balanced IgG2a/IgG1 ratio. Therefore, thiolated PAA/Schizo particles are deemed a promising delivery system whose evaluation in vaccine prototypes is guaranteed.
Collapse
Affiliation(s)
- Ileana García-Silva
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Biopolymers and Nanostructures Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
- Recombinant Biopharmaceuticals Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Susan Farfán-Castro
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Recombinant Biopharmaceuticals Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Recombinant Biopharmaceuticals Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Gabriela Palestino
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Biopolymers and Nanostructures Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| |
Collapse
|
3
|
Berzal G, García-García P, Señoráns FJ. Integrated Process for Schizochytrium Oil Extraction, Enzymatic Modification of Lipids and Concentration of DHA Fatty Acid Esters Using Alternative Methodologies. Mar Drugs 2024; 22:146. [PMID: 38667763 PMCID: PMC11051022 DOI: 10.3390/md22040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Marine microalgae Schizochytrium sp. have a high content of docosahexaenoic acid (DHA), an omega-3 fatty acid that is attracting interest since it prevents certain neurodegenerative diseases. The obtention of a bioactive and purified DHA fatty acid ester using a whole-integrated process in which renewable sources and alternative methodologies are employed is the aim of this study. For this reason, lyophilized Schizochytrium biomass was used as an alternative to fish oil, and advanced extraction techniques as well as enzymatic modification were studied. Microalgal oil extraction was optimized via a surface-response method using pressurized liquid extraction (PLE) obtaining high oil yields (29.06 ± 0.12%) with a high concentration of DHA (51.15 ± 0.72%). Then, the enzymatic modification of Schizochytrium oil was developed by ethanolysis using immobilized Candida antarctica B lipase (Novozym® 435) at two reaction temperatures and different enzymatic loads. The best condition (40 °C and 200 mg of lipase) produced the highest yield of fatty acid ethyl ester (FAEE) (100%) after 8 h of a reaction attaining a cost-effective and alternative process. Finally, an enriched and purified fraction containing DHA-FAEE was obtained using open-column chromatography with a remarkably high concentration of 93.2 ± 1.3% DHA. The purified and bioactive molecules obtained in this study can be used as nutraceutical and active pharmaceutical intermediates of marine origin.
Collapse
Affiliation(s)
| | | | - Francisco Javier Señoráns
- Healthy-Lipids Group, Food Science Department, Faculty of Sciences, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (G.B.); (P.G.-G.)
| |
Collapse
|
4
|
Li Y, Liu M, Wei Y, Li L, Ma D, Weng Y, Wang H, Xu X. Influence of a Mixture of Protein Hydrolysate from Black Soldier Fly Larvae and Schizochytrium on Palatability, Plasma Biochemistry, and Antioxidative and Anti-Inflammatory Capacity in Cat Diets. Animals (Basel) 2024; 14:751. [PMID: 38473136 DOI: 10.3390/ani14050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The objective of this research was to evaluate palatability, plasma biochemistry, antioxidative and anti-inflammatory capacity, and immune levels in cats by feeding supplementing inclusion of different levels of a mixture of protein hydrolysate from black soldier fly larvae and schizochytrium (BSFPs) in diets. In the feed experiment, a total of 24 adult cats (12 females and 12 males; BW: 3.02 ± 0.06 kg) were randomly divided into four groups: (1) diet with chicken and fish meal as primary protein resource (CON); (2) diet with 5% BSFPs replacing chicken meal, fish meal, chicken oil, and fish oil (5% BSFPs); (3) 10% BSFPs; and (4) 15% BSFPs. The body weight and feed intake were recorded, and a blood sample was collected for analysis. In the palatability experiment, three diets containing 5%, 10%, and 15% BSFPs were evaluated by comparing with CON. These results suggested that different levels of BSFPs could improve palatability in cat diets by enhancing the first sniff, the first bite, and feed intake (p < 0.05). However, no significant influence existed in body weight and average daily feed intake (p > 0.05). In comparison to the CON group, 5% and 15% BSFPs significantly increased the total protein content, and all treatment groups decreased the triglyceride content and enhanced the calcium concentration in plasma; in addition, the activity of aspartate aminotransferase and alanine aminotransferase and the content of creatinine and urea nitrogen were significantly reduced by the supplementation inclusion of BSFPs in the diets (p < 0.05). The enzyme activity of glutathione peroxidase was dramatically enhanced by the supplementation of 10% and 15% BSFPs in diets compared with the CON diet, and the activity of superoxide dismutase was increased and the malondialdehyde concentration was remarkably reduced in all three treatments (p < 0.05). Compared with the CON group, different levels of BSFPs in the diets significantly increased the immunoglobulin A content in plasma; similarly, the immunoglobulin G concentration was significantly enhanced by the supplementation of 10% and 15% BSFPs in the diets (p < 0.05). Furthermore, the interleukin-1β content was significantly reduced in the inclusion of 10% and 15% BSFPs in the diets, and 15% BSFPs remarkably decreased the content of interleukin-8 in plasma compared with the CON diet (p < 0.05). To sum up, the supplementation of different levels of BSFPs exhibited a positive effect on palatability and enhanced the antioxidant, anti-inflammatory, and immune capacity. Particularly, the addition levels of 10% and 15% BSFPs were more effective in antioxidation, anti-inflammation, and immunity.
Collapse
Affiliation(s)
- You Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingkang Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Luyang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Deying Ma
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuxiao Weng
- P&O Biotechnology (Hubei) Co., Ltd., Wuhan 436043, China
| | - Haifeng Wang
- P&O Biotechnology (Hubei) Co., Ltd., Wuhan 436043, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Salehian Z, Khalilvandi-Behroozyar H, Pirmohammadi R, Ahmadifard N, Almasi H, Ramin M. Investigating the effect of supplementing different levels of Isochrysis galbana on in vitro rumen fermentation parameters. Anim Sci J 2024; 95:e13929. [PMID: 38400743 DOI: 10.1111/asj.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 02/26/2024]
Abstract
This study aimed to investigate the effect of supplementing Isochrysis galbana (I. galbana) at levels of 0 (control), 1, 2, 3, 4, and 5 (g/100 g DM) of the diet on the gas production kinetics, methane production, rumen fermentation parameters, and relative microbial population in vitro. Supplementation of I. galbana at high level (5 g/100 g DM) caused a significant decrease in total gas production (p < 0.05). High supplementation rates (4 and 5 g/100 g DM) decreased CH4 production relative to the control by 18.4% and 23.2%, respectively. Although rumen ammonia nitrogen (N-NH3) and total volatile fatty acids (VFA) concentrations were affected by dietary treatments, but the VFA profile did not changed. The relative proportion of protozoa and methanogenic archaea as well as Anaerovibrio lipolytica, Prevotella spp., Ruminococcus flavefaciens, and Fibrobacter succinogenes were decreased significantly as a result of microalgae supplementation. However, the relative abundance of Ruminococcus albus, Butyrivibrio fibrisolvens and Selenomonas ruminantium were significantly increased (p < 0.05), related to the control group. As well, the pH was not affected by dietary treatments. It was concluded that I. galbana reduced in vitro CH4 production and methanogenic archaea that its worth to be investigated further in in vivo studies.
Collapse
Affiliation(s)
- Zahra Salehian
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Rasoul Pirmohammadi
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Nasrollah Ahmadifard
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Ramin
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
6
|
Cabrita ARJ, Guilherme-Fernandes J, Spínola M, Maia MRG, Yergaliyev T, Camarinha-Silva A, Fonseca AJM. Effects of microalgae as dietary supplement on palatability, digestibility, fecal metabolites, and microbiota in healthy dogs. Front Vet Sci 2023; 10:1245790. [PMID: 37829353 PMCID: PMC10565105 DOI: 10.3389/fvets.2023.1245790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The current trend of dog owners increasingly favoring the functional value of food to assure preventive health and wellbeing of their pets has been raising the interest in microalgae as natural additives with bioactive properties. However, scientific studies addressing the effects of microalgae supplementation in diets for dogs are scarce. This study aimed to evaluate the effects of dietary supplementation with three microalgae species (Chlorella vulgaris, Nannochloropsis oceanica, and Tetradesmus obliquus) on diet palatability, total tract digestibility, metabolizable energy content, fecal metabolites and microbiota of dogs. Twelve adult Beagle dogs were used in three two-bowl tests to compare the palatability of a commercial complete diet for adult dogs without (reference diet) and with 1.5% supplementation of each microalgae. From the results obtained, three digestibility trials were performed according to a replicated Latin square 3 × 3, with six adult Beagle dogs, three experimental periods of 10 days each, and three dietary supplementation levels of microalgae (0.5, 1.0, and 1.5%). In each trial, effects of microalgae supplementation levels on total tract digestibility, metabolizable energy content, fecal metabolites and microbiota of dogs were evaluated. First diet approached or tasted was not significantly affected by microalgae inclusion, but dogs showed a preference for the reference diet over the diets with 1.5% inclusion of C. vulgaris and N. oceanica, no difference being observed with 1.5% T. obliquus. In all digestibility trials, dietary supplementation with microalgae up to 1.5% did not greatly affected the dietary chemical composition and kept unaffected food intake, fecal output and metabolites, and digestibility of nutrients and energy. Compared with the reference diet, supplementation with C. vulgaris increased protein digestibility. Fecal characteristics and metabolites were affected by microalgae supplementation, being the effects dependent on the species. Fecal microbiota composition of dogs fed with microalgae-supplemented diets was modified by promoting the beneficial Turicibacter and Peptococcus genera associated with gut health and activation of the immune system. Overall, the results support C. vulgaris, N. oceanica, and T. obliquus as sustainable functional supplements that potentially enhance gastrointestinal health of dogs through the selective stimulation of microbiota without detrimental effects on food intake and digestibility.
Collapse
Affiliation(s)
- Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Joana Guilherme-Fernandes
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Maria Spínola
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Timur Yergaliyev
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Elghandour MMMY, Maggiolino A, Alvarado-Ramírez ER, Hernández-Meléndez J, Rivas-Cacerese RR, Hernández-Ruiz PE, Khusro A, De Palo P, Salem AZM. Marine Microalgae as a Nutritive Tool to Mitigate Ruminal Greenhouse Gas Production: In Vitro Fermentation Characteristics of Fresh and Ensiled Maize ( Zea mays L.) Forage. Vet Sci 2023; 10:556. [PMID: 37756078 PMCID: PMC10534631 DOI: 10.3390/vetsci10090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of the present study was to evaluate the effects of marine microalgae (Dunaliella salina) as a food additive on biogas (BG), methane (CH4), carbon monoxide (CO), and hydrogen sulfide (H2S) production kinetics, as well as in in vitro rumen fermentation and the CH4 conversion efficiency of different genotypes of maize (Zea mays L.) and states of forage. The treatments were characterized by the forage of five maize genotypes (Amarillo, Montesa, Olotillo, Tampiqueño, and Tuxpeño), two states of forage (fresh and ensiled), and the addition of 3% (on DM basis) of microalgae (with and without). The parameters (b = asymptotic production, c = production rate, and Lag = delay phase before gas production) of the production of BG, CH4, CO, and H2S showed an effect (p < 0.05) of the genotype, the state of the forage, the addition of the microalgae, or some of its interactions, except for the time in the CO delay phase (p > 0.05). Moreover, the addition of microalgae decreased (p < 0.05) the production of BG, CH4, and H2S in most of the genotypes and stages of the forage, but the production of CO increased (p < 0.05). In the case of fermentation characteristics, the microalgae increased (p < 0.05) the pH, DMD, SCFA, and ME in most genotypes and forage states. With the addition of the microalgae, the fresh forage from Olotillo obtained the highest pH (p < 0.05), and the ensiled from Amarillo, the highest (p < 0.05) DMD, SCFA, and ME. However, the ensiled forage produced more (p < 0.05) CH4 per unit of SFCA, ME, and OM, and the microalgae increased it (p < 0.05) even more, and the fresh forage from Amarillo presented the highest (p < 0.05) quantity of CH4 per unit of product. In conclusion, the D. salina microalga showed a potential to reduce the production of BG, CH4, and H2S in maize forage, but its effect depended on the chemical composition of the genotype and the state of the forage. Despite the above, the energy value of the forage (fresh and ensiled) improved, the DMD increased, and in some cases, SCFA and ME also increased, all without compromising CH4 conversion efficiency.
Collapse
Affiliation(s)
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy;
| | | | - Javier Hernández-Meléndez
- Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87149, Tamaulipas, Mexico;
| | - Raymundo Rene Rivas-Cacerese
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Pedro Enrique Hernández-Ruiz
- Escuela Superior de Medicina Veterinaria y Zootecnia No. 3, Universidad Autónoma de Guerrero, Técpan de Galeana 40900, Guerrero, Mexico;
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai 600034, Tamil Nadu, India;
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy;
| | | |
Collapse
|
8
|
Techno-economic modelling of high-value metabolites and secondary products from microalgae cultivated in closed photobioreactors with supplementary lighting. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Wang J, Han L, Wang D, Sun Y, Huang J, Shahidi F. Stability and stabilization of omega-3 oils: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
11
|
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar Drugs 2021; 19:113. [PMID: 33670628 PMCID: PMC7922858 DOI: 10.3390/md19020113] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.
Collapse
Affiliation(s)
- Marine Remize
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Yves Brunel
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Joana L. Silva
- ALLMICROALGAE–Natural Products, Avenida 25 Abril, 2445-413 Pataias, Portugal;
| | | | - Edith Filaire
- GREENTECH, Biopôle Clermont-Limagne, 63360 SAINT BEAUZIRE, France;
- ECREIN Team, UMR 1019 INRA-UcA, UNH (Human Nutrition Unity), University Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|